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Abstract
Background: Collections of transcription factor binding profiles (Transfac, Jaspar) are essential to
identify regulatory elements in DNA sequences. Subsets of highly similar profiles complicate large
scale analysis of transcription factor binding sites.

Results: We propose to identify and group similar profiles using two independent similarity
measures: χ2 distances between position frequency matrices (PFMs) and correlation coefficients
between position weight matrices (PWMs) scores.

Conclusion: We show that these measures complement each other and allow to associate Jaspar
and Transfac matrices. Clusters of highly similar matrices are identified and can be used to optimise
the search for regulatory elements. Moreover, the application of the measures is illustrated by
assigning E-box matrices of a SELEX experiment and of experimentally characterised binding sites
of circadian clock genes to the Myc-Max cluster.

Background
In order to dissect the complex machinery of transcrip-
tional control computational tools are widely used [1].
Candidate binding sites of known transcription factors are
located by consensus sequence search or binding scores
calculated from position weight matrices (PWMs) [2].
These matrices are derived from position frequency matri-
ces (PFMs) obtained by aligning binding sites for a given
transcription factor. PFMs contain the observed nucle-
otide frequencies at each position of the alignment. A
popular collection of eukaryotic PFMs is given by the
Transfac database [3]. Furthermore, an open-access data-
base, Jaspar [4], has been compiled recently.

On-line tools are available to calculate high-scoring bind-
ing sites on the basis of these matrix collections [5-7]. For

a given transcription factor these programs predict many
binding sites (on average every 1000 bp) implying a high
excess of false positives [1]. The situation is even worse if
hundreds of different binding profiles are studied in par-
allel leading to multiple testing issues. Often these predic-
tions overlap as a result of similarities of transcription
factor binding profiles.

First steps to overcome the flood of false positive signals
are accurate predictions of promoter regions and enhanc-
ers [8-10]. Phylogenetic footprinting [11-13], correlation
with gene expression data [14,15] or analysis of coopera-
tive binding of multiple transcription factors [16] allow to
reduce the amount of false positives by at least an order of
magnitude. Another helpful strategy is the a priori reduc-
tion of the number of matrices to be considered. However,
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a user-defined preselection of a few matrices is highly sub-
jective and might hide novel interactions of several tran-
scription factors. Therefore, in this paper we combine two
objective criteria to measure similarities of transcription
factor binding site profiles. These measures allow to con-
struct groups of similar profiles. Representative matrices
of the groups may be chosen and constitute a reduced and
unbiased list of independent profiles for searching bind-
ing sites.

Similarities in the collections of matrices may arise from
several sources:

1. Identical transcription factors are represented by differ-
ent matrices. This appears, e.g., due to the distinct nomen-
clature in Transfac and Jaspar (for example the TATA-
binding protein is referred as TATA in Transfac and as TBP
in Jaspar) or due to the availability of matrices obtained
with different methods (see for example Transfac matrices
SRF_01 and SRF_Q6) or stringency criteria (see for exam-
ple AP1_Q2 and AP1_Q6).

2. Factors within one family are represented by similar
matrices due to the conserved structure of DNA-binding
domains [17]. For example, both ATF and CREB matrices
belong to the same bZIP family and recognise the
TGACGT consensus sequence.

3. There might be so far undetected similarities of differ-
ent transcription factor binding sites. Such similarities can
point to a possible cross-talk between different regulatory
pathways (see our discussion of E-box binding sites
below).

4. It might be difficult to distinguish matrices for which
only a few binding sites are known.

In order to identify similar matrices we combine two sim-
ilarity measures. The first one is based on the χ2 distance
of position frequencies of PFMs. The other utilizes scores
from the corresponding position weight matrices (PWMs)
– we calculate for a given pair of binding profiles the
scores along a test DNA sequence and take the corre-
sponding Pearson correlation coefficient as a similarity
measure. Although related similarity measures have been
already studied individually [15,17-21], our combined
approach applied to the Transfac matrices reveals that the
two selected measures capture different properties of the
matrices and therefore the measures complement each
other. Moreover, since for many matrices only a few exper-
imentally verified binding sites are available we take into
account these small sample sizes in both measures. The
application of the measures is illustrated by mapping
CLOCK-BMAL1 binding sites of circadian clock genes to
the Myc-Max family.

Implementation
Databases
A commonly used database of experimentally verified
transcription factor binding sites is Transfac [3]. The
release from May 2004 provides 694 position frequency
matrices (PFMs) covering vertebrates, plants, insects and
fungi. Recently, a publicly available Jaspar database [4]
was compiled with 108 PFMs associated mainly to verte-
brates. For our large-scale statistical analysis we discarded
all matrices with inconsistencies, for example matrices,
where the number of sites aligned to construct the matrix
(sample size) could not be determined. Furthermore, we
excluded rather poor matrices with a length below 6 bases
or a sample size below 5. After these consistency checks
and filtering steps we arrived at 637 different matrices for
Transfac and 103 matrices for Jaspar. All the matrices can
be characterized by their length, the sample size, and the
information content [22] (Tab. 1).

Table 1: Properties of Transfac and Jaspar matrices: We removed matrices for which the sample size was normalized to 100 and no 
information about the actual number of samples was available, as well as matrices of length below 6 or sample size below 5.

Property Transfac Jaspar

Number of original matrices 694 108
Number of matrices after filtering 637 103

Min length 6 6
Max length 30 30

Median length 12 11
Min sample size 5 6
Max sample size 389 389

Median sample size 18 23
Min information content 3.6 5.7
Max information content 44.3 26.2

Median information content 12.8 11.6
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χ2 distance D between position frequency matrices
For each possible overlap (of at least 6 bases) of two PFMs
we count the number of corresponding columns which
are statistically independent. This task can be addressed
by the homogeneity test using the χ2 measure with 3
degrees of freedom. The application of PFMs for the char-
acterization of binding sites implies that the nucleotide
positions are regarded as independent. Even though statis-
tical dependencies between positions are known [23-25]
the assumption of independent positions is a rather good
approximation [1,26]. In the following we denote by fb,i
and gb,i the entries of the overlapping parts of the two fre-
quency matrices to be compared. The index i refers to the
base position along the matrices and b enumerates the
four nucleotides A, C, G and T. The χ2 distance at the posi-
tion i is then given by:

where Nf,i = ∑bfb,i and Ng,i = ∑bgb,i are the sample sizes of
the matrices columns at position i. If χ2 exceeds the

threshold of  (p = 0.05) = 7.81 the null hypothesis that

the base counts in both columns are from the same distri-
bution is rejected with a p-value of 0.05. In order to sim-
plify the analysis we simply count the number of
significantly different positions. The example in Fig. 1
shows that for an appropriate alignment (with shift = 3)

of the two matrices all χ2-values are below the  thresh-
old and hence no column appears to be different.
Although the counts in some columns look quite different
the limited sample size allows no statistically significant
discrimination.

Obviously, the number of significantly different columns
depends on the relative position of both matrices. In our
algorithm we study all possible alignments with a mini-
mum overlap of 6 bases and containing at least 75% of the
information content of each matrix. We calculate the min-
imal number of different positions among these
alignments. We call this number D and interpret it as the
distance between the compared matrices. Fig. 1 illustrates
that for a correct alignment of the ATF and CREB a dis-
tance D = 0 is obtained whereas other alignments lead to
statistically significant different columns.

CREB versus ATF matrices: The distance D is computed for each possible alignment between the two matricesFigure 1
CREB versus ATF matrices: The distance D is computed for each possible alignment between the two matrices. For each 

aligned column, we calculated the χ2 scores. D is then the number of χ2 values which exceed the threshold  = 7.81 For 
shift= 0, the two matrices are not properly aligned, D = 7. For shift= 3, the two matrices are properly aligned, D = 0.

A     5    2    3    0    0   25    0    0    4    7    9    6    1    2 
C    14    6   10    0    0    0   25    0    2   11    1    7   11   13 
G     2    8   10    0   25    0    0   25    1    3    7    7    4    5 
T     4    9    2   25    0    0    0    0   18    4    8    5    9    5 

A     0    0   29    0    0    0   12   17
C     0    0    0   29    1    1   16    1
G     0   28    0    0   28    1    1    4
T    29    1    0    0    0   27    0    7

     39.9 25.4 43.1 54.0  0.9 54.0 14.8 40.1    => D=7

A     0    0   29    0    0    0   12   17
C     0    0    0   29    1    1   16    1
G     0   28    0    0   28    1    1    4
T    29    1    0    0    0   27    0    7

      0.0  0.9  0.0  0.0  0.9  5.8  7.0  3.1    => D=0
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An advantage of the distance measure we use in compari-
son to earlier studies [15,17,19,20] is the emphasis on the
limited sample size of many matrices. Only few binding
sites, such as those recognized by the Sp1 factor, are char-
acterized by hundreds of experimentally verified sites. The
more common sample size is around 15–20 (see Tab. 1)
and, thus, it is much more difficult to distinguish matri-
ces. The χ2 measure leading to the distance D takes into
account the limited sample size in a statistically well
defined manner. The proposed measure could be general-
ized by allowing gaps, using the sum of scores or by taking
the number of possible shifts into account. Since we
studied in this paper only rather strong similarities our
simple discrete threshold D ≤ 1 was sufficient.

Correlation C between position frequency matrices scores
The information on experimentally verified binding sites
stored in PFMs can be exploited to predict novel sites. For
this purpose position weight matrices (PWMs) can be
constructed from the counts fb,i in the following manner
[1,27]. First, the probability pb,i of a base b at a given posi-
tion i is given by:

where Ni = ∑b' fb',i denotes the sample size at the position i

leading to the relative frequency . This estimator is

modified using pseudo-counts sb. As suggested earlier [28]

we choose sb = , i.e. the pseudo-count is propor-

tional to the standard deviation of the counted frequen-
cies. Such a choice of relatively large pseudo-counts has a
pronounced effect on PWMs with a small sample size.
Due to the pseudo-counts the estimated probabilities are
strictly positive even if zeros appear in the PFM. From the
estimated probabilities pb,i we obtain the weights wb,i as
follows:

where rb refers to the a priori probability to find a base b in
the DNA sequence. Consequently, the weights wb,i repre-
sent log-likelihood ratios to find a base b at a position i.
Finally, the score Sk around the position k of a test DNA
sequence is a sum of the weights corresponding to bases
observed in the DNA sequence at the subsequent posi-
tions starting from the position k. The sum Sk is computed
for each position k of the matrix along the DNA sequence.
High positive scores Sk indicate locations in the test DNA
sequence with strong binding affinities whereas zero or
negative scores are found elsewhere (Fig. 2).

This widely used technique of score calculation leads
immediately to the second similarity measure (similar in
spirit to the method used in [18], but modified to take
into account the sample sizes of compared matrices). For
two given matrices f and g we can directly obtain the cor-

responding scores  and  along all positions k in a

given test DNA sequence. If the weight matrices are highly
similar we expect positive peaks at nearly the same posi-
tions, i.e. a prediction of nearly the same set of binding
sites. In order to quantify the similarity of both matrices
we calculate the Pearson correlation coefficient along a
test sequence. Here we also consider all possible relative
shifts between two PWMs (with a minimum overlap of 6
bases) and then take the maximum correlation coefficient
as the similarity measure C of the two matrices. We have
found, that the correlation coefficients do not depend
strongly on the value of the pseudo-counts and reflect
mainly the relevant rare peaks.

In this paper we take as the test DNA sequence a random
sequence with equidistributed bases. For specific applica-
tions it might be appropriate to use other test sequences
such as upstream regions of the genes of interest.

Sensitivity and specificity
Sensitivity and specificity of different methods for meas-
uring similarities of profiles recognized by transcription
factors were assessed as follows: since large sets of experi-
mentally verified similar matrix pairs are not available,
artificial sets were prepared. A representative initial matrix
(either ATF or CREB) was resampled to construct a set of
matrices. On average we probed the initial matrix 18 times
(which corresponds to the median sample size of Transfac
matrices). In order to study varying sample sizes for each
generated matrix the number of samples was randomly
chosen out of the range from 13 to 21. All the matrices
generated this way should be classified as similar to each
other. A set with matrices dissimilar to each other was pre-
pared by random shuffling of the contents of the initial
matrix. The nucleotide counts at each position were ran-
domly reordered as well as the order of the positions.
Additionally, we take into account different lengths of the
matrices. Both sets were extended with random columns
and the number of added columns was chosen randomly
from zero to half of the length of the initial matrix. In the
analysis, sensitivity was defined as the fraction of
resampled matrices which were correctly identified as sim-
ilar matrices. Specificity was defined as the fraction of ran-
dom matrices which were identified as dissimilar. Six
methods quantifying similarity of profiles were com-
pared. The D (chi2th) and C (corr) functions were calcu-
lated as introduced above. Another score was defined as a
sum of χ2 obtained for each compared columns
(chi2sum). Three other methods (introduced in
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[15,17,20]) calculate a total sum over all compared col-
umns of: Euclidian distance (ned), column-column corre-
lation (ccc) and scalar product of columns (sp).

Results and discussion
In this paper two similarity measures of matrices are stud-
ied. The first quantifies for a given pair of matrices the
number of significantly different columns D. The other
represents the correlation C of binding sites scores along a
DNA sequence for each of the given matrices.

Comparison of both similarity measures
For the Transfac library we analyze whether the pairs of
matrices with small distances D and high correlation coef-
ficients C coincide, i.e. for what matrices the two measures
give consistent results. Fig. 3 shows histograms of
correlation coefficients C for matrices with distances D =
0, 1, 2. It turns out that there are many pairs of matrices
with D = 0 and large values of C (see the right peak in the
upper panel of Fig. 3). For such matrices the differences
between their columns are negligible and predicted bind-
ing sites are essentially identical.

Comparison of ATF and CREB matrices: Correlation C of ATF and CREB scores along a test DNA sequenceFigure 2
Comparison of ATF and CREB matrices: Correlation C of ATF and CREB scores along a test DNA sequence. Left: first 30 
scores for ATF (solid line) and CREB (dashed line). Right: scores for ATF versus scores for CREB. Only the first 200 scores are 
plotted, but the full length of the test DNA sequence is 10000 bases. Upper (shift = 0): the matrices are not properly aligned (C 
= 0.068). Lower (shift = 3): the matrices ATF and CREB are properly aligned and both reveal a binding site at position 20 (C = 
0.881).
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There are, however, also many pairs of matrices with D =
0 and relatively small correlation coefficients C (see the
left peak in the upper panel of Fig. 3). These pairs refer
mainly to matrices with a low information content and/or
small sample size. In such cases the differences between
columns are not statistically significant (many Ns in both
consensus sequences) but their scores along a test DNA
sequence correlate only weakly. For example, matrices
V$STAT4_01 and V$MEF2_01 (see Transfac) are charac-
terised by sample sizes N = 6, N = 5 respectively and have
a distance D = 0 but a correlation C = 0.20.

There are also cases with a high correlation coefficient but
with a distance D > 2. Such a situation appears for large
matrices for which only a part is informative. For example
matrices V$GR_01 and V$PR_01 (see Transfac) have a
length of 27, but only six positions constitute the core
sequence (TGTTCT). Among the others positions three are
significantly different, leading to a distance D = 3 but
these differences affect the correlation C only weakly (C =
0.92).

Several alternative measures have been proposed. We
assessed the sensitivity and the specificity of these meas-
ures, as described in methods. The results of the
comparison are presented in the supplemental Fig. 4.
Both the our correlation measure and the column-to-col-
umn similarity give (for an appropriate threshold) a high
specificity and sensitivity. However, in some cases, as

illustrated above, adding a second criteria is useful to dis-
card pairs involving large matrices for which only a part is
informative. The D measure defined here can be used for
this purpose. Both introduced measures quantify different
properties and complement each other. Although alterna-
tive choices of measures might have been done, the
advantage of using the correlation C is its implicit normal-
isation (the results do not depend much on the length and
the sample size of the matrices) and the advantage of the
distance D is its easy interpretation (number of different
columns). Therefore, in the following, we focus on the
most similar matrices based on the distance D and corre-
lation C measures.

Clusters of similar matrices
Here we study the matrices of both Jaspar and Transfac
databases. We consider pairs of matrices for which D ≤ 1
and C ≥ 0.8 as highly similar. These stringent thresholds
were chosen to identify the most obvious similarities and
they imply that the matrices are almost indistinguishable
from a statistical point of view and that their scores along
DNA sequences are strongly correlated. We verified that
for all these pairs of matrices both similarity measures
select the same relative shift of the corresponding
matrices.

Fig. 4 shows an overview of all such matrices. Even though
details of these clusters are only readable in the supple-
mentary material (Fig. 1) the graph reveals interesting
properties: The connecting lines visualizing high similar-
ity join Jaspar matrices (ellipses) with Transfac matrices
(boxes) in many cases. Consequently, our technique
allows an automatic "alignment" of these collections of
matrices. This is not a trivial task since the naming con-
ventions used in the databases is different, and thus
finding matrices corresponding to each other requires
expert knowledge. We find that 84 matrices from Jaspar
have counterparts in Transfac with D ≤ 1 and C ≥ 0.8.
Another 16 matrices have somewhat smaller similarities D
≤ 3 and C ≥ 0.6. Only the Jaspar matrices P_HMG-1,
P_HMG-IY and V_Ghlf, have no obvious "partners" in
Transfac. A complete list of Transfac-Jaspar matrix pairs
with high similarities is provided in the supplementary
material (Tab. 1). Lists for other thresholds or other sets of
matrices can be calculated through our web interface [29].

In addition to the edges between Transfac and Jaspar
matrices there are many clusters containing multiple
Transfac or Jaspar matrices. These clusters reflect pro-
nounced similarities in the matrix collections. There are
for example, matrices of the same transcription factor with
different degrees of stringency (see for instance AP1 matri-
ces). Moreover, different transcription factors of certain
families have almost identical binding motifs (see for
example Myc-Max, USF and ARNT). A complete list of all

Combinations of both measures: Histograms of the correla-tion C of the scores vectors obtained for different values of the distance D (number of significantly different columns according to the χ2 test)Figure 3
Combinations of both measures: Histograms of the correla-
tion C of the scores vectors obtained for different values of 
the distance D (number of significantly different columns 
according to the χ2 test). These data have been calculated for 
the Transfac matrices.
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clusters is provided in the supplementary material (Tab.
S2). An interesting collection of structural classes of tran-
scription factors has been compiled recently by Sandelin
and Wasserman [17]. Consistent with their results we find

also clusters of the ETS family (see cluster 2 in Tab. S2,
also enlarged in Fig. 5b), bHLH transcription factors (clus-
ter 15), and REL family (cluster 5).

Graph showing similar matrices: Transfac matrices are indicated in white boxes, Jaspar matrices are indicated in gray ellipsesFigure 4
Graph showing similar matrices: Transfac matrices are indicated in white boxes, Jaspar matrices are indicated in gray ellipses. 
An edge is drawn between two matrices when D ≤ 1 and C ≥ 0.8. An enlarged version of this figure is available in the supple-
mentary material (Fig. S1).
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In Fig. 5 we present enlargements of two selected clusters
representing the GATA (panel a) and ETS (panel b) tran-
scription factors family. The high similarity of these matri-
ces cannot be directly noticed by inspection of names or
consensus sequences. Furthermore, subgroups might be
detected using our statistical approach. For example, the
GATA cluster reveals that the Jaspar matrix has particularly
high similarity to the Transfac entries GATA1_02,
GATA3_01 and GATA6_01, but less similarities to other
members of the GATA class. The clusters visualized in Fig.
4 and Fig. 5 can be exploited to reduce the number of
matrices. Highly similar matrices match a DNA sequence
either both or not at all. Therefore, one could construct
"consensus matrices" as in [17] or one might select repre-
sentative matrices in each cluster. In this way the number
of overlapping predictions in the search for transcription
factor binding sites can be decreased [17].

Mapping of novel matrices to databases
A careful inspection of the clusters found automatically by
our similarity analysis might reveal unexpected similari-
ties pointing to possible cross-talks of different signaling
cascades on the level of transcriptional regulation. As an
example we discuss the regulation of circadian clock genes
and cell cycle control [30,31]. In both processes bHLH
transcription factors bind as dimers to E-boxes. The corre-
sponding Myc-Max cluster appeared already in Fig. 4 (the
largest cluster). In the mammalian circadian clock the
CLOCK-BMAL1 dimer regulates clock genes such as Per1,

Per2, Per3, Cry1 and Cry2. We found no matrix in Transfac
or Jaspar describing explicitly the binding sites of CLOCK-
BMAL1. Consequently, we constructed such matrices our-
selves in two different ways. On one hand we collected 9
experimentally verified binding sites from 7 different
clock genes [32-36]. On the other hand, we took from a
SELEX experiment 10 sequences with high affinities to the
CLOCK-BMAL1 dimer [37].

Both matrices are visualized in Fig. 6a. Details of the
matrix construction are given in the supplementary mate-
rial (Tab. S3). Both matrices contain the E-box consensus
motif CACGTG but differ in the flanking regions.

Fig. 6b shows that these novel matrices have highly simi-
lar counterparts in Transfac (NMYC, MYC, USF). Conse-
quently, cross-talk of the circadian clock with cell cycle
regulation and tumor genesis can be expected at the level
of transcriptional control. Indeed, the success of
chronotherapies and recent detailed studies on cross-talk
underline the dependence of circadian rhythms with
tumor growth [38]. Also in the process of liver regenera-
tion a pronounced effect of the circadian clock on cell
cycle control has been found [39]. This example illustrates
that a careful SELEX experiment combined with a map-
ping of the resulting matrix to known matrices can reveal
possible functions of the corresponding transcription
factor.

Clusters of similar matrices: Transcription factor families (a) GATA and (b) ETSFigure 5
Clusters of similar matrices: Transcription factor families (a) GATA and (b) ETS.
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Conclusion
Understanding gene regulation in higher eukaryotes is
still challenging and current computational algorithms
suffer from a large amount of false positive predictions
[1,40]. In particular, mutually dependent position fre-
quency matrices in databases such as Transfac or Jaspar
lead to predictions of binding sites which overlap, what
may be misinterpreted as a cluster of binding sites. Conse-
quently, a careful pre-selection of matrices is essential. On
one hand, expert knowledge can be used to select a subset
of candidate matrices for the analysis of upstream regions.
Such a selection is, however, subjective and novel
combinations of transcription factor binding sites might
be missed. On the other hand, for large scale computa-
tional studies, it is useful to have an automatic tool to
detect similar matrices. Therefore, we introduce in this
paper a method combining two independent similarity
measures to compare position frequency matrices. This
approach can be used to quantify similar matrices, to map
the entries of different databases, and to cluster matrices.

The first similarity measure used in our approach is based
on a χ2 test. In contrast to earlier approaches based on

normalized frequencies [15,17,20] we take into account
the small sample size of many matrices. We count the
number of significantly different matrix columns which
defines the distance D. In this paper we focus on highly
similar matrices with D ≤ 1. In forthcoming studies the χ2

measure might be taken directly to calculate distances of
matrices in more detail.

The second measure is related to the primary application
of position weight matrices – the prediction of binding
sites in uncharacterized DNA sequences. We calculate for
two matrices of interest the scores along a test DNA
sequence and derive the Pearson correlation coefficient C
of these vectors. Thus large values of C indicate that both
matrices predict essentially the same binding sites. In this
paper we take a 10000 bp long random sequence with
equiprobable and independent bases as the test DNA
sequence. However, the measure can be easily adapted
also to other test sequences such as sets of promoter
regions.

Our combined similarity measure was first used to map
the Jaspar matrices to the Transfac database automatically.

Mapping of CLOCK-BMAL1 matrices: (a) CLOCK-BMAL1 matrices based on experimentally characterised binding sites of clock genes and from a SELEX study (see Tab. S3 of the supplementary material for the list of these binding sites)Figure 6
Mapping of CLOCK-BMAL1 matrices: (a) CLOCK-BMAL1 matrices based on experimentally characterised binding sites of 
clock genes and from a SELEX study (see Tab. S3 of the supplementary material for the list of these binding sites). (b) Mapping 
of CLOCK-BMAL1 matrices on E-box matrices. These matrices have been selected from the Transfac database and include 
MYC, MAX, ARNT, MYOD, USF, TAL1/E47 (see [35] for a review on E-box transcription factors). An edge is drawn when D 
≤ 1 and C ≥ 0.8.
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Then, requiring rather strong similarity (D ≤ 1, C ≥ 0.8) we
identified similar matrices present in these databases and
constructed clusters of almost indistinguishable matrices.
By choosing only one representative matrix for each clus-
ter it is possible to construct smaller sets of matrices as
input of binding site prediction algorithms.
Consequently, this approach decreases the number of
overlapping binding site predictions. Moreover, such a
reduced set constitutes a better input for methods predict-
ing close occurrences of different binding sites (e.g. [16]).
In order to eliminate false signals further, approaches
such as phylogenetic footprinting [1,12,13], transcrip-
tional profiling [14], ChIP on chip experiments [41,42] or
modeling cis-regulatory modules need to be combined
with a preselection of independent matrices. Our com-
bined technique can be used to predict cross-talk on the
level of transcriptional control. As an illustration we dis-
cuss the cluster of E-box binding bHLH transcription fac-
tors. Since circadian clock genes are regulated by a binding
site quite similar to the Myc-Max motif, a strong interde-
pendence of circadian regulation and cell cycle control is
expected and is indeed known empirically for decades in
connection with chronotherapies or liver regeneration.

Finally we use the similarity measures to assign newly
derived matrices to known factors. To illustrate this appli-
cation, we map an E-box matrix obtained from SELEX
experiments with the CLOCK-BMAL1 dimer to the Myc-
Max cluster. Thus the possible function of poorly charac-
terized transcription factors can be predicted using affinity
measurements combined with a comparison of the result-
ing matrix to database matrices.
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