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Chronic kidney disease affects more than 10% of the population. Programming studies 
have examined the interrelationship between environmental factors in early life and differ-
ences in morbidity and mortality between individuals. A number of important principles 
has been identified, namely permanent structural modifications of organs and cells, 
long-lasting adjustments of endocrine regulatory circuits, as well as altered gene tran-
scription. Risk factors include intrauterine deficiencies by disturbed placental function 
or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and 
postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review 
discusses critical developmental periods and long-term sequelae of renal programming 
in humans and presents studies examining the underlying mechanisms as well as 
interventional approaches to “re-program” renal susceptibility toward disease. Clinical 
manifestations of programmed kidney disease include arterial hypertension, proteinuria, 
aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron 
number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, 
vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback 
have been identified as being vulnerable to environmental factors. Oxidative stress levels, 
metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA meth-
ylation, and histone configuration may be significantly altered by adverse environmental 
conditions. Studies on re-programming interventions focused on dietary or anti-oxidative 
approaches so far. Further studies that broaden our understanding of renal programming 
mechanisms are needed to ultimately develop preventive strategies. Targeted re-pro-
gramming interventions in animal models focusing on known mechanisms will contribute 
to new concepts which finally will have to be translated to human application. Early 
nutritional concepts with specific modifications in macro- or micronutrients are among 
the most promising approaches to improve future renal health.

Keywords: kidney development, nephron number, renin–angiotensin–aldosterone system, renal sodium transport, 
blood pressure, early nutrition, re-programming intervention

INTRODUCTION

Prevention of chronic kidney disease is a major public health challenge (1). Although diabetes mellitus 
is the most common cause of chronic kidney disease worldwide (2), developmental programming 
processes that have been reviewed by us (3, 4) and others (5–7) before substantially contribute to 
differences in morbidity and mortality between individuals. The normal development of the kidney 
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can be disturbed by multiple environmental factors, including 
intrauterine deficiencies by disturbed placental function or 
maternal malnutrition, prematurity, intrauterine and postnatal 
stress, intrauterine and postnatal overnutrition, as well as dietary 
dysbalances of macro- and micronutrients. Since developmental 
steps take place during unique developmental periods, timing, 
and duration of an adverse environment specifically impact on 
developmental programming. Adverse kidney programming 
increases the incidence of severe renal and cardiovascular sequels 
later in life. This includes arterial hypertension and associated 
end organ damage, the aggravation of inflammatory glomerular 
disease and the occurrence of end-stage renal disease. Specific 
“re-programming” interventions may mitigate or even prevent 
programmed disease. Consequently, our mini-review will address 
the following topics:

 (1) Which developmental stages are especially vulnerable?
 (2) What are the long-term sequelae of adverse renal programming?
 (3) Which environmental factors may have impact on kidney 

development and what are potential mechanisms of devel-
opmental kidney programming?

 (4) What are potential therapeutic “re-programming” interventions?

CRITICAL DEVELOPMENTAL PERIODS OF 
RENAL PROGRAMMING IN HUMANS

In humans the pronephros begins to form around day 22, urine 
production starts after 10 weeks (8), and maximum renal growth 
occurs between 26 and 34 weeks of gestation (9). Around week 
36, nephrogenesis is completed and the number of nephrons 
is determined (8, 10). In preterm infants, adaptation to extra-
uterine conditions impairs nephrogenesis, and the children end 
up with fewer nephrons and a higher percentage of morphologi-
cally abnormal glomeruli (5, 6, 11, 12). In small for gestational age 
(SGA) fetuses, intrauterine renal growth is reduced compared to 
appropriate for gestational age controls (9). In both term and pre-
term infants, glomerular and tubular functions undergo further 
maturational changes during the first months of life (8, 13). In 
these vulnerable periods, babies are often exposed to nephrotoxic 
medication, such as non-steroidal anti-inflammatory drugs (14), 
antibiotics, or diuretics, during neonatal intensive care unit treat-
ment (15, 16).

LONG-TERM SEQUELAE OF RENAL 
PROGRAMMING IN HUMANS

Blood Pressure and Loss of Kidney 
Function
Hypertension is the most important risk factor for cardiovascular 
events and mortality worldwide (17). Elevated blood pressure 
contributes to progression of renal insufficiency (18) and is a 
strong independent risk factor for end-stage renal disease (19). 
Vice versa, decreased renal function is associated with increased 
blood pressure and cardiovascular morbidity (20). Early detection 
of blood pressure elevation plays a major role in the prevention 
of end organ damage (21). Many studies, including a systematic 

meta-analysis of studies tracking blood pressure during life 
course, demonstrated that childhood blood pressure predicts 
blood pressure (22–24) and vascular end organ damage in adult-
hood (25). Abnormal birth weight, either low or high, increases 
the risk for blood pressure elevation and loss of renal function in 
a U-shaped manner (26–31). In SGA individuals, some studies 
demonstrated elevated blood pressure in childhood (32) or adult-
hood (33, 34) especially when rapid postnatal catch-up growth 
and later adiposity were present (35). Further risk factors include 
high maternal BMI (36) or elevated protein/carbohydrate ratios 
in maternal diet during pregnancy (37, 38), rapid postnatal weight 
gain (39), or being born large for gestational age (36, 40, 41).

Proteinuria and Loss of Kidney Function
Several risk factors during early life predispose toward proteinuria 
and related decline of renal function. Accordingly, the prevalence 
of microalbuminuria among adults whose mothers had been 
exposed to the Dutch Hunger Winter 1944/45 was elevated (42). 
Chinese women born in the famine years 1959–1961 had a higher 
risk to develop more severe stages of proteinuria in their forties 
(43). Low birthweight itself is associated with elevated risks for 
albuminuria (OR, 1.81; 95% CI, 1.19–2.77), end-stage renal dis-
ease (OR, 1.58; 95% CI, 1.33–1.88), or low estimated glomerular 
filtration rate (GFR) (29, 44, 45). A birthweight-dependent 
decline in GFR may already be seen in childhood (29, 46, 47).

Glomerular Disease and Inflammation
Furthermore, a number of studies have evaluated the associa-
tion between perinatal risk factors and later glomerular disease. 
Thus, SGA individuals have a higher risk to experience steroid 
resistance and a more severe course in nephrotic syndrome  
(48, 49). In IgA-nephropathy, they develop arterial hypertension 
and glomerulosclerosis more often (50).

MECHANISMS OF RENAL 
PROGRAMMING

In human studies, it is difficult to establish mechanistic links in 
the field of developmental programming since there usually is a 
large delay between an adverse event and the related clinical phe-
notype. This makes it very challenging to distinguish the underly-
ing causes from multiple modifying factors. Thus, animal models 
providing the possibility of equalized postnatal conditions and 
specific interventions are especially valuable. In rodents, kidney 
development during the early postnatal period corresponds to the 
third trimester in humans (10). For an overview of mechanisms 
see Figure 1.

Nephron Number
Nephron number in humans ranges from ~200,000 to >2.5 mil-
lion nephrons per kidney (51). The well-known hypothesis of 
Brenner et al. linked decreased glomerular number with increased 
glomerular size, hyperfiltration, hypertension, and progressive 
glomerular injury (7, 52). Nephron number positively correlates 
with birth weight (53, 54) and is reduced after low-protein (LP) 
diet throughout pregnancy (55–59), utero-placental insufficiency 
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FIGURE 1 | Programming mechanisms affecting blood pressure and kidney 
function.
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(60–62), intrauterine glucocorticoid exposure (63), preterm birth 
(11, 64), and oxidative stress (65). In addition, a diet deficient 
in vitamin A (58, 66), zinc (67), or iron (68) is associated with 
low nephron count. Finally, nephrons get lost with age (69). 
Interestingly, low nephron number in young individuals is not 
necessarily associated with hypertension (70, 71). Thus, modulat-
ing factors such as early hyperalimentation and aging processes 
certainly have an impact on renal outcome in individuals with 
low nephron count (71, 72).

Renin–Angiotensin–Aldosterone  
System (RAAS)
Dysregulation of all or single components of the RAAS system 
may severely impair renal development (73, 74). Both activating 
and deactivating effects on the RAAS can induce a vicious circle 
of persisting hormonal dysbalances which may finally contribute 
to the development of arterial hypertension and renal failure.

In the fetal and perinatal period, downregulation of the RAAS 
has been identified as a relevant mechanism. In neonatal rats after 
LP diet during gestation, renal renin and angiotensin II levels (75) 
as well as angiotensin II receptors type 1 (AT1R) and 2 (AT2R) 
protein expressions (76) were reduced. Similarly, renal AT2R gene 
and protein expressions were reduced in fetal rats after prenatal 
caffeine exposure (77). Fetal angiotensin II levels in plasma were 
decreased after maternal high-salt diet in sheep (78).

Later in life, most environmental influences during early 
childhood end up with a RAAS activation. Adult rat offspring 
from the LP diet model showed elevated blood pressure (59), 
increased AT1R expression (79, 80) and elevated plasma 
angiotensin-converting enzyme (ACE) activity going along with 
slightly elevated angiotensin II levels (81). When challenged with 

angiotensin II infusion, adult LP offspring reacted with a greater 
decline in GFR than controls (80). In another LP study, there 
were more angiotensin II-positive cells in the cortical tubuloint-
erstitium of adult offspring (82). Offspring from diabetic mothers 
had marked upregulation of angiotensinogen (AGT) and AT1R 
gene expression as well as increased ACE:ACE2 mRNA ratio (83). 
Some environmental influences induce RAAS activation already 
in fetal life. Thus, ovine offspring exposed to high salt during 
gestation presented with increased gene expression of AGT, ACE, 
AT1R, and increased ACE:ACE2 and AT1R:AT2R mRNA ratio 
(78). In the human situation, plasma renin concentrations were 
elevated in umbilical veins of SGA infants, and birth weight was 
inversely associated with circulating aldosterone concentrations 
(84). Treatment of human proximal tubule epithelial cells with 
palmitic acid demonstrated susceptibility to nutritional factors, 
as it induced intracellular endoplasmic reticulum (ER) stress 
and increased angiotensin II concentrations in cell medium. 
Co-treatment with AT1R-blocker or renin-inhibitor prevented 
ER stress (85).

Renal Sodium Transport
In rats, LP nutrition or dexamethasone treatment during gesta-
tion both resulted in an upregulation of the bumetanide-sensitive 
Na-K-2Cl cotransporter and of the thiazide-sensitive Na-Cl 
cotransporter in the offspring (86, 87). Adult offspring exposed 
to LP nutrition during gestation and lactation presented with a 
reduced diuretic response after a single dose of furosemide (88). 
After prenatal dexamethasone treatment, proximal tubule Na/H 
exchanger protein expression was increased, going along with an 
increase in proximal tubule sodium and volume reabsorption 
(86, 89). Sodium uptake in renal proximal tubule cells from adult 
male sheep was enhanced after prenatal betamethasone exposure 
(90). In rat offspring exposed to experimental utero-placental 
insufficiency (91) or maternal diabetes (92), sodium-dependent 
hypertension was observed.

Vasomotor and Endothelial Function
Another interesting aspect is the maturation of vascular 
smooth muscle function and small artery resistance regulation. 
Sympathectomy suppresses maturation of the gene program 
involved in small artery resistance regulation (93). Intrauterine 
and perinatal stress could, therefore, have a major impact on 
vascular tone regulation. In addition, vasomotor function can be 
impaired by perinatal hyperoxia (65) and LP diet (94). Endothelial 
dysfunction has also been described after intrauterine deficiency 
and may add to hypertension and glomerular damage (95).

Myogenic Response and Tubuloglomerular 
Feedback (TGF)
An impaired myogenic response as well as a disturbed TGF are 
important contributors to glomerular damage in diabetic and 
hypertensive nephropathy (96). An altered myogenic response 
has been described in intrauterine growth-restricted (IUGR) 
neonates, which may be beneficial postnatally, but harmful in the 
long run (97). The TGF mechanism matures during fetal life and 
could, therefore, be susceptible to programming in  utero (98). 
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However, no study has examined the specific consequences of 
disturbed intrauterine environment for TGF function.

Epigenetic Mechanisms
The molecular details of kidney development have been exten-
sively studied (99, 100). Altered DNA methylation, histone 
modification, and other mechanisms modifying the renal 
transcriptome may significantly impair renal organogenesis and 
predispose toward renal disease which has lately been reviewed in 
detail (101). In this context, it is important to separate epigenetic 
changes during kidney disease (102) from epigenetic changes 
during early life leading to “programmed” disease. So far, there is 
little evidence that single, kidney-specific epigenetic alterations 
during early life might actually cause renal disease later on. 
Candidate genes would be all genes which are activated during 
specific developmental windows. Pax-2, for example, is essential 
for kidney development, ontogenetically regulated and can be 
reactivated in repair processes after acute kidney injury (103, 104). 
Global alterations of methylation associated with hypertension 
were observed after significant periconceptional deficiency of B 
vitamins and methionine (105). Thus, nutritional modifications 
may induce temporary or permanent epigenetic alterations that 
certainly have the potential to modulate kidney disease.

Oxidative Stress
Oxidative stress and inflammation are major contributors to 
vascular remodeling and hypertension (106). In LP (94, 107) 
and maternal smoking models (108), it was shown that oxidative 
stress during critical developmental steps may significantly con-
tribute to renal susceptibility toward disease. In addition, both 
IUGR offspring after global undernutrition of the dam (109) and 
after high-fat died during gestation and lactation (110) showed 
increased oxidative stress and elevated blood pressure later in 
life. Reduction of oxidative stress during early life can prevent 
programmed hypertension and renal damage (94, 107, 108).

Metabolism
Rapid postnatal weight gain and early life obesity have been asso-
ciated with adverse renal outcome (111, 112). Interplay between 
adiposity, leptin, and insulin resistance with RAAS regulation 
and sympathetic activity has been described (113, 114). Early 
postnatal overfeeding in rats by litter size reduction induced 
increased early postnatal weight gain and was associated with 
increased blood pressure, glomerulosclerosis, and proteinuria in 
adulthood (71). In a similar study, postnatal overfeeding resulted 
in decreased GFR, increased proteinuria and increased deposi-
tion of collagens. On the molecular level, intrinsic renal leptin 
resistance could be demonstrated (115). Dysregulation of renal 
leptin and Akt/AMPKα signaling associated with increased renal 
matrix deposition could also be shown in overweight offspring 
from mothers fed a high-fat diet during gestation and lactation 
(116). Maternal LP nutrition during rat gestation persistently 
decreased the expression of renal 11β-hydroxysteroid dehydro-
genase type 2 (11β-HSD2) (117, 118) and increased the expres-
sion of the renal glucocorticoid receptor in the offspring (118). 
The same was shown for sheep offspring exposed to temporary 
maternal calorie restriction (119).

Arachidonic Acid Metabolism Pathway
Finally, there is evidence that the arachidonic acid metabolism 
pathway could be involved in the development of programmed 
hypertension (120, 121). 20-hydroxyeicosatetraenoic acid (20-
HETE), a metabolite of arachidonic acid, contributes to the normal 
myogenic pressure response. Physiologically, arachidonic acid is 
released from cell membranes by phospholipase A2, converted 
to 20-HETE, which then adds to vasoconstriction of the affer-
ent arteriole (96, 122). However, 20-HETE has also been linked 
to systemic hypertension and endothelial dysfunction in rats 
(123). Further arachidonic acid metabolites like Cox-2 derived 
prostaglandins contribute to counter regulatory vasodilation of 
the afferent arteriole after TGF-mediated vasoconstriction (124) 
and oxidative stress in the kidney (125), and therefore modulate 
intraglomerular pressure and GFR as well as renal inflammation 
(82). Thus, nutritional intake of arachidonic acid may significantly 
affect blood pressure, kidney function, and kidney survival.

POTENTIAL THERAPEUTIC “RE-
PROGRAMMING” INTERVENTIONS

The ultimate goal of all research on programmed disease is to 
develop preventive strategies. So far, the number of studies on re-
programming interventions is still limited and mainly restricted 
to dietary or anti-oxidative approaches.

Early Dietary Interventions
Data on nutritional interventions are available from both animal 
and human studies. A meta-analysis showed slightly, but signifi-
cantly lower blood pressure in infants, children, and adolescents 
who were breast fed during infancy compared to those being 
formula fed (126). Micronutrient (127), calcium (128), vitamin 
A (129, 130), and iron (131) supplementation during pregnancy 
as well as long-chain polyunsaturated fatty acid (LCPUFA) sup-
plementation in infant formula (132) may be beneficial to renal 
outcome.

In detail, children of women receiving a multiple micronutri-
ent supplementation during the second and third trimesters of 
pregnancy were heavier and had lower systolic blood pressure 
during infancy (127). Calcium supplementation from the 20th 
gestational week until delivery lowered systolic blood pressure in 
children aged 7 years, with a stronger effect when children were 
overweight (128). Supplementation of iron and folate until the 
end of pregnancy in rural Bangladesh caused a slightly decreased 
diastolic blood pressure and a slightly increased GFR in infants at 
the age of 4.5 years when started at the ninth, but not when started 
at the 20th gestational week (131). Another dietary intervention 
with micronutrient supplementation in malnourished pregnant 
Nepalese women until 3 months postpartum showed that folic 
acid or the combination of folic acid, iron, and zinc reduced the 
risk of microalbuminuria, but not blood pressure in the children 
aged 6–8  years (133). The effects of retinoic acid have mainly 
been studied in animals. Decreased availability of retinoic acid 
induced by down-regulated vitamin A metabolism after previous 
overexposure to vitamin A strongly impairs metanephric kidney 
development, which can be restored by adequate retinoic acid 
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supplementation (129). In rat offspring exposed to LP diet of 
the dam during pregnancy, a single injection of retinoic acid to 
the dam at midgestation increased postnatal nephron number at 
4  weeks of age (130). Postnatal administration of retinoic acid 
in preterm baboons, however, did not alter kidney growth or 
nephron number, presumably because the timing of the interven-
tion was chosen too late (134).

Long-chain polyunsaturated fatty acid supplementation with 
arachidonic acid and docosahexaenoic acid (ratio 2:1) in infant 
milk formula (IF) during the first 4 months of life lowered blood 
pressure at 6  years of age compared to IF without LCPUFAs. 
Blood pressure of children fed LCPUFA-IF was similar com-
pared to breast fed children (132). A diet sufficient in ω-3 PUFAs 
reduced blood pressure levels compared to a diet almost free of 
ω-3 PUFAs in TGR(mRen-2)27 rats which have high angiotensin 
II levels (135). Finally, the importance of the amino acid composi-
tion was demonstrated. Addition of glycine to maternal LP diet 
throughout gestation normalized body weight and blood pres-
sure at 4 weeks of age in rat offspring, whereas alanine or urea 
had no effect (136).

Anti-Oxidative Substances
Re-programming interventions with anti-oxidative substances 
have only been performed in animals. Supplementation of 
maternal LP diet with anti-oxidative (ACH09)-derived polyphe-
nols extracted from grape skins reduced signs of renal oxidative 
stress in the offspring on the first postnatal day and attenuated 
the adverse effects of maternal LP diet on glomerular number and 
maturity (107). Administration of a lipid peroxidation inhibitor 
along with LP diet in gestation reduced prenatal oxidative stress 
and prevented programming of elevated blood pressure, enhanced 
vasoconstriction after angiotensin II administration and reduced 
vasodilation after sodium nitroprusside administration in adult 
animals (94). Similarly, treatment of previously malnourished 
dams with α-tocopherol during lactation prevented the develop-
ment of hypertension in the offspring. In addition, upregulated 
angiotensin II levels and down-regulated Cox-2 expression in 

the tubulointersititum were brought back to control levels and 
oxidative stress as well as macrophage infiltration was prevented. 
However, treatment of control dams with α-tocopherol resulted 
in arterial hypertension of the offspring (82).

CONCLUSION AND FUTURE DIRECTIONS

The concept of “developmental origins of health and disease” 
highlights the interrelationship between environmental factors 
throughout life and differences in morbidity and mortality 
between individuals. Chronic kidney disease affects more than 
10% of the population (1). High blood pressure, childhood 
underweight, and suboptimal breastfeeding are among the 
top risk factors contributing to global burden of disease (137). 
Prematurity, IUGR, overweight in early life, and other conditions 
have been associated with the development of arterial hyperten-
sion, proteinuria, and decline of renal function. Around 11% of 
all live-born infants worldwide are born preterm (138). IUGR is 
seen in 3–7% of all pregnancies (139). During childhood, 5–6% 
of girls and 7–8% of boys become overweight (140). Thus, renal 
programming is not a rare phenomenon but affects large parts 
of the population. Further studies that broaden our understand-
ing of renal programming mechanisms are needed to ultimately 
develop preventive strategies. Targeted re-programming inter-
ventions in animal models focusing on known mechanisms will 
contribute to new concepts which finally will have to be translated 
to human application. Early nutritional concepts with specific 
modifications in macro- or micronutrients are among the most 
promising approaches to improve future renal health.
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