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Abstract

Genetic molecular studies used to understand potential risks of engineered nanomaterials

(ENMs) are incomplete. Intracellular residual ENMs present in biological samples may

cause assay interference. This report applies the high-resolution melt (HRM) feature of RT-

qPCR to detect shifts caused by the presence of gold nanoparticles (AuNPs). A universal

RNA standard (untreated control) sample was spiked with known amounts of AuNPs and

reverse transcribed, where 10 reference genes were amplified. The amplification plots, dis-

sociation assay (melt) profiles, electrophoretic profiles and HRM difference curves were

analysed and detected interference caused by AuNPs, which differed according to the

amount of AuNP present (i.e. semi-quantitative). Whether or not the assay interference was

specific to the reverse transcription or the PCR amplification step was tested. The study was

extended to a target gene-of-interest (GOI), Caspase 7. Also, the effect on in vitro cellular

samples was assessed (for reference genes and Caspase 7). This method can screen for

the presence of AuNPs in RNA samples, which were isolated from biological material in con-

tact with the nanomaterials, i.e., during exposure and risk assessment studies. This is an

important quality control procedure to be implemented when quantifying the expression of a

GOI from samples that have been in contact with various ENMs. It is recommended to fur-

ther examine 18S, PPIA and TBP since these were the most reliable for detecting shifts in

the difference curves, irrespective of the source of the RNA, or, the point at which the differ-

ent AuNPs interacted with the assay.

Introduction

Gene expression studies commonly use Reverse Transcription Quantitative Polymerase Chain

Reaction (RT-qPCR) due to the sensitivity of the technique, as well as, the high diversity where

different target genes-of-interest (GOI) can be studied. However, it relies on the normalisation

of the expression data between samples, e.g. use of reference genes as internal controls [1–3].

Reference genes compensate for differences in the amount of starting material, efficiency of

amplification or differences in transcription levels and expression between cells [4, 5]. The

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0260207 December 7, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sanabria NM, Gulumian M (2021) The

use of HRM shifts in qPCR to investigate a much

neglected aspect of interference by intracellular

nanoparticles. PLoS ONE 16(12): e0260207.

https://doi.org/10.1371/journal.pone.0260207

Editor: Ruslan Kalendar, University of Helsinki:

Helsingin Yliopisto, FINLAND

Received: June 2, 2021

Accepted: November 4, 2021

Published: December 7, 2021

Copyright: © 2021 Sanabria, Gulumian. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: MG received funding, i,e, this work was

supported by the Department of Science and

Technology (DST) of South Africa. NS also

received funding, i.e. this work was supported by

the NIOH/ NHLS Research Trust development

grant (2014-2DEV29-SNT1). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-1613-6178
https://doi.org/10.1371/journal.pone.0260207
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0260207&domain=pdf&date_stamp=2021-12-07
https://doi.org/10.1371/journal.pone.0260207
http://creativecommons.org/licenses/by/4.0/


identification of a stable reference gene for normalisation in engineered nanomaterial (ENM)-

related RT-qPCR studies is essential [6]. Hence, the following candidates were selected:

Human 18S ribosomal RNA (18S), beta-actin (Act-B), glyceraldehyde-3-phosphate dehydro-

genase (GAPDH), beta glucuronidase (GUS), Heat shock protein 90kDa alpha (cytosolic),

class B (HSP90), hypoxanthine phosphoribosyltransferase 1 (HPRT1), peptidylprolyl isomer-

ase A (cyclophilin A) (PPIA), succinate dehydrogenase complex subunit A flavoprotein

(SDHA), TATA-box binding protein (TBP), and Tyrosine 3-monooxygenase / tryptophan

5-monooxygenase activation protein zeta polypeptide (YWHAZ) [7, 8].

The high-resolution melt (HRM) feature of RT-qPCR analysis is an application of amplicon

melting analyses, e.g., analysis of the melt curves of DNA fragments or PCR amplicons pro-

duced via amplification. Due to the improved qPCR instrumentation, as well as, the latest satu-

rating DNA-binding dyes, this combination allows for the identification of small variations in

nucleic acid sequences, e.g., via a controlled melting of double-stranded PCR amplicons. The

improvements are related to the instrument calibration methods, which enable the rapid anal-

ysis of the resulting data sets by using HRM-compatible software, e.g. the discrimination of

DNA sequences based on their composition, length, GC content, or, strand complementation

[9]. HRM experiments generate DNA melt curve profiles. These profiles are specific and

sensitive enough to distinguish and classify (e.g., group) nucleic acid species based on small

sequence differences. As a result, this enables mutation scanning, methylation analysis and

genotyping [9]. This form of analysis is a non-destructive method. Therefore, subsequent char-

acterization of the associated amplicon, e.g., using gel electrophoresis or sequencing, can be

performed after the HRM melt analysis has been completed.

Routine qPCR experiments rely on dissociations assays (melt peaks) in order to ensure

primer specificity, where the data is typically collected over a temperature range of 65–95˚C in

0.5˚C increments. However, for HRM experiments, the data are generally collected at nar-

rower temperature increments, i.e., 0.2˚C. This increased density of data points that are col-

lected can assist with melt curve profile generation, which then improves subsequent sequence

discrimination. The analysis software specific for HRM identifies areas of stable pre- and post-

melt fluorescence intensity from the HRM melt curve. These signals are then automatically

normalized to relative values of “1.0” and “0.” In this way, differences in background fluores-

cence are eliminated, which increases the ability to detect subtle melt curve profile changes.

Ultimately, both the melting temperature shifts, as well as, the curve shape can be used to iden-

tify sequence differences (www.bio-rad.com).

This study is a continuation of our previous work, where we wanted to investigate the effect of

gold nanoparticles (AuNPs) on the application of the high-resolution melt (HRM) feature of RT-

qPCR to detect shifts in nucleic acid samples. Herein, a universal RNA standard was used as an

untreated/control sample and spiked with known amounts of citrate-stabilised gold nanoparticles

(AuNPs), in addition to the analyses of in vitroCarboxyl-PEG (PCOOH) AuNP-treated samples.

The results obtained included amplification plots, dissociation assay (melt) profiles, electropho-

retic profiles and HRM difference curves, which were used to identify a concentration-dependent

alteration in the amplification of the nucleic acid template. Thus, specific analyses of the HRM

profiles detected a form of interference caused by AuNPs being present during the assay. This

method may, therefore, be used to screen for the presence of AuNPs in RNA samples, which

were isolated from biological material that had been in contact with the nanomaterials.

Materials and methods

The aim of this study was to determine if HRM profiles of common reference genes could

detect the (known) presence of AuNPs in a sample. This is an important aspect of quality
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control of starting material used for ENM-related toxicity studies. A non-cytotoxic concentra-

tion of citrate-stabilised 1 nM AuNPs was used since these are the proposed conditions for all

planned gene expression work yet to be performed [10]. A universal RNA standard obtained

from 10 cell lines was used as the template in an RT-qPCR assay, in addition to the next gener-

ation ds-DNA dye (i.e., EvaGreen), in order to determine any assay interference that may have

been caused by the AuNPs. Since thiol-terminated polyethylene glycol (PEG) is commonly

used to functionalize the surface of AuNPs to improve the in vivo stability and to avoid uptake

by the reticular endothelial system [11], the RNA isolated from BEAS-2B after being treated

with PCOOH AuNPs was also investigated in this study. To summarise, the study consisted of

five parts (see Table 1), i.e., HRM analyses of:

1. Reference genes, after RNA standard samples had been spiked with non-functionalized, but

citrate-stabilised AuNPs at the cDNA reverse transcription step.

2. Reference genes, after RNA standard samples had been spiked with non-functionalized, but

citrate-stabilised AuNPs at the PCR amplification step.

3. Target genes (GOI), after RNA standard samples had been spiked with non-functionalized,

but citrate-stabilised AuNPs at the reverse transcription step.

4. Reference genes, after BEAS-2B cells had been treated with PCOOH AuNPs.

5. Target genes (GOI), after BEAS-2B cells had been treated with PCOOH AuNPs.

Synthesis of AuNPs

Citrate-stabilised AuNPs. The AuNPs were fully characterised as previously described

[10, 12]. The non-functionalized, but citrate-stabilised AuNPs, were 14 nm in size and sus-

pended in ultra-pure water, which is recognised as a reference sample (NM-330) by the OECD

working party of the Manufactured Nanomaterials (WPMN) safety testing programme.

Briefly, the AuNPs were prepared by Mintek (South Africa) with sodium citrate, where triso-

dium citrate aqueous solution (10 mL, 17 mM) was added to 180 mL (0.3 mM) of boiling

HAuCl4.3H2O aqueous solution [13, 14]. The mixture was boiled under reflux for 15 min and

allowed to cool to room temperature. The resultant citrate-capped AuNP suspension was stir-

red overnight at room temperature. The AuNP suspension was filtered using a 0.25 mm sterile

Table 1. Summary of analysis methods used herein, relative to the five parts of this study.

Method details Part 1 Part 2 Part 3 Part 4 Part 5

RNA standard samples spiked with citrate-stabilised AuNPs X X X

Samples spiked at the cDNA reverse transcription step (i.e. in vitro acellular) X X

Samples spiked at the PCR amplification step (i.e. in vitro acellular) X

BEAS-2B cells treated with PCOOH AuNPs (i.e. in vitro cellular) X X

RT-qPCR amplification of reference genes X X X

RT-qPCR amplification of target genes X X

Analysis of reverse transcription efficiency X X X X

Analysis of PCR amplification efficiency X

Analysis of relative gene expression (ΔΔCq) X X

Analysis of Dissociation assay (melt peak) X X X X X

Electrophoretic detection of PCR amplicon X X X X X

Analysis of HRM profile Difference curve X X X X X

https://doi.org/10.1371/journal.pone.0260207.t001
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syringe filter (Acrodisc 25 mm PF, 0.2 mm; nonpyrogenic) before use. The synthesis was per-

formed under sterile conditions. Tetrachloroaurate (HAuCl4.3H2O) and trisodium citrate

(Na3C6H5O7.2H2O) were purchased from Sigma Aldrich (USA) and used without further

purification.

Functionalised AuNPs. The PCOOH AuNPs were saturated with the relevant PEG

ligands complexed with carboxyl functional groups as previously described [12]. Briefly, the

PEG-liganded nanoparticles were prepared using ligand-exchange, where citrate was replaced,

which resulted in the following generic formula: Au–S–(CH2)11–(EG)n–functional group,

where EG is ethylene glycol (C2H6O2).

In silico analysis of primers

A literature search narrowed the list of putative human reference genes down to 10 candidates

before initiating any wet-bench experiments [6]. Thereafter, in silico analysis was performed in

order to predict conformational changes under experimental conditions (see additional data

in S1 File). The in silico analysis was performed using the OligoAnalyzer Integrated DNA tech-

nologies (IDT) software (www.idtdna.com/pages/tools/oligoanalyzer). The target type was

selected as “DNA” since the samples would be RNA that had been reverse transcribed into

cDNA using the random hexamer and oligo-dT primers. The determining factor for the selec-

tion was based on the structure with a Gibbs free energy within acceptable limits. In addition,

Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) was used to design the GOI primer, i.e.

Caspase 7 (Casp7) primer.

RNA isolation, quantification and integrity analyses

Method optimisation (in vitro cellular study). For the preliminary study, total RNA

was also isolated from a treated bronchial epithelial human cell line, BEAS-2B, as previously

reported [15]. Briefly, BEAS-2B cells were seeded at 3 x 104 cells/cm2 in a 75 cm2 flask and

allowed to proliferate for 24 h before treatment. Total RNA was isolated using the RNeasy

plus mini kit (Qiagen, GmbH), according to the manufacturer’s instructions. In addition, the

QIAshredder spin columns (Qiagen, GmbH) were used to homogenize the samples. Since it

takes time to both treat and process samples over the course of a time study, the RNAprotect

stabilizing solution was used for all samples in order to minimise variations during the incuba-

tion and storage time periods. Following trypsinization and harvesting of the cells, RNAprotect

solution was added to intact cells to stabilize the RNA. The RNA lysis buffer with guanidine

thiocyanate was added and vortexed to lyse the cells. The cell lysate was passed through a

QIAshredder column to aid homogenization. Thereafter, this eluent was passed through a

gDNA Eliminator column to remove genomic DNA. Ethanol was added and the sample

loaded onto an RNeasy MinElute column, where RNA binds to the column and contaminants

were washed away during subsequent wash steps with the RNA wash buffer and the RNA etha-

nol-based buffer. Finally, RNA was eluted with RNase-free water. Each experiment was per-

formed on a fresh isolation of RNA from BEAS-2B cells from a different passage number, i.e.

completely separate experiments, where each time a new cDNA pool was reverse transcribed

and amplified.

In vitro acellular study. For the main parts of this study, a universal human reference

total RNA standard was purchased for qPCR (Agilent Technologies, USA) and used (see parts

1, 2, and 3). This qPCR Human Reference Total RNA was composed of total RNA from 10

human cell lines, with quantities of RNA from the individual cell lines optimized to maximize

representation of gene transcripts present in low, medium, and high abundance. The cell line

derivations included an adenocarcinoma (mammary gland), hepatoblastoma (liver),
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adenocarcinoma (cervix), embryonal carcinoma (testis), glioblastoma (brain), melanoma

(skin), liposarcoma, histiocytic lymphoma (macrophage, histocyte), lymphoblastic leukaemia

(T lymphoblast) and plasmacytoma (myeloma, B lymphocyte). According to the manufac-

turer, this reference RNA was carefully screened by spectrophotometry, MOPS agarose gel

electrophoresis and analysis using the Agilent 2100 Bioanalyzer. In addition, the RNA was

manufactured in large batch-lots in order to eliminate inconsistencies over long-term experi-

ments, and, was treated with DNAse. Each experiment was performed on a fresh aliquot of the

same universal RNA standard, where each time a new cDNA pool was reverse transcribed and

amplified (i.e., a technical repeat of the experiment, see S2–S4 Files). It should be noted that

the universal RNA standard does not include BEAS-2B, which was the template used for the

PCOOH AuNPs treated part of this study (see below).

In vitro cellular study. For the additional parts of this study, total RNA was also isolated

from treated BEAS-2B cells, as explained above [15]. However, the cells were treated with

PCOOH AuNPs, as explained below (also see part 4 and 5 of this study).

AuNP treatments

Citrate-stabilised AuNPs. The non-functionalized, but citrate-stabilised AuNPs were

added to the RT-qPCR reaction, i.e., spiked at 25%, 50% and 75% vol/vol, where the final con-

centration (FC) in a final PCR volume of 40 μl was 0.72 nM, 1.44 nM and 2.2 nM, respectively.

It should be noted that 1 nM AuNPs was determined to be a non-cytotoxic concentration by

cell impedance analyses [10]. These various amounts of AuNPs were either added to the uni-

versal RNA standard at the reverse transcription step (part 1 and 3), or, spiked at the PCR

amplification step (part 2), respectively. Therefore, the only difference was the amount of

AuNPs present in the reaction, as well as, the point at which the AuNPs were introduced into

the assay. This served as a form of a positive control standard within the study, which was used

to assess the PCR efficiency under very controlled (and uniform) conditions, so as to deter-

mine the error compensation required for experiments assessing gene expression as a result

of AuNP treatment or exposure in toxicity studies.

Functionalised AuNPs. Nanoparticles that are coated with specific polymers display

improved biocompatibility and stability, as well as decrease the cytotoxicity [16]. AuNPs are

therefore functionalized for drug delivery applications [17]. Subsequently, BEAS-2B cells were

treated with 1 nM PCOOH AuNPs as previously reported [12], for 0.5 h, 1 h, 2 h and up to 24

h (i.e., part 4 and 5 of this study). In this earlier study, it could be shown that both citrate-stabi-

lised and PCOOH AuNPs entered the cells and also were not toxic. These conditions mimic

the real-life scenario often encountered in toxicology-related exposure assessment studies.

This served as another form of positive control within the current study to show the relevance

and “real-life” application or feasibility of the proposed method. This is an important quality

control step that should be implemented when using potentially contaminated starting mate-

rial to quantify gene expression.

cDNA synthesis

Method optimisation (in vitro cellular study). A preliminary study was initially per-

formed to test the primers’ ability to transcribe and amplify RNA from a human cell line using

a SYBR Green-based RT-qPCR system [6]. The BEAS-2B cells were treated with 1 nM AuNPs

for 24 h. After treatment, 1 μg of total RNA was extracted as previously reported [15]. The first

strand cDNA was transcribed using an oligo-dT primer and random hexamers synthesised by

IDT (USA), with SuperScript III Reverse transcriptase (Invitrogen, USA), according to the

manufacturer’s instructions.
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In vitro acellular study. After testing of the primers in the preliminary study, a universal

RNA standard from Stratagene (Agilent, USA) was used to verify the EvaGreen-based qPCR

assay used in this study. The RNA was spiked at either the reverse transcription step (part 1 for

the reference genes, and part 3 for the target GOI within this study), or, at the DNA amplifica-

tion step (part 2; see S2 File). In this manner the transcription and amplification efficiencies

were assessed in response to the addition of ENMs at various concentrations. Specifically, a 1:1

ratio of an oligo-dT primer and random hexamer (IDT, USA), was used to reverse transcribe

1 μg of the RNA Std, using SuperScript III Reverse transcriptase (Invitrogen, USA), according

to the manufacturer’s instructions. Assay interference of the reverse transcription (caused by

the AuNPs), was assessed by analysing the resulting PCR efficiency percentage, the linearity of

the PCR assay as well as the gradient or slope obtained for the standard curve.

In vitro cellular study. After testing of the universal RNA standard, the experiment was

repeated with RNA that was obtained from BEAS-2B cells that had been treated with 1 nM

PCOOH AuNPs for 0.5 h, 1 h, 2 h and 24 h (i.e., part 4 and 5 of this study). After treatment, 1 μg

of total RNA was extracted as previously reported [15]. The first strand cDNA was transcribed

using an oligo-dT primer and random hexamers synthesised by IDT (USA), with SuperScript

III Reverse transcriptase (Invitrogen, USA), according to the manufacturer’s instructions.

HRM RT-qPCR

Within parts 1, 2 and 3 of this study, the resulting cDNA from the RNA standard was ampli-

fied using specific primers (indicated in Table 2 with the associated NCBI GenBank accession

reference sequence). The SsoFast EvaGreen qPCR super-mix was used in a CFX96 thermocy-

cler with HRM capabilities (Biorad, USA). The cycling conditions include: enzyme activation

at 95˚C for 30s, followed by 35 cycles of denaturation at 95˚C for 5s, primer annealing at 60˚C

for 5s and primer extension at 72˚C for 5s, with a melt curve from at 50–95˚C (in 0.2˚C incre-

ments). The reference genes were selected based on a literature review specific to examples

where RT-qPCR genetic studies were used in human cell lines, in addition to those genetic

studies performed to assess the effects of ENMs [3, 7, 8, 18–20]. All primers had an annealing

temperature (Ta) of 60˚C, in order to analyse all variables in one experimental run and to cre-

ate a uniform experimental condition for future diagnostic applications. Assay interference

caused by citrate-stabilised AuNP, in a cell-free environment, was assessed by using the clus-

tering feature and analysing the difference curves (https://www.bio-rad.com/en-us/sku/

1845025-precision-melt-analysis-software?ID=1845025). Within part 4 and 5 of this study, the

resulting cDNA from the RNA that was obtained after the bronchial epithelial human BEAS-

2B cell line had been treated in vitro with 1 nM PCOOH AuNPs for 0.5 h, 1 h, 2 h and 24 h,

was subsequently amplified in the same manner as described above.

Agarose gel electrophoresis

The resulting amplicons obtained from the spiked RNA (part 1 of the assessment) and spiked

cDNA (part 2) were separated on a 1% agarose gel (see S3 and S5 Files). The gel was subjected

to electrophoresis at 100V, whilst being submerged in 89 mM Tris-borate and 2 mM EDTA at

pH 8.3 (TBE) buffer (Sigma Aldrich, USA) and was stained with 10 μg/mL ethidium bromide.

Images were obtained using GeneSys software version1.3.3.0 on a Syngene G:Box instrument

(grey-scale).

Expression & statistical analyses

The dissociation assay (or melt peaks) data generated was analysed using the CFX Manager™
Software (Biorad, version 3.0; see S2 and S3 Files). The difference curves of the high resolution
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melts (or HRM profile) were generated using Precision Melt Analysis™ Software (Biorad, ver-

sion 1.2). The pre-melt (initial fluorescence) and post-melt (final fluorescence) signals of all

samples are set to uniform, relative values from 100% to 0%. The differences in melting curve

shape are further analysed by subtracting the curves from a reference curve (e.g., untreated

control). This enables the software to cluster samples automatically into groups that have simi-

lar melting curves. Samples with heterozygous SNPs can then be easily distinguished from the

wild type or homozygotes by the different shapes of their melting curves.

Ethics approval

There were no human participants in this laboratory study and an ethics waiver was obtained

for the use of an established cell line from the Human Research Ethics Committee (Medical) at

The University of the Witwatersrand (Ref: W-CJ-150504-2).

Results

This report highlights the application of the HRM feature of RT-qPCR to detect shifts that are

caused by the presence of residual intracellular AuNPs in nucleic acid samples. The same uni-

versal standard RNA was reverse transcribed into cDNA, but the reaction was spiked with

Table 2. List of primers and sequences (according to HUGO gene nomenclature; http://www.genenames.org) adapted from [6].

Primer name (abbreviated) & NCBI

RefSeq

Forward primer sequence and Tm Reverse primer sequence and Tm Amplicon Size

(bp)

Reference

18S (NR_003286.2; NT_167214.1) 5’-AGAAACGGCTACCACATCCA-3’ 5’-CACCAGACTTGCCCTCCA-3’ 169 [7]

56.3˚C 57.3˚C

Act-b (NM_001101) 5’-AGAAAATCTGGCACCACACC-3’ 5’-TAGCACAGCCTGGATAGCAA-3’ 173 [8]

55.6˚C 56.1˚C

Casp7 (NM_001227) 5’GGTTGAGGATTCAGCAAATGA- 3’ 5’-GGATCGCATGGTGACATTTT-3’ 106 N/A§

53.2˚C 53.6˚C

GAPDH (NM_002046) 5’-CGACAGTCAGCCGCATCTT-3’ 5’-CCCCATGGTGTCTGAGCG-3’ 63 [7]

57.8˚C 58.5˚C

GUS (NM_000181) 5’-AGCCAGTTCCTCATCAATGG-3’ 5’-GGTAGTGGCTGGTACGGAAA-3’ 160 [7]

54.9˚C 56.8˚C

HPRT1 (NM_000194) 5’-TGACACTGGCAAAACAATGCA-3’ 5’-GGTCCTTTTCACCAGCAAGCT-3’ 94 [7]

56.0˚C 58.0˚C

HSP90 (NM-007355) 5’-TCTGGGTATCGGAAAGCAAGCC-3’ 5’-GTGCACTTCCTCAGGCATCTTG-3’ 80 [7]

59.4˚C 58.4˚C

PPIA (NM_021130) 5’-AGACAAGGTCCCAAAGAC-3’ 5’-ACCACCCTGACACATAAA-3’ 118 [7]

51.6˚C 50.7˚C

SDHA (NM004168) 5’-TGGGAACAAGAGGGCATCTG-3’ 5’-CCACCACTGCATCAAATTCATG-3’ 86 [7]

57.2˚C 54.8˚C

TBP (NM_003194) 5’-TGCACAGGAGCCAAGAGTGAA-3’ 5’-CACATCACAGCTCCCCACCA-3’ 132 [7]

58.9˚C 59.8˚C

TBP-2 (NM_003194.4) 5’-CGGCTGTTTAACTTCGCTTC-3’
54.4°C

5’-TTCTTGGCAAACCAGAAACC-3’
53.7°C

188 N/A §

YWHAZ (NM_003406) 5’-ACTTTTGGTACATTGTGGCTTCAA-3’;

55.5˚C

5’-CCGCCAGGACAAACCAGTAT-3’ 94 [7]

57.4˚C

§ Own design via Primer3 and Integrated DNA technologies (IDT) software, i.e. OligoAnalyzer.

https://doi.org/10.1371/journal.pone.0260207.t002
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various amounts of citrate-stabilised AuNPs and at different points within the assay. There-

fore, the same PCR product was formed, where the only difference was the amount of AuNPs

present in the reaction. The CFX Manager software generated data that was used to screen the

gene expression profiles for differences, e.g., changes in the dissociation assay (melt peaks) of

the different products formed. The gel electrophoresis results confirmed the RT-qPCR melt

peak results, per reference gene tested. Thereafter, the experiment was repeated with RNA that

was obtained from BEAS-2B cells that had been treated in vitro with PCOOH AuNPs. The

study, thus, consisted of five parts, i.e., HRM analyses of:

1. Reference genes, after RNA samples had been spiked with non-functionalized, but citrate-

stabilised AuNPs, at the cDNA reverse transcription step (see Figs 1–6).

2. Reference genes, after RNA samples had been spiked with non-functionalized, but citrate-

stabilised AuNPs, at the PCR amplification step (see additional data in S2 File).

3. Target genes (GOI), after RNA samples had been spiked with non-functionalized, but cit-

rate-stabilised AuNPs, at the reverse transcription step (see Figs 7A–7C and 8A).

4. Reference genes, after BEAS-2B cells had been treated with PCOOH AuNPs (see Figs 2B,

4B and 6B).

5. Target genes (GOI), after BEAS-2B cells had been treated with PCOOH AuNPs (see Figs

7D and 8B).

Fig 1. The qPCR results for reference gene 18S. (A) The amplification plot of 18S, where 1 μg of the universal RNA

standard was reverse transcribed per sample (spiked with 0, 25, 50 & 75% citrate-stabilised AuNP), (B) Dissociation

assay (melt peak) of 18S, with (C) amplicons separated by electrophoresis. Lane (1) Undiluted qPCR standard (2)

2xDilution qPCR standard (3) 10xDilution qPCR standard (4) 20xDilution qPCR standard (5) Untreated/control

sample (0%AuNP) (6) 25%AuNP sample (7) 50%AuNP sample (8) 75%AuNP sample.

https://doi.org/10.1371/journal.pone.0260207.g001

Fig 2. The HRM results for reference gene 18S, showing the (A) difference curve of 18S, where all citrate-stabilised

AuNP-spiked samples were referenced against the 0% AuNP (untreated control) cluster. Red represents 0% AuNP

spike; Green represents 25% AuNP spike; Blue represents 50% AuNP spike; Pink/Mustard represents 75% AuNP

spike, (B) difference curve of 18S, where all PCOOH AuNP in vitro cellular treated samples were referenced against the

0 h untreated (control) cluster. Red represents 0 h untreated (control); Green represents 0.5 h treatment; Blue

represents 1 h treatment; Mustard represents 2 h treatment; and Pink represents up to 24 h treatment.

https://doi.org/10.1371/journal.pone.0260207.g002
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To summarise, the amplification plots (Fig 1A), dissociation assay melt peaks (Fig 1B) and aga-

rose gel electrophoresis results (Fig 1C) are indicated for theHuman 18S ribosomal RNA (18S)

reference gene. Similarly, Fig 3A–3C represent the amplification plots, melt peaks and electropho-

resis results for peptidylprolyl isomerase A (cyclophilin A) (PPIA). Thereafter, Fig 5A–5C represent

Fig 3. The qPCR results for reference gene PPIA. (A) The amplification plot of PPIA, where 1 μg of the universal

RNA standard was reverse transcribed per sample (spiked with 0, 25, 50 & 75% citrate-stabilised AuNP), (B)

Dissociation assay (melt peak) of PPIA, with (C) amplicons separated by electrophoresis. Lane (1) Undiluted qPCR

standard (2) 2xDilution qPCR standard (3) 10xDilution qPCR standard (4) 20xDilution qPCR standard (5) Untreated/

control sample (0%AuNP) (6) 25%AuNP sample (7) 50%AuNP sample (8) 75%AuNP sample.

https://doi.org/10.1371/journal.pone.0260207.g003

Fig 4. The HRM results for reference gene PPIA, showing the (A) difference curve of PPIA, where all citrate-stabilised

AuNP-spiked samples were referenced against the 0% AuNP (untreated control) cluster. Red represents 0% AuNP

spike; Green represents 25% AuNP spike; Blue represents 50% AuNP spike; Pink/Mustard represents 75% AuNP

spike, (B) difference curve of PPIA, where all PCOOH AuNP in vitro cellular treated samples were referenced against

the 0 h untreated (control) cluster. Red represents 0 h untreated (control); Green represents 0.5 h treatment; Blue

represents 1 h treatment; Mustard represents 2 h treatment; and Pink represents up to 24 h treatment.

https://doi.org/10.1371/journal.pone.0260207.g004

Fig 5. The qPCR results for reference gene TBP. (A) The amplification plot of TBP, where 1 μg of the universal RNA

standard was reverse transcribed per sample (spiked with 0, 25, 50 & 75% citrate-stabilised AuNP), (B) Dissociation

assay (melt peak) of TBP, with (C) amplicons separated by electrophoresis. Lane (1) Undiluted qPCR standard (2)

2xDilution qPCR standard (3) 10xDilution qPCR standard (4) 20xDilution qPCR standard (5) Untreated/control

sample (0%AuNP) (6) 25%AuNP sample (7) 50%AuNP sample (8) 75%AuNP sample.

https://doi.org/10.1371/journal.pone.0260207.g005

PLOS ONE HRM shifts in qPCR to investigate interference by intracellular nanoparticles

PLOS ONE | https://doi.org/10.1371/journal.pone.0260207 December 7, 2021 9 / 22

https://doi.org/10.1371/journal.pone.0260207.g003
https://doi.org/10.1371/journal.pone.0260207.g004
https://doi.org/10.1371/journal.pone.0260207.g005
https://doi.org/10.1371/journal.pone.0260207


Fig 7. The qPCR results for target GOI gene Casp7, where target genes are normalised to reference genes. (A) The

amplification plot of Casp7, where 1 μg of the universal RNA standard was reverse transcribed per sample (spiked with

0, 25, 50 & 75% citrate-stabilised AuNP), (B) Dissociation assay (melt peak) of Casp7, with (C) citrate-stabilised AuNP

spiked Normalised expression (ΔΔCq) to reference gene YWAHZ as previously validated [6]. Red represents 0% AuNP

spike; Green represents 25% AuNP spike; Blue represents 50% AuNP spike; Pink/Mustard represents 75% AuNP

spike. (D) PCOOH AuNP in vitro cellular treated Normalised expression (ΔΔCq) to reference gene YWAHZ. Red

represents 0 h untreated (control); Green represents 0.5 h treatment; Blue represents 1 h treatment; Mustard represents

2 h treatment; and Pink represents up to 24 h treatment.

https://doi.org/10.1371/journal.pone.0260207.g007

Fig 8. The HRM results for target GOI gene Casp7, showing the (A) difference curve of Casp7 where all citrate-

stabilised AuNP-spiked samples were referenced against the 0% AuNP (untreated control) cluster. Red represents 0%

AuNP spike; Green represents 25% AuNP spike; Blue represents 50% AuNP spike; Pink/Mustard represents 75%

AuNP spike, (B) difference curve of Casp7, where all PCOOH AuNP in vitro cellular treated samples were referenced

against the 0 h untreated (control) cluster. Red represents 0 h untreated (control); Green represents 0.5 h treatment;

Blue represents 1 h treatment; Mustard represents 2 h treatment; and Pink represents up to 24 h treatment.

https://doi.org/10.1371/journal.pone.0260207.g008

Fig 6. The HRM results for reference gene TBP-2, showing the (A) difference curve of TBP-2, where all citrate-

stabilised AuNP-spiked samples were referenced against the 0% AuNP (untreated control) cluster. Red represents 0%

AuNP spike; Green represents 25% AuNP spike; Blue represents 50% AuNP spike; Pink/Mustard represents 75%

AuNP spike, (B) difference curve of TBP-2, where all PCOOH AuNP in vitro cellular treated samples were referenced

against the 0 h untreated (control) cluster. Red represents 0 h untreated (control); Green represents 0.5 h treatment;

Blue represents 1 h treatment; Mustard represents 2 h treatment; and Pink represents up to 24 h treatment.

https://doi.org/10.1371/journal.pone.0260207.g006
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the amplification plots, melt peaks and electrophoresis results for TATA-box binding protein
(TBP). The novel aspect of this work arises from the use of the Precision Melt Analysis™ software

to identify the HRM dissociation assay differences caused by both citrate-stabilised and PCOOH

functionalised AuNPs. The difference curves, with a characteristic HRM profile, are indicated for

18S (Fig 2A), PPIA (Fig 4A) and TBP (Fig 6A), respectively. It should be noted that the universal

RNA standard does not include BEAS-2B. Thus, differences in the HRM dissociation assay as a

result of PCOOH-AuNP treatment of BEAS-2B cells was also assessed, where Figs 2B, 4B and 6B,

indicate the difference curves for 18S, PPIA and TBP, respectively. The effect of these same experi-

mental conditions, using spiked amounts of citrate-stabilised AuNPs, was determined for a target

GOI, e.g., Caspase 7 (Casp7) in Fig 7A and 7B, where the relative normalised gene expression is

indicated in Fig 7C and 7D. Differences in the HRM dissociation assay after being spiked with cit-

rate-stabilised AuNPs under cell-free conditions (see Fig 8A), or as a result of PCOOH AuNPs in
vitro cellular treatment (see Fig 8B) of BEAS-2B cells for 0.5 h, 1 h, 2 h and 24 h, respectively, was

also assessed.

Human 18S ribosomal RNA (18S) reference gene

The Amplification plot of the 18S reference gene (Fig 1A), in technical triplicate, showed slight

changes in Cq-values, which would normally indicate different amounts of starting material.

However, 1 μg of the RNA standard was reverse transcribed per sample (0%, 25%, 50% & 75%

citrate stabilised AuNP-spiked). Therefore, since the starting amount of RNA did not change,

the AuNPs influenced the conversion of RNA into cDNA, i.e., the reverse transcription (RT)

efficiency. In addition, the plateau heights of the Amplification plot also varied. Therefore, the

AuNPs influenced the amount of fluorescent dye that was detected, which is relative to the

amount of double stranded DNA (dsDNA) present in the reaction (i.e., the PCR efficiency was

affected). The amplification plots for the 18S gene showed the most changes in relation to the

amount of AuNPs. Further analysis of the melt peak of the 18S reference gene (Fig 1B),

revealed that the dissociation of the dsDNA could not detect the (known) presence of the

AuNP, i.e., only 1 peak was observed in the melt profile and only one PCR product was

observed as an amplicon on the gel (Fig 1C).

The HRM profile shown in the Difference curve for 18S reference gene was also assessed

in technical triplicate (Fig 2). All the citrate stabilised AuNP-spiked samples were referenced

against the 0% AuNP (untreated control) cluster, where the red curve represented the

untreated/control with 0% AuNP, the green represented a 25% AuNP-spike, the blue repre-

sented a 50% AuNP-spike and, lastly, the Pink/Mustard coloured curve represented a 75%

AuNP-spiked sample (Fig 2A). A concentration-dependent difference was observed where

the HRM profiles shifted. The shifts occurred over a broader temperature range from 82 to

84˚C. Under normal conditions, any observed HRM shifts would indicate nitrogenous base

changes in the nucleotide sequence, e.g., single-nucleotide polymorphisms (SNPs), point

mutations, sequence insertions or deletions (in/dels) etc. However, in this scenario, each

sample was exactly the same except for the amount of AuNPs added to the reaction. There-

fore, the AuNPs could have influenced the proof-reading ability of the Taq enzyme, and

hence, the specificity (i.e., qPCR amplification efficiency). This could be verified by sequenc-

ing the numerous PCR products, but it would be very time consuming and costly to do this

continuously. It should also be noted that the non-template control (NTC) for 18S only

amplified after 35 cycles, which was most probably due to a primer dimer and was not due

to contamination, i.e., it passed the internal QC check for the assay. Similarly, the PCOOH

AuNP treated samples obtained from BEAS-2B cells were referenced against the 0 h

untreated (control) cluster (Fig 2B). It appeared that the shortest exposure treatment times
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(e.g., 0.5 and 1 h) generated the most different HRM profile when normalised to the 0 h

untreated control.

Peptidylprolyl isomerase A (cyclophilin A) (PPIA) reference gene

In a similar manner, the Amplification plot of the PPIA reference gene (Fig 3A), was also

assessed in technical triplicate. Again, slight changes in Cq values indicate different amounts

of starting material, even though the starting amount of RNA was kept the same. Therefore,

the citrate-stabilised AuNPs influenced the RT efficiency. In addition, the plateau heights

varied, thus indicating that the AuNPs influenced the PCR amplification efficiency. Further

analysis of the Melt peak of the PPIA reference gene showed that the (known) presence of

the AuNP could not be detected by dissociation of the dsDNA (Fig 3B), or by assessing the

amplicon on the gel (Fig 3C). It should be noted that the NTC did not amplify. Again, the

HRM Difference curve of PPIA reference gene was also assessed in technical triplicate (Fig

4A). All citrate stabilised AuNP-spiked samples were referenced against the 0% AuNP (con-

trol) cluster, as described above. It was found once again that the HRM profiles shifted in a

concertation dependant manner, and it was concluded that AuNPs influenced the specific-

ity/ efficiency of the qPCR reaction. The shifts occurred over a narrow temperature range

from 79 to 80˚C, with peaks between 79.0 to 79.8˚C, which appears to be the critical tempera-

ture range at which to detect these changes. The PCOOH AuNP treated samples obtained

from BEAS-2B cells were also referenced against the 0 h untreated (control) cluster (Fig 4B).

It appeared that the shortest exposure treatment times (e.g., 0.5 and 1 h) generated the most

different HRM profile when normalised to the 0 h untreated control. Overall, this reference

gene appeared to be the most effective in distinguishing the presence of AuNP, in both the

citrate-stabilised spiked and in vitro cellular PCOOH AuNP treated samples, as represented

via HRM difference curves.

TATA-box binding protein (TBP) reference gene

Lastly, the Amplification plot of the TBP reference gene (Fig 5A), was examined in technical

triplicate. The slight changes in Cq values observed were concluded to be due to the AuNPs

that influenced the RT efficiency, instead of being due to differences in the amounts of the

RNA starting material. Since the amplification plateau heights also varied, it was concluded

that the AuNPs influenced the PCR efficiency as well. The dissociation of the dsDNA could

not detect the (known) presence of the AuNP by simply evaluating the melt peak of the TBP
reference gene (Fig 5B) or by assessing the amplicon on the gel (Fig 5C). It should be noted

that melt peaks are not the same as difference curves. The traditional dissociation assay melt

peaks are shown in Figs 1B, 3B, 5B and 7B. The new proposed approach is based on evaluat-

ing the HRM profiles from the difference curves shown in Figs 2A, 2B, 4A, 4B, 6A, 6B, 8A

and 8B.

A comparison was further made between the primer used for the TATA-box binding pro-

tein (see Table 2). The substitution between primer TBP and TBP-2 was investigated due to

stability issues observed when performing a traditional SYBR Green-based assay using the

original primer design, i.e., primer TBP (see S4 File; [6]. The SYBR Green dye has the potential

to generate false readings predominantly due to the fact that it is a “relocating” dye, where

even though the SYBR dye melts off at a dissociated part of the DNA strands, it can re-attach

at another point in the same DNA strand that has not melted and generate another measurable

signal [6]. However, no difference was observed when substituting primer TBP for primer

TBP-2 when performing the EvaGreen-based assay used in this study. Therefore, the opti-

mised primer TBP-2 was used for all subsequent analyses using this saturated dye for HRM. In
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Fig 6A, all spiked samples were referenced against the 0% citrate stabilised AuNP (control)

cluster, as already described above. It should be noted that the NTC did not amplify. The shifts

in the HRM profiles were ascribed to the influence of the AuNPs on the qPCR efficiency. The

shifts occurred from 80 to 83.5˚C depending on the primer being used, with peaks between

80.4 to 80.8˚C for primer TBP and 82.2 to 83.0˚C for primer TBP-2, which appears to be the

critical temperature at which to detect these changes. Overall, the TBP gene showed slight

changes for the amplification plots and difference curves in relation to the amount of AuNPs.

However, TBP should rather be used in combination with one of the other genes for confirma-

tion of the effects of AuNPs, due to the varied results obtained in the in vitro (cellular) BEAS-

2B treated samples. These PCOOH AuNP treated samples were referenced against the 0 h

untreated (control) cluster (see Fig 6B). Although the control did not produce a flat baseline

as seen in Figs 2B and 4B for the other reference genes, there was still a discernible difference

between the untreated and treated samples. It appeared that the shortest exposure treatment

times (e.g., 0.5 and 1 h) generated the most different HRM profile when compared to the 0 h

untreated control.

Comparisons between the 18S, PPIA and TBP reference genes

The increasing amounts of AuNPs lead to changes in the point at which the signal crosses the

threshold, i.e., the quantitative cycle (Cq) in the amplification plots, see Figs 1A, 3A and 5A.

This means that a false measurement was recorded that would normally imply less template

being available in that sample (which is not true since the same amount of universal RNA tem-

plate was used in each reaction). In addition, the temperature at which the amplicon melted

from double-strand to single-strand DNA (melt peak) during the dissociation assays did not

show any concentration-dependent differences (see Figs 1B, 3B and 5B). This means that the

same PCR amplicon / product was generated. Therefore, more sophisticated methods such as

HRM profiles via difference curves are needed to assess the product since the dissociation of

the dsDNA could not detect the (known) presence of the AuNP. Additional melt peaks from

the dissociation assays are summarized in S3 File. It should be noted that the melt peaks dis-

cussed in this paragraph (above) are not the same as the difference curves discussed in the next

paragraph (below).

The Precision Melt Analysis™ software was therefore used to generate difference curves that

have a characteristic HRM profile for the reference genes, see Figs 2A, 4A and 6A. The change

in the shape of the HRM difference curve in these figures occurred after citrate-stabilised

AuNPs were added under cell-free conditions, where the control of 0% AuNP appeared as a

flat line and with clear separation from the other AuNP samples. Subsequently, any shifts iden-

tified in these difference curve HRM profiles were due to the citrate-stabilised AuNPs only.

Likewise, any shifts identified in the difference curve HRM profiles in Figs 2B, 4B and 6B were

due to treatments with PCOOH AuNPs for 0.5 h, 1 h, 2 h and 24 h, respectively. The change in

the shape of the HRM difference curve in these figures occurred after in vitro treatment, where

the control of 0 h exposure time appeared as a flat line for reference genes 18S and PPIA (but

not for TBP-2), where one could distinguish a difference between the control and the other

treatments of 0.5 h, 1 h, 2 h and 24 h, respectively. These differences imply that assay interfer-

ence would have occurred during the reverse transcription of the RNA into cDNA, i.e., both

the AuNPs appeared to influence the transcription specifically.

A comparison was made between the primer used for the TATA-box binding protein (see

Table 2). The primer substitution was investigated due to stability issues observed when per-

forming the traditional SYBR Green-based assay. However, no major change was observed

between the use of primer TBP and TBP-2 (Fig 6A).
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Caspase 7 (Casp7) target GOI

The amplification plot and melt peak for a target GOI, e.g., Caspase 7 (Casp7), is shown in Fig

7A and 7B, respectively. Since this is a GOI, the results are displayed as the normalised expres-

sion (ΔΔCq) of Casp7 to the reference gene (YWAHZ). The spiked samples (i.e., Fig 7C) are

shown in comparison to the treated samples (i.e., Fig 7D). The Precision Melt Analysis™ soft-

ware was also used to generate difference curves that have a characteristic HRM profile for the

target gene Casp7, in order to compare spiked samples (Fig 8A) to treated samples (Fig 8B).

Discussion

It is important to screen for residual AuNPs remaining in a sample, in order to prevent mis-

representation of gene expression data from toxicology studies, which will be used for expo-

sure assessment and Risk assessments related to ENMs. Thus, the aim of this study was to

determine if HRM profiles of common reference genes could detect the (known) presence of

AuNPs in a sample. Different AuNPs were used, at different parts of the study, to observe dif-

ferent variables (see Table 1, and Figs 1, 3 and 5 for citrate-stabilised results, where Figs 2, 4, 6–

8 are for both types of AuNPs). To this end, key questions were identified as the focus areas for

the study, i.e., (1) Are there observable changes in the 10 reference genes when the universal

RNA standard is spiked with known amounts of citrate-stabilised AuNPs? (2) Are there

observable changes in the 10 reference genes when the cells are treated in vitro (cellular) with a

non-cytotoxic concentration of PCOOH AuNPs? (3) Can the same assay method be used to

detect changes in target GOI when the cells are treated? For this reason, the study consisted of

five parts, i.e., HRM analyses of reference genes using a universal RNA standard (which was

either spiked with citrate-stabilised AuNPs) at the cDNA reverse transcription, or, PCR ampli-

fication step), as well as using RNA obtained from human cells treated in vitro (cellular) with

PCOOH AuNPs. Lastly, the Caspase 7 target gene was also analysed with both citrate-stabilised

AuNPs, as well as after BEAS-2B cells had been treated in vitro (cellular) with PCOOH AuNPs.

Current study

The CFX Manager software generated data that was used to screen the reference gene expres-

sion for any differences, e.g., changes in the dissociation assay (melt peaks) of the different

PCR products (amplicons) formed, or, changes in the amplification plots. There were very few

changes observed in the temperature at which the amplicon melted, after treatment with vari-

ous amounts of AuNPs. Hence, the unchanged melt peak of the DNA indicated that the same

amplicons were formed each time, irrespective of the amount of AuNPs present in the reac-

tion. Although there were no changes in the dissociation assay (melt peaks), there were

changes in the quantitative cycle value in the amplification plots, i.e. the Cq-values (see Figs

1A, 3A and 5A). A Cq change of 0.2 is acceptable, but a Cq change greater than half (0.5) of a

cycle is unacceptable because it indicates the presence of nucleotide insertions/deletions (in/

dels) or even single nucleotide polymorphisms (SNPs). The same amount of RNA template

was used, where only the amount of citrate stabilised AuNP added to the reaction changed.

Hence, a false measurement was recorded that would normally imply less template being avail-

able in that sample.

Since there were changes in the Cq, the clustering feature of the Precision Melt Analysis™
software was used as a novel approach to further identify AuNP-related changes in the qPCR

assay, i.e., AuNP-related interference. Shifts in the HRM profiles were identified by an in-

depth analysis of the difference curves, where readings were taken every 0.2˚C values (see Figs

2, 4 and 6). Hence, from the results obtained, 3 of the 10 reference genes were identified as
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targets for developing a putative diagnostic tool for the presence of both citrate-stabilised as

well as PCOOH AuNPs, i.e. compare each Figure A to Figure B for each reference gene.

The experiment was then repeated for genes 18S, PPIA and TBP, where the already tran-

scribed cDNA was spiked with 25% citrate stabilised AuNPs, in order to determine the effect

on the PCR amplification efficiency only (see S2 File). A greater amount of AuNPs could not be

accommodated due to the restriction on the final reaction volume. However, it was found that

the differences previously observed were not as evident or to the same degree, i.e., the detection

of assay interference was more specific to reverse transcription than PCR amplification. The

summarised results for all 10 genes analysed and any additional data are shown in S3–S5 Files.

Any qPCR assay requires the validation of the reference genes under the experimental con-

ditions before analysing the GIO because the target gene expression is quantified relative to

the reference gene expression. It is for this reason that this current study assessed the impact

of 10 genes as possible Reference genes and 1 target genes/GOI (see Table 2). For example, the

house keeping gene GAPDH was tested, but this gene was not the most suitable Reference

gene under our test conditions, where GAPDH was ranked as 6th best out of the 10 genes

tested when using NormFinder analysis software, and 3rd least stable using BestKeeper analy-

sis software [6]. Instead, YWHAZ and/or HSP90 were found to be best suited for our test con-

ditions [6]. That is why the target GOI Casp7 was normalised to YWHAZ in this current study

(see Fig 7 results). Thus, the experiment was then repeated for the Caspase 7 target gene (see

Figs 7 and 8). The relative normalised gene expression of target GOI (Casp7) against Reference

gene (YWAHZ) was indicated, for the different %AuNP concentrations (Fig 7C) as well as dif-

ferent induction times (Fig 7D).

Both the universal RNA standard (spiked with citrate-stabilised AuNPs) and isolated RNA

(obtained after treatment of BEAS-2B cells with PCOOH AuNPs) were used to assess shifts in

the HRM profiles. To summarise, Figs 2, 4 and 6 are a comparison between (in vitro acellular,

cell-free) citrate stabilized AuNPs induced results, versus, the in vitro PCOOH AuNP treated

results, per gene indicated. These figures show a clear difference between the control (either

0% or 0 h) and the treated samples (i.e. 25, 50 & 75%, or, 0.5 h, 1 h, 2 h and 24 h treatments),

where reference genes 18S and PPIA showed good correlation irrespective of which AuNP was

used. However, the TBP reference gene produced a positive/increased control profile instead

of the previously observed flat baseline. Although a clear stepwise difference relative to

increased amounts of AuNPs was not observed, the control was still distinct from the treated

samples. Fig 7 focused on the GIO relative to the reference gene, where YWHAZ was previ-

ously validated [6]. Fig 8 compared the (in vitro acellular, cell-free) citrate stabilized AuNPs

induced results to the in vitro PCOOH AuNP treated results for the GOI. Again, a positive/

increased control profile was observed, but the treated samples were still distinctly separate

within the difference curve.

Effect on a target GOI. Most of the literature regarding the toxicological impact of ENMs

has reported on acute stress responses such as viability, oxidative stress or apoptosis [21–24].

Apoptosis is a form of programmed cell death that is regulated by caspase proteins [25, 26].

Activation of effector caspases, e.g. caspase-3 and -7, initiates feedback amplification of

upstream apoptotic signalling events in efficient cell death, where these enzymes act as redun-

dant signal amplifiers [27]. This finding disputes older reports of distinct roles for caspase-3

and -7, where caspase-7 was thought to contribute to ROS production and cell detachment

during intrinsic cell death [28]. However, the consensus stands, where caspase-3 and -7 are

considered to be redundant in activating apoptosis in response to both extrinsic and intrinsic

triggers since they have several substrates in common [27, 29].

After validating the reference genes, the target Casp7 gene was screened as a potential GIO

for our analyses of the toxicity of AuNP treatments, both in vitro acellular cell-free and in vitro
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cellular. YWHAZ was shown to be a stable reference gene under these experimental conditions

[6]. Since Casp7 is the GOI (and not a reference gene in this study), the results are displayed

differently, where the normalised expression (ΔΔCq) of Casp7 to the YWAHZ reference gene

is shown instead of showing the electrophoresis results, for example. The same universal RNA

standard was reverse transcribed, where the only difference was the amount of citrate-stabi-

lised AuNPs present (see Fig 7A and 7B). Therefore, there should have been no change in the

expression of Casp7 (see Fig 7C). In contrast, as the AuNP percentage concentration increased,

the normalised expression of Casp7 decreased. Although, the change was not statistically sig-

nificant, these results still prove that citrate-stabilised AuNP-spiked samples did alter the per-

ceived expression of a GOI. This finding could have serious implications for toxicity analyses

that use gene expression studies of various GOIs in the presence of ENMs, i.e., the generation

of false measurements as a result of assay interference. The PCOOH AuNP in vitro (cellular)

treated samples were also analysed in a similar manner and referenced against YWHAZ to

obtain the normalised expression (ΔΔCq), where it was seen that the 1 h exposure time pro-

duced a slightly elevated gene expression (Fig 7D). It should be noted that Fig 7A–7C represent

citrate stabilised AuNPs in an in vitro acellular cell-free assay, whereas Fig 7D represents

PCOOH AuNPs in an in vitro cellular assay.

The HRM Difference curve of Casp7 target gene was also assessed (Fig 8). All spiked sam-

ples were referenced against the 0% AuNP (control) cluster, as described above (Fig 8A). It

was found once again that the HRM profiles shifted in a concertation dependant manner and

it was concluded that citrate-stabilised AuNPs influenced the specificity/ efficiency of the

qPCR reaction. The shifts occurred over a wider temperature range from 79 to 81˚C, with

peaks between 79.4 to 80.4˚C, which appears to be the critical temperature at which to detect

these changes. Again, varied results were obtained in the treated samples. The PCOOH AuNP

in vitro cellular treated samples were referenced against the 0 h untreated (control) cluster (Fig

8B). Although the control did not produce a flat baseline, it appeared that all the treated sam-

ples were still different to the control. However, a stepwise (semi-quantitative) change relative

to the increasing amounts of PCOOH AuNPs was not observed for the in vitro cellular expo-

sure. The trend that was clearly seen between spiked in vitro acellular treatments (as previously

observed and discussed for the reference genes in sections 4.1.1 to 4.1.3), was not observed to

the same extent for the GIO, where only the untreated control sample could be easily distin-

guished from the treated samples that were clustered together in Fig 8B.

Use of HRM shifts as a diagnostic tool. The novel approach described herein uses HRM

profiles and specific reference genes for visualising alterations of the thermal dissociation

behaviour of dsDNA, which are caused by the (known) presence of AuNPs, to detect if these

AuNPs interfere with the RT-qPCR assay. Normally qPCR experiments rely on the traditional

use of Dissociation assay melt peaks to distinguish PCR products. However, melt peaks could

not distinguish the known presence of AuNPs in this study, i.e. where the same RNA/cDNA

sample was reverse transcribed, amplified and the same PCR product was produced, but the

only difference was the amount of AuNPs present in the sample. Hence, the study progressed

to analyse HRM profiles because any HRM shifts observed after a RT-qPCR run would nor-

mally indicate a change in the genetic sequence composition of the PCR product (e.g. muta-

tions and in/dels). Thus, by using this knowledge, one could detect any assay interference

caused by the presence of AuNPs by simply spiking the same RNA/cDNA sample with differ-

ent mounts of AuNPs and observing the changes in the HRM profiles. The difference curves

for the HRM profiles in this current study were able to detect alterations of the thermal dissoci-

ation behaviour of dsDNA. Thus, any differences observed were due to the AuNPs, which

appeared to influence the transcription of RNA into cDNA to a higher degree than the PCR

amplification efficiency. This novel approach is a putative diagnostic tool, where this term
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“diagnostic tool” refers to the process of detecting the presence of both citrate-stabilised as well

as PCOOH AuNPs, within RNA used for RT-qPCR, by analysing shifts in the HRM profiles.

Following the same approach as reported herein (see Fig 9), one can see which steps must be

taken, where the resulting data fits, and, how to analyse and interpret that data to see if residual

AuNPs interfere with the assay by observing changes in HRM profiles. Specifically, one can

screen samples for possible AuNP interference of the reference gene, whilst at the same time

use the same sample in the same assay, in order to quantify the expression of a particular target

or GOI. In this manner, the quantified gene expression of the target or GIO can be compared

to control samples (that are spiked with AuNPs) in order to see if AuNPs interfered with the

assay. Thus, the degree of interference observed can then be used to confirm whether or not

the quantified expression of a particular target or GOI is a true indication of significant differ-

ences (or merely a fluke from an unsuitable method due to unintended interactions within the

assay and between assay components). This approach has a broad range of applicability as a

diagnostic tool and can be further developed in future studies of nucleic acid samples, espe-

cially those used to determine the effects of ENM exposures.

Previous studies

There have been many reports of gene expression studies for other types of genes, as induced

by other types of ENMs (see S6 File). However, these studies did not include results for the

assay validation, e.g., for possible interference that may have occurred due to the presence of

residual ENMs, which may lead to errors in measurements. This is a good indication of the

need for the type of study reported herein, by highlighting the fact that it is applicable to a

broad range of studies. In fact, the importance of the effect of residual intracellular ENMs in

the elucidation of genotoxicity studies has become a recurring theme in recent publications

[30–32], as was also explained in detail in our previous report [6]. Previously, addition of

ENMs to deliberately alter the specificity and efficiency of a PCR reaction has been reported,

where the authors explained how ENMs interact with PCR components, but without referring

to this phenomenon as “interference” [31, 33]. However, if the deliberate addition of an ENM

Fig 9. An overview of the experimental design that highlights the various steps involved, where the resulting data

fits, and, how to analyse and interpret that data to see if residual AuNPs interfere with the assay by observing

changes in HRM profiles.

https://doi.org/10.1371/journal.pone.0260207.g009
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may alter the mechanics of the PCR, we could also show that the unintentional intracellular

(residual) amount of ENM altered the PCR assay [6]. This will mean that the intracellular

residual ENMs still present in biological samples, either during or after isolation/purification

procedures, may cause assay interference. Hence these conditions mimic the real-life scenario

often encountered in toxicology-related exposure assessment studies.

The only study found to be similar in design to that reported herein was by Haber and col-

leagues who used a SYBR Green I detection system and performed HRM analyses, screening

at every 0.1˚C change [34]. However, this analysis was most probably undermined by the relo-

cating nature of the SYBR Green dye they used. Regardless, they did report that AuNPs desta-

bilised the PCR amplicons and recommended caution when evaluating any qPCR assay. Their

results support the results presented herein, where our study was also able to detect changes

caused by subtle amounts of ENMs and furthermore recommend the use of a saturated dye

since it is the best suited for HRM analyses (https://www.bio-rad.com). Another similar work

included a presentation by Prado and colleagues at the qPCR-NGS 2013 Symposium held in

Germany who noted that the amplification plot of SYBR Green was affected by the addition of

increasing concentrations of Fe3O4 NPs. It should also be emphasised that the dye used by

Prado and colleagues was also SYBR green, i.e., the “relocating” dye that has the potential to

generate false readings [35].

The report by Bai and colleagues on the other hand supported the idea that the effects of

AuNPs on PCR were attributed to interactions with the PCR components, and they disproved

the theory that ENMs inhibit non-specific amplification by false priming [31]. Instead, they

showed that it was a concentration-dependent phenomenon, i.e. low concentrations of NPs

inhibit amplification of long amplicons, and, increased amounts of NPs inhibit amplification

of short amplicons. The longer the amplification products were, the more readily it was inhib-

ited because the ENMs had a greater opportunity to bind to the longer length of the DNA tem-

plate that was available (irrespective of the specificity). This means that for our study, the low

concentration of AuNPs would most probably only interfere with the longer amplicons, e.g.,

18S, Act-b, GUS, PPIA and TBP (see Table 1). Again, however, our study differed since the lon-

gest amplicon was only 173 bp (Act-b), whereas Bai and colleagues were referring to amplicon

sizes with a range from 588 to 3529 bp. In other words, our method used short amplicons that

were useful in detecting subtle affects (via an EvaGreen saturated dye), as caused by low

amounts of ENM, where this is important for determining assay interference of gene expres-

sion data obtained from toxicology studies.

Ultimately, the reason why validating assays and developing diagnostic methods are impor-

tant is because gene expression studies are used to predict long-term nanoparticle exposures.

In order to conduct these predictions, one requires data from various exposure studies, where

these studies must employ validated methods. A specific example of this concept is made evi-

dent via the report of one low-dose exposure of nanoparticles that induced long-term changes

in human cells [22]. There has been a focus on AuNPs since they are promising candidates for

optical sensing, bio-imaging, delivery, and therapeutic applications (e.g., due to their size- and

shape-dependent physicochemical properties, as well as an inherent biocompatibility when

compared to other metallic NPs). Although studies have found that AuNPs are generally non-

toxic, the study by Falagan-Lotscha and colleagues found that an acute burst of exposure (i.e. a

single exposure to AuNPs for 24 h followed by 20-week long exposure without AuNPs) is

more harmful to cells, and that cells can adapt to long-term nanoparticle exposure [22]. Subse-

quently, if one were to try and repeat this kind of study, but instead only focus on certain GOIs

via any nucleic acid amplification-based methods, one would require a validated assay to

ensure that the results were specific to the treatment (and not simply due to unintended inter-

actions within the assay and between assay components). This is an important quality control
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procedure that should be implemented when using potentially contaminated starting material

to determine the “error compensation” required in order to quantify the expression of a partic-

ular target or GOI. The results presented herein contribute towards such a method, which can

be further developed for any applications where nucleic acids have been in contact with vari-

ous ENMs. These types of nucleic acids can be sourced from samples that are either biological

(e.g. human/ animal/ plant/ microbe/ viral) or environmental (e.g. air/ soil/ water/ debris/

waste etc. that are in contact with biologicals).

Conclusion

Both the universal RNA standard (spiked with citrate-stabilised AuNPs) and isolated RNA

(obtained after in vitro cellular treatment of BEAS-2B cells with PCOOH AuNPs) were used to

assess the amplification of 10 reference genes, which was monitored using the EvaGreen dye,

i.e. a saturating dye. The study consisted of five parts in order to encompass multiple scenarios

and analyse all of the variables. The Amplification plots did show slight changes. Changes were

also observed for the Cq values, from the same RNA/cDNA sample, where the only difference

was the amount of AuNPs present. The traditional use of Dissociation assay melt peaks in

qPCR cannot distinguish effects from the known presence of AuNPs. The difference curves for

the HRM profiles, however, were able to detect alterations of the thermal dissociation behav-

iour of dsDNA, where results were clustered to the 0% AuNP sample or the 0 h untreated (con-

trol), using the specific software. Thus, any differences observed were due to the AuNPs,

which appeared to influence the transcription of RNA into cDNA to a higher degree than the

PCR amplification efficiency. A target GOI, Casp7, was also tested, where differences in the

normalised gene expression were observed, but these were not statistically significant. Lastly, it

was recommended to perform HRM RT-qPCR with AuNP-spiked samples (as positive control

standards), so that one can determine the error compensation required for experiments assess-

ing gene expression as a result of AuNP treatment or exposure in toxicity studies. The Supple-

mentary files show the high degree of reproducibility that was obtained when spiked samples

were screened. This novel approach, which uses HRM profiles and specific reference genes for

visualising alterations of the thermal dissociation behaviour of dsDNA as caused by the pres-

ence of AuNPs, is a putative diagnostic tool. Specifically, one can screen samples for possible

AuNP interference of the reference gene, whilst using the same sample, in the same assay, in

order to quantify the expression of a particular target or GOI. This diagnostic tool has a broad

range of applicability and can be further developed in future studies of nucleic acid samples.
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16. Zamora-Justo JA, Abrica-González P, Vázquez-Martı́nez GR, Muñoz-Diosdado A, Balderas-López JA,
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