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Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent with a 
high socioeconomic burden. Pharmacological heart rate lowering was recommended to 
improve ventricular filling in HFpEF. This article discusses the misperceptions that have 
resulted in an overprescription of beta-blockers, which in all likelihood have untoward 
effects on patients with HFpEF, even if they have atrial fibrillation or coronary artery 
disease as a comorbidity. Directly contradicting the lower heart rate paradigm, faster 
heart rates provide haemodynamic and structural benefits, amongst which lower 
cardiac filling pressures and improved ventricular capacitance may be most 
important. Safe delivery of this therapeutic approach is feasible with atrial and 
ventricular conduction system pacing that aims to emulate or enhance cardiac 
excitation to maximize the haemodynamic benefits of accelerated pacing. This 
conceptual framework was first tested in the myPACE randomized controlled trial of 
patients with pre-existing pacemakers and preclinical or overt HFpEF. This article 
provides the background and path towards this treatment approach.

The real voyage of discovery consists not in seeking 
new landscapes, but in having new eyes — Marcel 
Proust (paraphrased from La Prisonnière, 1923)

Introduction

Pharmacological heart rate lowering in patient populations 
with normal ejection fractions was never proven to be 
efficacious and may well contribute to both heart failure 
with preserved ejection fraction (HFpEF) of 50% or higher 
and atrial fibrillation (AF).1–3 On the contrary, higher than 
normal resting heart rates provide haemodynamic and 
structural benefits. This was the basis for the conceptual 
framework of heart rate modulation and accelerated 
pacing as a novel treatment approach for HFpEF and AF. 
In this article, we will discuss the history of the ‘lower 
heart rate is better paradigm’, salutary and adverse 
effects of beta-blockers, and the effects of heart rate 

modulation on haemodynamics and the myocardium, 
which resulted in a programmatic effort to assess the 
benefits of personalized accelerated physiologic pacing 
that culminated in the myPACE trial.

Heart rate lowering and diastolic function

There are substantial misperceptions about the effects of 
heart rate on cardiac function and structure that become 
clearer in a historical context. The following summarizes 
a few premises that have led to misunderstandings of 
pathophysiology and misappropriation of the evidence 
basis.

Premise #1: heart rate lowering is beneficial
In 1912, the German physiologist Erwin Rhode described that 
heart rate and blood pressure determine myocardial oxygen 
consumption.4 This finding helped physicians realize that 
lower heart rates and/or blood pressures reduce 
myocardial ischaemia and effort angina. The advent of 
propanolol in 19645 provided a pharmacological means to 
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simultaneously reduce blood pressure and heart rate to lay 
the foundation for the concept that beta-blockers and 
heart rate lowering may have cardioprotective effects. In a 
case series of 21 patients presenting with hypertensive 
heart failure and preserved systolic function in 1985, Topol 
et al.6 posited that patients may benefit from 
pharmacological prolongation of diastole to provide more 
time for diastolic filling. Despite the absence of 
randomized controlled trials that confirmed this 
hypothesis, heart rate suppression with beta-blockers was 
rapidly adopted and integrated into the heart failure 
treatment guidelines. The pervasiveness of this paradigm 
and the ensuing guideline recommendations have 
contributed to the widespread use of beta-blockers such 
that they are currently the most prescribed class of 
medications in HFpEF.7–9 The modest mortality benefit of 
beta-blockers in coronary artery disease after myocardial 
infarction has not been recapitulated in the modern era of 
reperfusion therapies that aim to preserve ejection 
fraction.10,11 This has led to a withdrawal of the 
beta-blocker recommendation in the 2023 AHA/ACC/ 
ACCP/ASPC/NLA/PCNA guidelines for the treatment of 
coronary artery disease, with exceptions for angina 
pectoris, recent myocardial infarction, and reduced 
ejection fraction.12 It was the evidence from 
randomized myocardial infarction studies in the modern 
era of coronary revascularization that led Bangalore 
et al.11 point out that beta-blocker use increases the 
risk for heart failure.

Premise #2: beta-blockers are beneficial in 
heart failure
Controlled randomized trials unequivocally demonstrated 
that metoprolol, carvedilol, and bisoprolol reduce heart 
failure–related morbidity and mortality in patients in sinus 
rhythm and heart failure with reduced ejection fraction 
(HFrEF).13 However, patients with AF do not derive 
a morbidity and mortality benefit in the HFrEF trials 
of beta-blockers.13,14 Similarly, in two underpowered 
subgroup analyses of patients with HFpEF, there was no 
discernible advantage of beta-blockers.13,15

Furthermore, in hypertension trials, beta-blockers were 
found to be inferior when compared with angiotensin 
receptor blockers, calcium channel blockers, and 
thiazides, driven by an excess of cardiovascular events 
such as stroke.16–18 The guideline-based recommendations 
for AF rate control favouring beta-blockers have been 
based on expert opinion predominantly informed by 
observational analyses without evidence from large 
randomized trials that compared beta-blockers with 
placebo or alternative rate control agents.19

Premise #3: heart failure with preserved 
ejection fraction and atrial fibrillation are 
twin conditions
Both HFpEF and AF are found in above middle-age patients 
with hypertensive heart disease with progressive diastolic 
dysfunction that originates from an interdependent 
deterioration of the atrial and ventricular myocardial 
substrate. About half of patients with HFpEF have AF 
and many patients with incident AF will later develop 
overt HFpEF.7,20,21 Specific to this context, many 
clinicians assume that if beta-blockers provide rate 

control in AF, at a minimum, they should not be harmful 
in patients with HFpEF and/or AF.

Premise #4: sub-specialization and reliance 
on expert opinion
Cardiology is an increasingly complex field, which has 
led to sub-specialization that increases practitioner’s 
reliance on expert opinion. The lack of crosstalk 
between sub-specialities’ creates vulnerabilities, 
wherein important findings in one area may not change 
practice in another; hence, the slow speed with which 
the evidence of inferiority of beta-blockers as an 
antihypertensive agent, or the lack of benefit in HFrEF 
with AF, has altered their use as first-line therapy in AF.

Beta-blockers and heart rate lowering: 
experience, evidence, and concerns

The 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS ischaemic 
heart disease guidelines poignantly summarize the 
unfavourable effects of beta-blockers as follows: ‘the 
principle adverse effects of beta-blockers are fatigue, 
exercise intolerance, lethargy, insomnia, nightmares, and 
impotence’.22 Applying the basic principle of clinical 
practice, primum non nocere, to the use of beta-blockers, 
the mortality and morbidity advantages should be marked 
and unequivocal to outweigh the substantial number of 
undesirable effects. As discussed above, the only condition 
with an unambiguous evidence basis is HFrEF with sinus 
rhythm, but not other conditions where beta-blockers are 
commonly prescribed. The National Health and Nutrition 
Examination Survey determined in 2015 that ∼11% of the 
adult US population receive beta-blockers,23 while only 
∼1% of the population has HFrEF.24

As stated, without any evidence from clinical trials, it is a 
long-standing dogma that prolongation of diastole by 
slowing the heart rate is beneficial in HFpEF, which has 
contributed to beta-blocker prescription rates between 
80 and 86% in contemporary HFpEF cohorts and trials.7–9

To further study the proposed benefits of lower heart 
rates, ivabradine, a sinus node-specific inhibitor, was 
evaluated in a trial of 179 HFpEF patients with resting 
heart rates of 70 b.p.m. or higher.25 The findings were 
neutral and did not reveal any benefit. More recently, it 
was documented that beta-blocker discontinuation 
in patients with HFpEF can improve natriuretic 
peptide levels and exercise capacity.26,27 This may have 
contributed to a 2022 AHA/ACC/HFSA heart failure 
guideline committee decision to rescind the previous 
recommendation for beta-blockers in HFpEF, which 
had been in place since 1995.24 In a recent article from 
our group, we discussed that the evidence basis for 
beta-blockers for rate control for AF is similarly weak and 
pointed to randomized studies and analyses which 
indicate that beta-blockers may be inferior to other 
rate-control medications such as digoxin and 
non-dihydropyridine calcium channel blockers.3

But is there really any high-quality evidence that links 
pharmacological heart rate lowering to adverse clinical 
outcomes? The 2006 guideline-influencing RACE II AF 
trial, which compared strict and lenient rate control, 
provided an early glimpse into the potential adverse 
effects of heart rate suppression.28 Compared with a 
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heart rate goal of 80 b.p.m. or lower, there was a 
numerical signal towards fewer adverse outcomes in the 
group of patients with rates up to 110 b.p.m. In the year 
prior, a large randomized hypertension trial that 
compared atenolol and losartan16 revealed that the 
relative risk of developing AF was ∼30% higher with 
atenolol.29

Adverse effects of heart rate lowering were obvious in a 
19 102 patient outcomes trial of ivabradine in coronary 
artery disease without heart failure at baseline. The 
highly selective suppression of sinus node activity by 
ivabradine reduced heart rates by ∼10 b.p.m., which 
improved angina pectoris, similar to beta-blockers.30

However, amongst the group of patients with 
activity-limiting angina, the relative risk of death and 
myocardial infarction increased by 18% with ivabradine, 
indicating that antianginal heart rate lowering may have 
untoward effects on clinical outcomes in this high-risk 
subgroup. Even more startling, the relative risk for 
new-onset heart failure and AF increased by 20 and 40%, 
respectively. Following these lines of evidence, we 
conducted secondary analyses of the TOPCAT HFpEF trial 
of spironolactone and the SPRINT hypertension trial that 
confirmed that beta-blocker use was associated with an 
excess risk of heart failure and AF, likely driven by lower 
heart rates as the culprit.31–33 These data support our 
contention that beta-blocker use generally, and heart 
rate lowering specifically, are associated with an 
increased risk for incident heart failure and AF. The 
question that arises is: how is it that heart rate 
suppression can lead to adverse clinical outcomes?

Lower than normal heart rates impair 
diastolic filling

Heart rates are optimized to the physical properties of the 
heart and body size. Case in point is the heart rate 
distribution amongst mammals, i.e. mice have rates in 
excess of 500 b.p.m., whereas blue whales have heart 
rates as low as 2 b.p.m.34,35 The relationship of body 
size and heart rate is recapitulated across human growth 
to explain why newborns commonly have pulse rates 
above 120 b.p.m.36 Thereafter, heart rates fall with age 
while the principal association of body size and resting 
heart rate is maintained.37 The roughly 5 b.p.m. 
difference in the average resting heart rate between 
women and men can be explained by the height 
difference. On first sight, such differences appear of 
little relevance but in the following, we will argue that 
changes below or above individual set points have 
meaningful haemodynamic and structural consequences.

Haemodynamic effects of below normal heart 
rates
The main mechanism whereby below normal heart rates 
are detrimental involves the abnormal prolongation of 
left ventricular filling. The added ventricular blood 
volume in end-diastole produced by atrial contraction is 
countered by an exponential rise in resistance from the 
ventricular myocardium due to passive stiffness.2 This is 
not much of a problem in healthy hearts with compliant 
myocardium. However, with ageing and in patients with 
hypertensive remodelling, blood volume expansion and 

lower than normal heart rates lead to a disproportionate 
rise in filling pressures that increase wall stress in both 
atria and ventricles, as shown in Figure 1. Resultant 
elevations in left atrial pressure are the cardinal source 
of dyspnoea and contribute to atrial myopathy and AF.21

Low heart rates also slow myocardial relaxation kinetics 
and increase central blood pressures by activation of the 
Frank–Starling mechanism and reflected peripheral 
pressure waves superimposed onto late systole, which 
may provide an added stimulus for concentric 
remodelling.38 It was proposed that this increase in 
central blood pressure contributes to the higher risk of 
stroke with beta-blockers in the aforementioned 
hypertension trials.39

It is important to acknowledge that a well-established 
age-dependent left ventricular volume loss and 
increasing wall thickness, which starts in midlife, plays 
a concomitant role in the reduction of myocardial 
compliance.40 Consequently, stroke volumes fall and 
cardiac output is only maintained if the heart rate 
increases. However, the available population data 
suggest that resting heart rates remain stable from 
adulthood into senescence,36,41 leaving many older 
adults in a relative state of sinus bradycardia. In other 
words, resting heart rates between 60 and 70 b.p.m. are 
likely too low for the majority of concentrically 
remodelled hearts that—based on the altered physical 
properties described—would function more optimally at 
higher rates. This pathological mechanism also links 
sinus node dysfunction, atrial myopathy, and atrial 
arrhythmias.42

Myocardial remodelling by heart rate 
modulation
Heart rates both above and below an ideal range will not 
only effect haemodynamics, they will also lead to 
structural changes due to remodelling of the 
myocardium. Generally, below normal heart rates induce 
concentric remodelling with reduction of ventricular 
volumes, whereas above normal heart rates result in 
eccentric remodelling and dilation. Hence, sinus rate 
lowering with beta-blockers or ivabradine reduces left 
ventricular size in HFrEF, which improves systolic 
function,24,43 while prolonged exposure to high heart 
rates, i.e. AF with rapid ventricular conduction, drives 
eccentric remodelling and left ventricular dilation. 
Reestablishing a lower heart rate by restoring sinus 
rhythm is sufficient to return the heart to normal 
dimensions and function in the case of 
tachycardia-induced cardiomyopathy.

Despite the importance of myocardial plasticity in 
health and disease, i.e. athletics and heart failure, the 
mechanisms that govern heart rate-induced remodelling 
have not been characterized. Such profound changes in 
cardiac structure and function are only possible with an 
orchestrated and tightly synchronized change in gene 
expression that not only affects the shape and function 
of cardiac myocytes but also necessitates the inclusion 
of cells that define the extracellular matrix, conduction 
system, and cardiac vasculature. Analogous to the 
regulation of the plasticity of skeletal muscle, it is likely 
that myokines, which are frequently mistaken as 
inflammation factors, play key roles.44 How the heart is 
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sensing changes in heart rate to initiate differential gene 
expression is unknown but an area of particular interest 
in our group. Our analysis of gene expression signatures 
of left ventricular biopsies obtained from HFpEF patients 
with and without AF is providing first insights into the 
dysregulation of key regulatory proteins that contribute 
to concentric remodelling in HFpEF.45

Higher than normal heart rates improve 
diastolic filling

The advent of cardiac pacing led to the finding that 
accelerated atrial pacing resulted in marked reductions 
in filling pressures in patients.46 This basic observation 
was overshadowed by subsequent haemodynamic studies 
in patients with hypertrophic cardiomyopathy and 
myocardial ischaemia where pacing resulted in higher 
end-diastolic pressures, which was confirmed in silico.47– 

49 The finding that filling pressures disproportionately 
increase in HFpEF with exercise strengthened the belief 
that diastolic pressures would rise in response to higher 
heart rates.50 However, the results by Westermann 
et al.51 and Wachter et al.52 clearly demonstrated that 
left-sided filling pressure decreased when HFpEF 
patients were paced from the atrium at rates up to 
120 b.p.m. When compared with the resting heart rate, 
left ventricular end-diastolic pressure strikingly 
normalized (from 17 to 8 mmHg) at 120 b.p.m. while 
end-diastolic, end-systolic, and stroke volumes declined. 
In left atrial pressure recordings, we confirmed that 
HFpEF patients derive a marked haemodynamic benefit 
from pacing that results in lower atrial and ventricular 
filling pressures.53 These findings suggested that 
accelerated pacing may present a treatment opportunity 

aimed at preventing incident AF and HFpEF, by 
intracardiac decongestion.54

In addition, ex vivo pacing experiments in myocardial 
strip preparations obtained from HFpEF patients during 
open heart surgery revealed that cytosolic calcium levels 
and diastolic tone increased disproportionately in HFpEF 
myocardium in response to pacing at sequentially higher 
rates.55–57 This provided a mechanism for the observed 
improvements in filling pressures described above.54

Nevertheless, the sarcoplasmatic reticulum-mediated 
acceleration of relaxation kinetics at higher rates, a key 
component of the force–frequency relationship,58,59 was 
principally preserved, providing some reassurance that 
contraction amplitudes would not be adversely affected 
at higher heart rates.60

Steps towards a clinical trial

As discussed, elevated left atrial pressures are a central 
source of dyspnoea in HFpEF. This is especially true at 
night, when patient alleviate their symptoms by raising 
their chest position to reduce filling pressures, for 
example, with pillows, giving us the clinical symptom of 
orthopnoea. Affected patients tend to have interrupted 
sleep patterns that can result in paroxysmal nocturnal 
dyspnoea. We reasoned that patients may benefit most 
from filling pressure reductions at night, when heart 
rates are the lowest and filling pressures are predictably 
higher. We also surmised that improvements in sleep 
might lead to secondary gains in heart failure–related 
quality of life, which may positively affect activities of 
daily living. This symptom-focused approach differs 
substantially from most treatment interventions tested 
in HFpEF that focus on demonstrating improvements in 

Figure 1 Effects of below normal heart rates on intracardiac haemodynamics. (A) Below normal heart rates lead to intracardiac congestion due to prolonged 
diastolic filling. The added blood volume is encountering opposing forces from the increasingly less compliant left ventricular myocardium, an effect that is 
disproportionally pronounced in hypertensive heart disease and heart failure with preserved ejection fraction. This increases both atrial and ventricular filling 
pressures and wall stress, which raises the risk for incident heart failure with preserved ejection fraction and atrial fibrillation. (B) Rightward shift of the 
pressure–volume loop with prolonged ventricular filling (rightloop). Left ventricular end-diastolic pressure (right lower corner of the loop) rises while 
following the end-diastolic pressure–volume relationship that is exponential in heart failure with preserved ejection fraction (dotted line). LVEDP, left 
ventricular end-diastolic pressure; LAP, left atrial pressure.
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exercise tolerance. Nevertheless, it is our clinical 
impression that the majority of HFpEF patients are more 
interested in a better quality of life than improving peak 
exercise. We therefore decided to first test the concept 
of accelerated pacing at night.

The nocturnal heart rate 100 study
To first explore this approach, we screened for 10 patients 
with pacemakers and evidence of diastolic dysfunction. 
Pacemakers were programmed to preferentially deliver 
atrial pacing in the DDD(R) mode at a rate of 100 b.p.m. 
from midnight to 5 a.m. over 1 month without changing 
the lower rate.61 To deliver such rate windows in an 
automated fashion, we inverted the pacemaker’s ‘sleep 
function’ to be active between 5 a.m. to midnight to 
provide the lower pacing rate during the day. This pilot 
study revealed that accelerated pacing at night was 
tolerated without adverse signals. Some patients 
reported improvements in symptoms and demonstrated 
an increase in their 6 min walk distance.

The lower rate 80 study
After the encouraging results with nocturnal pacing, we 
tested if a permanent rise in the lower rate setting to 
80 b.p.m. for 1 month would provide sustained 
haemodynamic benefits. Patients were assessed at 
baseline and at 1 month of lower rate pacing at 
80 b.p.m., and 2 weeks after returning the lower pacing 
rate to 60 b.p.m. The key finding of this 20 participant 
study was that patients with atrial pacing from 
Bachmann’s bundle and ventricular conduction system 
pacing had a 46% reduction in N-terminal pro-brain 
natriuretic peptide (NT-proBNP), a marker of myocardial 
wall stress at 80 b.p.m., when compared with a 4 and 
13% change with pacing from the right atrial appendage 
and right ventricular apical septum (interaction P-value  
= 0.04). Conversely, patients with a paced QRS duration 
of >150 ms—most often due to the presence of a right 
ventricular lead—appeared to benefit the least.

Design of the myPACE trial

The results from the observational pilot studies allowed for 
power calculations for a pragmatic randomized clinical 
trial in patients with pre-existing pacemakers with a focus 
on the changes in heart failure–related quality-of-life 
scores as a main outcome using a validated instrument— 
the 21-item Minnesota living with heart failure 
questionnaire (MLHFQ). Secondary efficacy endpoints were 
NT-proBNP levels, pacemaker-detected physical activity, 
and AF burden with a 1-year follow-up.62,63

The cohort of pacemaker patients at the University of 
Vermont Medical Center was particularly well suited 
because it is a large referral centre and all implanters 
emphasize physiologic pacing in an attempt to maintain 
or optimize physiologic atrial and ventricular 
conduction.64,65 The goal of only enrolling patients with 
pacemaker systems emulating normal excitation was to 
maximize the haemodynamic benefit of accelerated 
pacing while mitigating opposing negative effect from 
dyssynchrony. In addition, allowing enrolment of 
patients with preclinical HFpEF with echocardiographic 
features of hypertensive heart disease without overt 

heart failure might demonstrate that accelerated pacing 
could benefit an even larger population as a 
preventative strategy, especially when compared with 
pacing systems programmed to the current nominal 
lower rate setting of 60 b.p.m.

The question remained what an optimal heart rate 
should be? Based on our results that left atrial pressures 
improve with rates up to 125 b.p.m., the results of the 
RACE II AF trial suggesting that ventricular rates as high 
as 110 b.p.m. may be safe, and our nocturnal pacing 
data indicating that night heart rates of 100 b.p.m. were 
tolerated, heart rate elevations up to 125 b.p.m. could 
be considered. However, the results in our preclinical 
hypertensive heart disease porcine model (Stage B 
HFpEF) clearly demonstrated that even moderate heart 
rate elevations induced eccentric remodelling with 
concomitant reductions in ejection fraction. Raising the 
heart rate by a factor of 1.6 in micro-swine (from 93 ± 6 
to 150 b.p.m.) increased left ventricular end-diastolic 
volumes by 54 ± 3% (P < 0.01), whereas ejection 
fractions fell from 58 ± 1 to 45 ± 1% (P < 0.05).60 After 
pacing rates were lowered from 150 to 125 b.p.m., left 
ventricular dilation reverted to about half while ejection 
fractions rose to the lower limits of normal. In this heart 
rate range, blood levels of B-type natriuretic peptide 
(BNP), noradrenaline, and galectin-3, all biomarkers of 
heart failure, remained within normal limits and none of 
the animals developed signs or symptoms of heart failure 
even when paced for extended periods.60 These results 
suggested that pacing remodelling at moderately 
elevated rates was physiologic and that the drop in 
ejection fraction was more comparable to the changes 
seen in extreme endurance athletes than being 
pathologic.66,67 We therefore anticipated that with 
accelerated pacing, some patients with ejection 
fractions at the lower limits of normal, i.e. 50–55%, 
would experience a reduction in ejection fraction below 
50% as part of the pacing remodelling. As this would 
raise concerns for a transition towards HFrEF, we aimed 
to provide patients with an ejection fraction of 50% with 
a ‘normal’ resting heart rate, knowing that this would 
still exceed their sleep heart rate by ∼10 b.p.m. to 
provide a nocturnal haemodynamic benefit.68

The allometric heart rate–height relation of humans 
between ages five and adulthood obtained from national 
registry data—revealed a linear relationship that could 
be used to provide personalized heart rates, as shown in 
Figure 2.37 As previously mentioned, heart rate 
differences between adult males and females are largely 
accounted for by the difference in height. As 
supranormal ejection fractions, i.e. 65% and higher, are 
typically a reflection of a small chambers size with 
concentric remodelling, we developed an algorithm that 
would use an ejection fraction of 50% as a pivot. Patients 
with ejection fractions above 50% would receive 
incrementally higher heart rates that would produce 
more eccentric remodelling to recoup some of the left 
ventricular volume losses that are part of normal ageing 
and an independent predictor of heart failure.40,69 The 
equation was fitted across the ejection fraction 
spectrum so that patients with reduced ejection 
fractions would have heart rates found to be efficacious 
in HFrEF trials of beta-blockers and ivabradine.24,70 The 
reduced ejection fraction side of the equation may be 
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useful in the future to optimize pacemaker settings for 
patients with a dilated cardiomyopathy to support 
reverse remodelling towards normal left ventricular 
dimensions and function.

The myPACE trial started to enrol patients in the 
summer of 2019. The basic design and timeline is 
provided in Figure 3.71

Key findings of the myPACE trial

The main findings of the myPACE trial have been 
reported.72 Briefly, in patients with clinically indicated 

pacemakers who had subclinical or overt HFpEF, 
treatment with a personalized accelerated pacing rate 
(myPACE) that increased mean heart rates from 65 to 
75 b.p.m. resulted in substantial improvements in 
health-related quality of life measured by the MLHFQ 
instrument when compared with the standard lower rate 
setting of 60 b.p.m. (usual care), as shown in Figure 4. 
With personalized accelerated pacing, the median 
(interquartile range) MLHFQ score improved from 26 (8– 
45) to 9 (4–21) (P < 0.001) and worsened with usual care 
from 19 (6–42) to 27 (7–52) (P = 0.03). N-terminal 
pro-brain natriuretic peptide levels, physical activity, 
and device-detected AF also improved in the 

Figure 2 Height–heart rate relationship. (A) The human height and resting heart rate relationship. Linear regression of height and resting heart rate obtained 
from group medians of national survey and growth chart data. (B) Ranges of personalized heart rates (5th percentile, median, and 95th percentile) without 
consideration of ejection fraction in both women and men. (C) The modified personalized heart rate algorithm used in myPACE with an ejection fraction 50% 
pivot. (Personalized HR (b.p.m.) = (height [cm] × –0.3744) + 134.82) × √√ (ejection fraction [%]/50). A patient with an ejection fraction of 50% will be treated 
with a normal resting heart rate for their height to minimize the risk of ejection fraction reductions. At higher ejection fractions (>50%), patients are treated 
with incrementally higher heart rates to produce eccentric remodelling.
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personalized accelerated pacing cohort. But how do the 
findings from this small study compare to the much larger 
outcomes studies of sodium–glucose cotransporter-2 
(SGLT-2) inhibitors, the only clearly efficacious treatment 
of HFpEF? The primary composite of heart failure events 
and cardiovascular death was reduced by ∼20%, with 
empagliflozin and dapagliflozin, which was primarily 
driven by the reduction in heart failure events.8,9 Only 
dapagliflozin marginally improved the related KCCQ 
quality-of-life score when compared with placebo [2.4 
points; 95% confidence interval (CI), 1.5–3.4], while 
empagliflozin did not (1.3 points; 95% CI, 0.5–2.2). In 
addition, NT-proBNP levels did not improve. Hence, there 
remains an unmet need for HFpEF treatments that 
provide more substantial symptom relief, ideally by 
reducing cardiac filling pressures and atrial and 
ventricular wall stress, which is what physiologic 
accelerated pacing may achieve.

The accelerated pacing intervention appeared safe with 
a low number of adverse clinical events. In the 
accelerated pacing arm, four participants had a single 
adverse clinical event. With a lower rate setting of 
60 b.p.m., 11 patients had 17 adverse events, most of 
them heart failure and AF-related. Since most 
participants elected to remain on their respective 
treatment allocation, clinical outcome analyses are 
feasible and an assessment of cardiac structure and 
function that provide early confirmation of the predicted 
changes is forthcoming. It is important to reiterate that 
any relative bradycardia, i.e. the current nominal 
pacemaker lower rate setting of 60 b.p.m., will worsen 
diastolic function. This helped myPACE to be a positive 
trial and should lead to a reconsideration of the lower 
rate standard once conduction system pacing is more 
widespread. In retrospect, since every patient already 
had an implanted device, it became obvious that the 

Figure 3 myPACE study design and flow. Pacemaker clinic patients at the University of Vermont Medical Center were consecutively screened. Those enrolled 
completed a Minnesota Living With Heart Failure Questionnaire, N-terminal pro-brain natriuretic peptide level, and a pacemaker interrogation. Patients were 
then randomized to a personalized pacemaker rate (myPACE) or remained at the nominal rate of 60 b.p.m. (Usual care) for 1 year. N-terminal pro-brain 
natriuretic peptide levels were repeated at 1 month and the Minnesota living with heart failure questionnaire was repeated at 1 month and 1 year. 
Pacemaker data and clinical outcomes were monitored continuously over the course of 1 year. NT-proBNP, N-terminal pro-brain natriuretic peptide.

Figure 4 Primary outcome of the myPACE randomized controlled trial.
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study also benefited from a lack of a placebo effect, which 
is a substantial confounder in heart failure trials that 
involve device implantations.73–75

The overall results confirmed that quality of life is a 
viable treatment goal in this large group of patients, 
whereas a primary focus on exercise capacity, i.e. by 
restoring chronotropic incompetence with rate adaptive 
pacing, may not be beneficial (Figure 5).76

As discussed, we only allowed pacing systems that 
preserved or shortened intrinsic conduction to 
synchronize both contraction and relaxation. In the 
atrium, Bachmann bundle leads were present in more 
than one-third of patients.65 Minimizing or eliminating 
both atrial and ventricular dyssynchrony allowed us to 
permanently raise the lower rate setting without 
offsetting effects from mechanical dyssynchrony.

Knowledge gaps and outlook

The myPACE trial was a single-centre study amongst 
patients with pre-existing pacemaker systems with 
optimized lead positions. As mean resting heart rates in 
HFpEF populations are typically ∼72 b.p.m., a modified 
treatment algorithm will be necessary to provide a 
meaningful haemodynamic benefit. At least initially, 
pacing at higher rates will require integration of efficacy 
and safety evaluations by close clinical follow-up to 
optimize the dosing of heart rate. Prolonged exposure to 
a single accelerated pacing rate will predictably silence 
physiological remodelling with a risk of terminal 
structural arrest, i.e. by irreversible crosslinking of 
extracellular matrix collagen, which is common in 
end-stage HFrEF.77 This is preventable by pacing rate 
variations that add therapeutic efficacy, which is 
examined in the PACE-HFpEF trial (NCT04546555), our 
first cohort of HFpEF patients without standard 
pacemaker indications. PACE-HFpEF is primarily 
comparing pacing modes using an upgraded algorithm.

If the benefits are confirmed, it is conceivable that 
next-generation devices will integrate haemodynamic 
and clinical data into the treatment algorithms to 

auto-adjust dosing and thereby minimize the risk from 
‘guesstimate’ interventions that may adversely affect 
safety and efficacy. Besides its potential to reduce 
incident HFpEF and AF in the elderly and in hypertensive 
heart disease, it is conceivable that personalized 
accelerated pacing may also benefit patients with 
non-obstructive hypertrophic cardiomyopathy or other 
conditions with a restrictive cardiac physiology. Current 
treatment recommendations for these conditions 
embrace the same ‘slower heart rate—better filling’ 
rationale that was effectively refuted by the myPACE 
trial.78

Until our findings are confirmed and safeguards are 
implemented, it is our contention that the current 
evidence supports the notion that pharmacological heart 
rate lowering is not beneficial and may be even harmful 
in many patients with hypertensive heart disease. We 
therefore discontinue or replace beta-blockers in most 
patients with HFpEF and AF. Given the high prevalence of 
both conditions in an ageing population, it is predictable 
that the residual risk will remain high, even after 
widespread beta-blocker de-prescription and adoption of 
pharmacological advances that include SGLT-2 inhibitors 
and glucagon-like peptide 1 agonists for weight loss. 
Changing demographics combined with a high prevalence 
of hypertension will require the development of targeted 
treatments that address the progression of diastolic 
dysfunction and the underlying structural abnormalities. 
In this regard, personalized accelerated physiological 
pacing may present a unique opportunity with the added 
benefit that it does not depend on adherence.

Conclusions

The synergy of atrial and ventricular conduction system 
pacing and accelerated personalized heart rate 
modulation is a holistic approach that aspires to 
optimize atrial and ventricular electromechanical 
function and myocardial substrate to improve quality 
of life and reduce adverse clinical outcomes in the 
elderly and in patients with hypertensive heart disease. 

Figure 5 Illustration of the main effects of personalized accelerated physiological pacing. The immediate haemodynamic benefits are followed by eccentric 
remodelling with a reduction in wall thickness and increased capacitance that improves left ventricular compliance and reserve capacity.
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The early clinical evidence suggests that this therapeutic 
modality may find use in the prevention and treatment 
of HFpEF and AF.
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