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A B S T R A C T   

T-box transcription factor 5 gene (TBX5) encodes the transcription factor TBX5, which plays a crucial role in the 
development of heart and upper limbs. Damaging single nucleotide variants in this gene alter the protein 
structure, disturb the functions of TBX5, and ultimately cause Holt-Oram Syndrome (HOS). By analyzing the 
available single nucleotide polymorphism information in the dbSNP database, this study was designed to identify 
the most deleterious TBX5 SNPs through in silico approaches and predict their structural and functional 
consequences. 

Fifty-eight missense substitutions were found damaging by sequence homology-based tools: SIFT and PRO
VEAN, and structure homology-based tool PolyPhen-2. Various disease association meta-predictors further 
scrutinized these SNPs. Additionally, conservation profile of the amino acid residues, their surface accessibility, 
stability, and structural integrity of the native protein upon mutations were assessed. From these analyses, finally 
5 SNPs were detected as the most damaging ones: [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 
(V153D), rs769113870 (E208D), and rs1318021626 (I222N)]. Analyses of stop-lost, nonsense, UTR, and splice 
site SNPs were also conducted. 

Through integrative bioinformatics analyses, this study has identified the SNPs that are deleterious to the 
TBX5 protein structure and have the potential to cause HOS. Further wet-lab experiments can validate these 
findings.   

1. Introduction 

Heart is the first organ to develop in the human body and numerous 
genes and their products orchestrate this process. Among these genes, 
TBX5 is an important one. It is a member of the T-box gene family that 
encodes transcription factors with a highly conserved DNA binding 
domain (T-box) of 180–200 amino acids [1]. Members of this gene 
family have been found from metazoans to humankind, and in humans, 
more than 20 members of this gene family have been reported till now 
[2,3]. Moreover, several human diseases are associated with mutations 
in the T-box genes, namely, DiGeorge Syndrome (TBX1), 
Ulnar-Mammary Syndrome (TBX3), Small Patella Syndrome (TBX4), 
Holt-Oram Syndrome (TBX5), Spondylocostal Dysostosis (TBX6), Cousin 
Syndrome (TBX15), Isolated ACTH Deficiency (TBX19), Congenital 
Heart Defects (TBX20), X-Linked Cleft Palate with or without 

Ankyloglossia (TBX22) [4]. 
According to the recent information retrieved from NCBI and Uni

Prot databases, the TBX5 gene is located in the long arm of chromosome 
12 at position 24.21 (12q24.21), contains ten exons, and has three 
known transcript variants (1, 3, and 4). Transcript variants 1 and 4 
encode a protein of 518 amino acid residues and transcript variant 3 
encodes a 468 (51–518) amino acid containing protein with a shortened 
N-terminus. In the TBX5 transcription factor, the T-box spans from 
amino acid position 58 to 238. The binding site of TBX5 has been 
identified to be present in the upstream regions of various cardiac- 
expressed genes, such as cardiac α actin, atrial natriuretic factor, car
diac myosin heavy chain α, cardiac myosin heavy chain β, myosin light 
chain 1A, myosin light chain 1V and Nkx2-5. The consensus binding site 
of TBX5 corresponds to the first eight bases from one-half of the Bra
chyury binding 22 palindromic consensus sequence. It was shown in 
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vitro that TBX5, when in total length, binds to the target site mainly as a 
dimer, and when truncated, tends to bind mainly as a monomer [5]. It 
was further showed in vitro that TBX5 can form a heterodimer complex 
with Nkx2-5, another essential transcription factor for cardiac devel
opment [6]. During the early stages of heart development, TBX5 acts 
mainly as a transcriptional activator of genes responsible for car
diomyocyte maturation and cardiac septa formation. It is also necessary 
for effective establishment of the cardiac conduction system [7]. TBX5 
also plays a vital role in the very initiation of upper (fore) limbs [8], but 
the necessity of its presence during limb outgrowth phase remains 
controversial [8,9]. 

Holt-Oram Syndrome (HOS) is an autosomal dominant disease due to 
mutation in the TBX5 gene. It is considered 100% penetrant with 
varying expressivity in the heart and upper extremity [10]. However, 
incomplete penetrance [11], lack of penetrance [12], somatic mosaicism 
[12], and probable germinal mosaicism [13] have also been reported for 
this disease. The majority of the patients suffer from this syndrome due 
to de novo mutations [14]. Cardiac presentations include atrial septal 
defect, ventricular septal defect, atrioventricular septal defect, pulmo
nary atresia/stenosis, double outlet right ventricle, aortic valve insuffi
ciency/stenosis, tricuspid valve atresia, mitral valve abnormality, patent 
ductus arteriosus, tetralogy of pentalogy of Fallot, common arterial 
truncus, dextrocardia, right aortic arch, and other non-specified 
congenital heart diseases [15]. Upper limb anomalies may include a 
hypoplastic or absent thumb, triphalangeal thumb, accessory/bifid 
thumb, aplasia/hypoplasia of hand and fingers, syndactyly, radial with 
or without ulnar aplasia or hypoplasia, radio-ulnar synostosis, hypo
plasia of humerus, aplasia of humerus, and clavicular abnormalities 
[15]. 

Nonsense mutation [16], missense mutation [17], frameshift muta
tion [16,17], deletion [18], duplication [19], and splice site mutation 

[20–22] of the TBX5 gene have been reported to be responsible for HOS. 
It has been found that missense mutations tend to cause more serious 
cardiac anomalies than mutations that cause a truncated TBX5 protein 
(nonsense, frameshift, splice site point variants, intragenic deletions, or 
duplications) [12]. HOS is caused by heterozygous mutation. To the best 
of our knowledge, only one homozygous missense mutation in the TBX5 
gene has been reported until present but only with cardiac involvement 
(atrioventricular septal defect) and no skeletal deformity [23]. 

TBX5 missense mutations are also associated with familial [24] and 
sporadic dilated cardiomyopathy [25], atrial fibrillation, and lone atrial 
fibrillation [26]. Furthermore, TBX5 non-synonymous (missense and 
nonsense) mutations have also been reported in association with te
tralogy of Fallot without any skeletal abnormality [27] and a TBX5 
3′UTR variant makes its carriers more prone to congenital heart diseases 
[28]. Considering the above-stated findings, this study was conducted to 
find out the most deleterious TBX5 SNPs and analyze their structural and 
functional outcomes in silico. 

2. Materials and methods 

The overall methodology adopted in this study is graphically pre
sented in Fig. 1. 

2.1. Retrieval of amino acid sequence and wild structure 

Amino acid sequence of the human TBX5 protein was downloaded in 
FASTA format from the UniProt database (UniProt ID: Q99593) (htt 
ps://www.uniprot.org/uniprot/Q99593). Experimental structures of 
TBX5 were collected from Research Collaboratory for Structural Bioin
formatics Protein Data Bank (RCSB PDB) (https://www.rcsb.org/). 

Fig. 1. An overview of the steps followed to identify the deleterious TBX5 SNPs and analyze their structural and functional consequences.  
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2.2. Retrieval of SNPs 

SNP information of the human TBX5 gene was collected using NCBI 
Variation Viewer (https://www.ncbi.nlm.nih.gov/variation/view/). 
Nonsense, stop lost, splice acceptor, splice donor, and UTR SNPs of the 
TBX5 gene along with their rs (reference SNP) IDs were retrieved from 
Variation Viewer applying the following filters: dbSNP under ‘Source 
database’ menu, single nucleotide variant under ‘Variant type’ menu, 
and nonsense (stop gained)/stop lost/splice acceptor variant/splice 
donor variant/5 prime UTR variant/3 prime UTR variant under ‘Mo
lecular consequence’ menu. In addition, information about the missense 
SNPs was downloaded directly from the NCBI dbSNP database (http 
s://www.ncbi.nlm.nih.gov/snp/). 

2.3. Identification and analysis of damaging missense SNPs 

A total of 355 missense SNPs were retrieved from dbSNP. 

2.3.1. Prediction of damaging missense SNPs by sequence-homology based 
tools 

The missense SNPs were first subjected to analysis by sequence- 
homology-based predictor PROVEAN [29]. PROVEAN predicts the ef
fects of single or multiple amino acid substitutions or indel mutations on 
the functions of a protein. In PROVEAN, BLAST hits with more than 75% 
global sequence identity are clustered first. The top 30 clusters consti
tute the supporting sequence set, and a delta alignment score is 
computed for every supporting sequence. These scores are averaged 
within and across clusters to obtain the final PROVEAN score. An amino 
acid substitution is predicted ‘Deleterious’ if the PROVEAN score is 
below or equal to the predefined threshold value of − 2.5, and is 
considered ‘Neutral’ if the PROVEAN score is above this threshold value 
[29]. In this study, a list of TBX5 gene SNPs defined by their chromo
somal positions, reference alleles, and variant alleles was used as input 
to the PROVEAN server. 

PROVEAN also provides scores from SIFT, another prediction tool. 
SIFT (Sorting Intolerant From Tolerant) presumes that essential amino 
acids are well conserved in a protein family, and a replacement in a 
conserved position is predicted as ‘Damaging’ [30]. SIFT scores lie be
tween 0 and 1, and amino acid substitutions with a score ≤0.05 are 
predicted to alter protein function, and hence are considered ‘Damaging’ 
[31]. 

85 SNPs of the TBX5 gene were predicted as ’Deleterious’ by PRO
VEAN, and 236 SNPs were predicted as ‘Damaging’ by SIFT. 80 SNPs 
were predicted as harmful by both tools. 

2.3.2. Prediction of damaging missense SNPs by structure-homology based 
tool 

PolyPhen-2 (Polymorphism Phenotyping version 2) prediction is 
made on eight sequence-based and three structure-based parameters. 
Two pairs of datasets, viz. HumDiv and HumVar were recruited to train 
and test two PolyPhen-2 models. PolyPhen-2 computes the Naive Bayes 
posterior probability of a given mutation’s being damaging and esti
mates the false-positive rate and true-positive rate. It classifies SNPs as 
‘Probably Damaging,’ ‘Possibly Damaging,’ and ‘Benign’ based on the 
false-positive rate (FPR) thresholds [32]. The 80 SNPs that were pre
dicted harmful by both PROVEAN and SIFT were next analyzed by both 
HumDiv and HumVar trained PolyPhen-2 using the ‘batch query’ op
tion. A list of SNPs defined by chromosome number, chromosomal po
sition, reference allele, and variant allele was used as the input. 58 SNPs 
were predicted as ‘Probably Damaging’ by either HumDiv or HumVar 
PolyPhen-2, and these SNPs were considered of high fidelity in disease 
association. 

2.3.3. Prediction of pathogenic amino acid substitutions by MutPred2 
MutPred2 was developed by integrating genetic and molecular in

formation to predict pathogenicity caused by amino acid substitutions 

[33]. The cutoff value for predicted pathogenicity is 0.5, and the higher 
the score, the greater the probability of that amino acid substitution’s 
disease association. TBX5 protein sequence in FASTA format and wild 
type and substituted amino acids of 58 high-confidence deleterious SNPs 
with their respective positions were submitted to MutPred2 server using 
the default P-value threshold (0.05). 

2.3.4. Scrutinization of predicted pathogenicity by meta-predictors 
Several meta-predictors have been developed for predicting disease- 

causing SNPs in recent years. Such meta-predictors employ various 
single pathogenicity prediction tools and provide a consensus score 
derived from different calculations. It is well established that ensemble 
methods render improved predictive performance than any of its con
stituent algorithms alone. We decided to crosscheck the predicted 58 
pathogenic SNPs with 5 such meta-predictors, namely i) PredictSNP2, ii) 
PredictSNP1, iii) MetaLR, iv) MetaSVM, and v) REVEL. 

PredictSNP2 generates a consensus score from the predictions of five 
tools- CADD, DANN, FATHMM, FunSeq2, and GWAVA [34]. The input 
to PredictSNP2 was similar to that used for PolyPhen-2. After analysis by 
PredictSNP2, the SNPs were sent for further analysis by PredicteSNP1. 
PredictSNP1 has incorporated six individual predictors- MAPP, 
PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, and SNAP [35]. MetaSVM and 
MetaLR are two meta-classifiers developed for the dbNSFP (database for 
non-synonymous SNPs’ functional predictions) project. They calculate 
ensemble scores based on the predictions of 10 component tools and the 
maximum frequency observed in the 1000 genomes project populations 
[36]. The difference between them lies in their adopted approaches- one 
uses Support Vector Machine (MetaSVM) algorithm and the other uses 
Logistic Regression (MetaLR) algorithm. They were both accessed 
through Ensembl Variant Effect Predictor (VEP) (http://www.ensembl. 
org/Tools/VEP). rsID (Reference SNP ID number)s of the SNPs were 
used as the inputs and the chosen reference genome was GRCh37. 
REVEL (Rare Exome Variant Ensemble Learner) is a meta-predictor that 
integrates 13 tools to predict the probability of disease causation by a 
missense SNP. It is particularly efficient in differentiating pathogenic 
from rare neutral variants with allele frequencies <0.5% [37]. REVEL 
scores range between 0 and 1, and the threshold score for pathogenic 
variants is 0.5. REVEL scores in this study were obtained alongside 
MetaSVM and MetaLR scores using the Ensembl VEP. 

2.3.5. Identification of conserved amino acid residues 
Structural and functional importance of an amino acid residue in a 

protein is often strongly related to its level of conservation. ConSurf 
ranks evolutionary conservation status of amino acid and nucleic acid 
positions in protein and DNA/RNA molecules, respectively [38]. The 
continuous conservation scores of residues are split into an integer scale 
of 1–9 and depicted with a color scheme. The most variable positions 
(grade 1) are colored turquoise, intermediate conserved positions (grade 
5) are colored white, and the most conserved positions (grade 9) are 
colored maroon. TBX5 protein sequence in FASTA format served as the 
input to ConSurf. 

2.3.6. Solvent accessible surface area (SASA) and secondary structure 
prediction 

Knowing the solvent accessibility of amino acid residues is essential 
to identify the interaction interfaces and active sites in a fully folded 
protein. Amino acid substitutions in such sites may bring change in 
binding affinity [39], or disturb catalytic activity if the protein is an 
enzyme [40]. NetSurfP-2.0 predicted surface accessibility of TBX5 res
idues and its secondary structure. It accepts protein sequence in FASTA 
format as the input and recruits deep neural networks that have been 
trained on crystal protein structures [41]. 

2.3.7. Prediction of change in stability of the mutated proteins by iStable 
2.0 

Amino acid substitutions caused by missense SNPs can significantly 
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alter the folding free energy. Missense SNPs decreasing the stability of a 
native protein can affect the functions of that protein and ultimately 
result in diseases [42]. Missense SNPs causing destabilized proteins are 
associated with myopathy, von Willebrand disease, retinitis pigmentosa, 
hemophagocytic lymphohistiocytosis, and prion diseases. However, 
stabilizing missense SNPs can also cause disease [42]. In our study, 
changes in TBX5 protein stability due to missense SNPs were predicted 
by iStable 2.0 [43]. iStable 2.0 results are derived from 11 protein sta
bility prediction tools [43]. For amino acid substitutions up to F232V, 
chain A of the TBX5 dimer crystal structure containing 1–239 residues 
(PDB ID: 5BQD) was used as the native structure. Due to the unavail
ability of an experimental structure, rest of the substitutions were 
analyzed using the protein’s FASTA sequence. 

2.3.8. Prediction of the effects of amino acid substitutions on the structural 
integrity of TBX5 protein by Missense3D and normal mode analysis 

To analyze the impacts of amino acid substitutions on TBX5 three- 
dimensional structure, Missense3D server (Missense3D | Structural 
Bioinformatics Group | Imperial College London) was utilized. Mis
sense3D considers 16 structural features to differentiate disease- 
associated SNPs from the neutral ones [45]. For substitutions up to 
F232V, ‘Position on Protein Sequence’ input option was chosen, and the 
UniProt ID (Q99593) and PDB code & chain ID (5BQD; A) along with the 
substitutions were used as inputs. For the rest of the substitutions, the 
energy minimized model generated by Robetta was used [see 2.8]. The 
mutated protein structures due to SNPs were later subjected to normal 
mode analysis by DynaMut [44]. DynaMut calculates probable conse
quences of an amino acid replacement on the stability of a submitted 
protein from vibrational entropy changes. Normal mode analysis is a 
widely applied tool for protein structure study [44]. The input was 
similar to Missense3D. 

2.3.9. Molecular dynamics (MD) simulation 
MD simulation studies of the five mutant structures distilled from the 

consensus of Missense3D, DynaMut, and iStable 2.0 [see 3.2.7], and the 
native TBX5 protein structure (PDB ID:5BQD, chain A) were conducted 
by employing GROMOS96 43a1 force field [46]. To mimic the physio
logical environment, a triclinic simulation box (36 × 36 × 44 Å) and 
0.9% (0.15 M) NaCl concentration was chosen. Depending on total 
positive and negative charges, the system was made neutral by adding 
sodium or chlorine ions. Chosen solvation model was SPC. The system 
was energy minimized before starting simulation by applying Steepest 
Descent Algorithm for 5000 steps. MD simulation was continued for 100 
ns under 300K constant temperature and 1.0 bar constant pressure for 
each protein structure. The trajectories were saved at 100 ps intervals. 

2.3.10. Prediction of post-translational modification site missense SNPs 
Protein post-translational modification (PTM)s occur at the time of 

or after protein synthesis and such modifications are mediated by 
different enzymes or covalent bonds with other structures. SNPs in the 
PTM sites can result in diseases [47]. SNPs in the putative PTM sites of 
the TBX5 protein were detected by AWESOME [47]. AWESOME predicts 
the PTM site SNPs based on the evaluation of 20 PTM site predictors. 
Gene name was used as the input to AWESOME. 

2.4. Analysis of nonsense and stop lost SNPs 

31 nonsense (stop gained) and one stop lost SNPs were retrieved 
from NCBI Variation Viewer. Among the 31 nonsense SNPs, 29 are 
already annotated as ‘Pathogenic’ in the ClinVar database (https:// 
www.ncbi.nlm.nih.gov/clinvar/). Rest 2 nonsense SNPs, 
rs1393693495 (W514Ter) and rs1555226308 (Q156Ter), and 1 stop lost 
SNP, rs1394777873 (Ter519Q) were analyzed by PredictSNP2 [35]. 

2.5. Prediction of the effects of UTR SNPs 

Untranslated region (UTR)s play a pivotal role in the regulation of 
gene expression post-transcriptionally. They ascertain nucleo- 
cytoplasmic transport of mRNA, maintain translational efficiency, sub
cellular localization, and RNA stability [48]. The essential regulators in 
the 5′-UTR are Kozak consensus sequence (ACCAUGG) [Shine-Dalgarno 
consensus sequence (AGGAGG) in prokaryotes], CpG 
(5′—C—phosphate—G—3′) sites, uORFs (upstream open reading 
frames), IRESs (Internal Ribosome Entry Sites), and RBP (Ribosome-
binding protein) binding sites. 3′-UTR length, RBP binding sites, and 
miRNA binding sites are the critical players in the 3′-UTR [49]. Single 
nucleotide variants in these regions have been found to be associated 
with many diseases like thalassemia intermedia, atrial septal defect 
[50], campomelic dysplasia [51], hereditary chronic pancreatitis [52], 
Marie Unna hereditary hypotrichosis [53], Charcot-Marie-Tooth disease 
[54], and cerebral amyloid angiopathy [55] to name a few. So, it is 
essential to identify potentially harmful SNPs in the 3′ & 5′-UTR. TBX5 
UTR SNPs that were predicted to affect transcriptional motifs were 
retrieved from the UTR database (UTRdb (cnr.it)) [56]. ‘UTRef’ (NCBI 
RefSeq transcripts) as the searching database and ‘Gene Name’ as the 
accession type were chosen during retrieval. 

MicroRNA (miRNA)s also have critical roles in post-transcriptional 
regulation of gene expression through mRNA cleavage or translational 
repression [57]. miRNAs are small non-coding RNAs having about 22 
nucleotides. miRNA seed region (positions 2–8 on miRNA) is the most 
crucial sequence in finding the complementary sequence on mRNA and 
subsequently binding with it. SNPs in the miRNA target sites in the 3′

UTR may create or delete an miRNA target or change the binding effi
ciency between miRNA and mRNA. Creation or deletion of an miRNA 
target site may also affect binding in the neighboring miRNA target 
sequences. Such SNPs have been reported in several diseases, including 
cancers, psychiatric illnesses, cardiomyopathy, asthma, and Parkinson’s 
disease [58,59]. In our study, SNPs in the predicted miRNA target sites 
were identified using the MirSNP server [59]. Gene name was used as 
the input to MirSNP. 

2.6. Prediction of the effects of splice site SNPs 

RNA splicing is necessary for converting a precursor mRNA to a 
mature mRNA ready for translation. Various cis-regulatory elements and 
trans-acting elements maintain this splicing process. Cis-regulatory ele
ments include 5′ and 3′ consensus splice site sequences in the exon- 
intron boundaries, branch point sequences, and polypyrimidine tract 
sequences. Trans-acting elements include spliceosomal small nuclear 
RNAs, proteins, and various other splicing repressors and activators, 
many of which are still unknown [60,61]. Mutations that hamper the 
controlled process of splicing lead to a good number of diseases. Around 
9% of all the pathogenic mutations recorded in the Human Gene Mu
tation Database are splicing ones [60,61]. SNPs in the splice donor and 
acceptor sites may break an established splice site or create a new splice 
site. They may also activate cryptic sequences (sequences similar to 
splice sites) or affect splicing enhancers and silencers. They may even 
intercept the binding of spliceosomal components by making a confor
mational change in the mRNA secondary structure [60]. In this study, 
seven splice donor single nucleotide variants and seven splice acceptor 
single nucleotide variants were retrieved from dbSNP using NCBI Vari
ation Viewer. Among the seven donor variants, two are annotated as 
‘Likely-pathogenic’. Among the seven acceptor variants, one is anno
tated as ‘Pathogenic’ and three are annotated as ‘Likely-pathogenic’ in 
the ClinVar database. Excluding them, the rest 8 SNPs were analyzed 
employing Human Splicing Finder (HSF) [62]. For our analysis, ‘Analyze 
a sequence’ and ‘Paste your own sequence’ options were chosen and 
individual variants with a flanking sequence of 100 nucleotides in both 
the 5′ and 3′ directions were used as inputs. 
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2.7. Prediction of the effects of deep functional intronic SNPs 

Intronic regions located >100 base pairs away from the exon-intron 
borders are known as deep intronic regions [63]. Although they have 
been overlooked for a long time, they are now considered important, 
and mutations in these regions have been found in association with more 
than 75 diseases. Deep intronic point mutations, deletions, and in
sertions are held accountable for these diseases, with the first one being 
the most frequent [63]. 

The rs (reference SNP) IDs of all the TBX5 intron variants were 
submitted to SNP Function Prediction (FuncPred; SNPinfo Web Server 
(nih.gov)) using default settings [64]. 19 SNPs were predicted by 
FuncPred to affect TF binding sites and were next analyzed by Reg
ulomeDB 2.0 server. RegulomeDB 2.0 is an annotated database of SNPs 
in the human intergenic regions that have either established or predicted 
regulatory roles [65]. 

2.8. 3D structure prediction of full TBX5 protein 

Currently, there are four experimental structures of TBX5 (2X6U, 
2X6V, 4SOH, and 5BQD) deposited in the Protein Data Bank (PDB). 
Nevertheless, all of them cover less than half of the total protein. So, we 
decided to predict the whole structure of TBX5 protein by three reliable 
protein structure prediction tools, namely I-TASSER [66], Phyre2 [67], 
and Robetta [68]. Energy minimization of the generated TBX5 models 
was achieved by applying YASARA force field. YASARA force field is a 
combination of AMBER all-atom force field and multi-dimensional 
knowledge-based torsional potentials [69]. The energy minimized 
models were further refined by GalaxyRefine server (http://galaxy. 
seoklab.org/cgi-bin/submit.cgi?type=REFINE). 

2.9. Evaluation of TBX5 3D models 

The quality of the three predicted TBX5 models was evaluated by 
PROCHECK [70], Verify3D [71], and SWISS-MODEL Structure Assess
ment Tool [72]. PROCHECK examines specific stereochemical and 
geometrical properties of the query protein structure and compares 
them against a set of ideal values of these properties obtained from 
well-refined high-resolution protein structures. It assesses 
residue-by-residue geometry and overall structural geometry of the 

query structure [70]. A Ramachandran plot of φ-ψ torsion angles 
generated by PROCHECK is the most helpful quality indicator and a 
good quality model is expected to have over 90% of its residues in the 
most favored regions. Verify3D checks the agreement between a protein 
tertiary structure and its primary structure [71]. SWISS-MODEL Struc
ture Assessment Tool provides assessments from MolProbity and 
QMEAN algorithms. These algorithms evaluate a model quality at both 
global (i.e. for the entire structure) and local (i.e. per residue) levels [72, 
73]. QMEAN Z-score is an indicator of the “degree of nativeness” of a 
model [74]. 

3. Results 

3.1. SNP information retrieval 

Searching the NCBI Variation Viewer using dbSNP as the ‘source 
database’ and single nucleotide variant (SNV) as the ‘variant type’ 
returned 14,413 rsIDs associated with the TBX5 gene as single nucleo
tide variants. Three hundred fifty-five rsIDs were found to be missense 
variants, 30 rsIDs to be nonsense (stop gained) variants, one rsID to be 
‘stop lost’ variant, 210 rsIDs to be synonymous variants, 11,300 rsIDs to 
be intron variants, 821 rsIDs to be non-coding transcript variants, seven 
rsIDs to be splice acceptor and seven rsIDs to be splice donor variants, 
689 rsIDs to be five prime UTR variants, and 345 rsIDs to be three prime 
UTR variants. Fig. 2 is a pie chart showing different types of SNPs. On 
further inspection, 404 missense variants with 355 rsIDs (3 nonsense 
variants are included in rs377649723, rs765204502, and rs903933027, 
and 11 synonymous variants are included in rs186780790, 
rs377532269, rs533581420, rs374600913, rs753688559, rs762204624, 
rs771883815, rs777853147, rs972633602, rs973631007, and 
rs769107196) and 28 nonsense variants with 28 rs IDs (27 stop gained 
and 1 stop lost-rs1394777873) were found [total nonsense variants=
28+3= 31]. The reason behind a single rsID having more than one 
variant is these variants were reported on the same chromosomal loca
tion. As per the NCBI rule, only one rsID is assigned to a specific chro
mosomal location [75]. 

Fig. 2. Pie-chart displaying the distribution of TBX5 SNPs.  
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3.2. Identification and analysis of damaging missense SNPs 

3.2.1. Prediction of missense SNPs by sequence-homology based tools 
The retrieved 404 missense SNPs were analyzed first using PRO

VEAN. Out of 404 submitted substitutions, PROVEAN predicted 85 as 
’Deleterious’ and 301 as ‘Neutral’, and SIFT predicted 236 as 
‘Damaging’ and 150 as ‘Tolerated’. 242 substitutions were predicted as 
’Deleterious’ or ‘Damaging’ by either PROVEAN or SIFT, respectively, 
and 80 substitutions were predicted as ’Deleterious’ or ‘Damaging’ by 
both tools. Results of rs571328934, rs755664220, rs756902625, 
rs763178387, rs769107196, rs769895888, rs777370158, rs907398622, 

rs945043550, rs1263504354, rs1407437475, and rs1489969947 could 
not be predicted by PROVEAN. 

3.2.2. Prediction of missense SNPs by structure-homology based tool 
For high fidelity, the 80 SNPs predicted by both PROVEAN and SIFT 

as ’Deleterious’/‘Damaging’ were next analyzed by PolyPhen-2. Both 
HumDiv and HumVar dataset trained PolyPhen-2 models were used. The 
HumDiv trained PolyPhen-2 predicted 58 substitutions as ‘probably 
damaging’ (Supplementary Tables 1) and 16 substitutions as ‘possibly 
damaging’, and 6 substitutions as ‘benign’. The HumVar trained model 
predicted 56 substitutions as ‘probably damaging’ (Supplementary 

Table 1 
Amino acid substitution and disease causation predictions by five meta-predictors.  

AAS PredictSNP 1 PredictSNP 2 MetaLR MetaSVM REVEL 

Prediction Expected Accuracy Prediction Expected Accuracy Prediction Score Prediction Score Prediction Score 

L58P Dy 0.87 D 0.87 D 0.93 D 1.08 D 0.98 
T72K D 0.87 D 0.87 D 0.88 D 1.02 D 0.94 
T72 M D 0.87 D 0.87 D 0.83 D 0.86 D 0.95 
G80R D 0.87 D 0.87 D 0.94 D 1.10 D 0.98 
F84L D 0.72 D 0.87 D 0.91 D 1.06 D 0.97 
P85L D 0.87 D 0.87 D 0.96 D 1.09 D 0.96 
P85S D 0.87 D 0.87 D 0.96 D 1.10 D 0.97 
V91A D 0.65 D 0.87 D 0.78 D 0.62 D 0.73 
G93S D 0.87 D 0.87 D 0.96 D 1.10 D 0.97 
G93D D 0.87 D 0.87 D 0.96 D 1.10 D 0.94 
G93V D 0.61 D 0.87 D 0.96 D 1.10 D 0.94 
P96S N§ 0.63 D 0.87 D 0.86 D 0.87 D 0.83 
Y100C D 0.87 D 0.87 D 0.96 D 1.10 D 0.98 
Y100F D 0.76 D 0.82 D 0.93 D 1.08 D 0.93 
M104T D 0.65 D 0.87 D 0.86 D 0.93 D 0.93 
D105 N D 0.87 D 0.87 D 0.89 D 1.01 D 0.87 
V107E D 0.87 D 0.82 D 0.76 D 0.67 D 0.92 
P108T D 0.72 D 0.87 D 0.86 D 0.92 D 0.88 
D110E D 0.87 N 0.65 D 0.83 D 0.76 D 0.72 
D110 N D 0.87 D 0.87 D 0.86 D 0.91 D 0.77 
D111Y D 0.76 D 0.87 D 0.82 D 0.79 D 0.87 
R113I D 0.87 D 0.82 D 0.89 D 1.00 D 0.95 
R113K D 0.61 D 0.87 D 0.83 D 0.84 D 0.92 
Y114H D 0.87 D 0.87 D 0.85 D 0.89 D 0.97 
W121R D 0.87 D 0.87 D 0.97 D 1.08 D 0.98 
G125R D 0.87 D 0.87 D 0.89 D 1.00 D 0.90 
G133C N 0.63 D 0.87 D 0.76 D 0.60 D 0.68 
L135R D 0.87 D 0.87 D 0.78 D 0.72 D 0.87 
V137A D 0.51 D 0.87 D 0.79 D 0.74 D 0.89 
D140E N 0.65 D 0.87 D 0.79 D 0.65 D 0.74 
P142S D 0.87 D 0.87 D 0.84 D 0.90 D 0.76 
A143T D 0.55 D 0.87 D 0.81 D 0.73 D 0.59 
G145W D 0.87 D 0.87 D 0.98 D 1.04 D 0.89 
V153D D 0.87 D 0.82 D 0.89 D 1.00 D 0.95 
L160F D 0.87 D 0.87 D 0.89 D 1.02 D 0.88 
H170L D 0.72 N 0.63 D 0.78 D 0.75 D 0.96 
N174D D 0.87 D 0.87 D 0.87 D 0.99 D 0.81 
V186G D 0.87 D 0.87 D 0.87 D 0.93 D 0.94 
V186 M D 0.61 D 0.87 D 0.86 D 0.86 D 0.85 
D189Y D 0.87 D 0.87 D 0.84 D 0.80 D 0.68 
H204D D 0.87 D 0.87 D 0.80 D 0.69 D 0.88 
V205F D 0.72 D 0.87 D 0.80 D 0.70 D 0.75 
E208D D 0.51 D 0.87 D 0.84 D 0.80 D 0.71 
A213T D 0.55 D 0.87 D 0.85 D 0.71 D 0.72 
I222N D 0.87 D 0.87 D 0.89 D 0.94 D 0.90 
T223 M D 0.87 D 0.87 D 0.91 D 1.05 D 0.96 
K226R D 0.76 D 0.87 D 0.92 D 1.01 D 0.88 
K226E D 0.87 D 0.87 D 0.93 D 1.10 D 0.96 
F232V D 0.87 D 0.82 D 0.92 D 1.08 D 0.95 
R237P D 0.87 D 0.87 D 0.91 D 1.06 D 0.95 
R237Q D 0.87 D 0.87 D 0.89 D 1.00 D 0.92 
R237W D 0.87 D 0.87 D 0.90 D 1.03 D 0.91 
S261C D 0.55 D 0.82 D 0.71 D 0.54 D 0.88 
C323Y D 0.72 D 0.87 D 0.85 D 0.64 T 0.47 
P337H D 0.61 D 0.87 T‡ 0.20 T − 0.66 T 0.20 
R375W D 0.76 D 0.87 T 0.33 T − 0.32 T 0.38 
W401C D 0.72 D 0.82 T 0.33 T − 0.36 T 0.44 

AAS = Amino Acid Substitution, yD = Deleterious/Damaging/Disease, ‡T = Tolerated, §N=Neutral. 
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Tables 1) and 10 substitutions as ‘possibly damaging’, and 14 sub
stitutions as ‘benign’. The 58 SNPs that were predicted as ‘probably 
damaging’ by HumDiv were also predicted as ‘probably damaging by 
HumVar except for rs190881877 (V205F) and rs944423586 (P337H), 
which were predicted as ‘possibly damaging’. rs1411518530 is associ
ated with two nucleotide variants (G > C, T), but they encode the same 
amino acid (D110E) and were considered a single variant in the subse
quent evaluations. Predictions by PROVEAN, SIFT, and PolyPhen-2 are 
available in Supplementary Table 1. 

3.2.3. Prediction of pathogenic amino acid substitutions by MutPred2 
The threshold score of pathogenicity, as predicted by MutPred2, is 

0.5 and a substitution having a MutPred2 score ≥0.8 can be considered 
highly likely to be pathogenic. All but two (K226R and P337H) of the 58 
high-confidence deleterious SNPs have a MutPred2 prediction score 
≥0.5. Supplementary Table 2 provides MutPred2 outcomes. 

3.2.4. Scrutinization of predicted pathogenicity by meta-predictors 
Pathogenicity of the aforementioned substitutions was further 

examined by five deleteriousness meta-predictors whose predictions are 

based on various ensemble methods. Forty-eight substitutions were 
predicted ‘Damaging’ by all the meta-predictors and the rest were pre
dicted ‘Damaging’ by at least two meta-predictors. The results are shown 
in Table 1. 

3.2.5. Prediction of amino acid conservation status, solvent accessibility, 
and TBX5 secondary structure 

ConSurf provided position-specific amino acid conservation score of 
the TBX5 residues. It also ranked the amino acid residues in a color- 
coded scale of integers ranging from 1 to 9 where 1 indicates a highly 
variable and 9 indicates the most conserved residues. It was found that 
most of the substitutions are located in highly conserved positions. 
NetSurfP-2.0 predicted solvent accessibility (exposed or buried) of the 
amino acids and provided each residue’s relative and total accessible 
surface area. 37 substitutions were found to occur in buried residues and 
21 substitutions were found to be in exposed residues. Table 2 sum
marizes ConSurf and NetSurfP-2.0 outcomes. Figs. 3 and 4 are graphical 
presentations of these results. 

Table 2 
Predictions by ConSurf and NetSurfP-2.0.  

ConSurf NetSurfP-2.0 

Position AA Normalized Conservation Score COLOR RESIDUE VARIETY Assigned Class RSAa ASAb (Å) 

58 L − 0.784 8 T,L,M,H Buried 0.068 12.397 
72 T − 1.098 9 T, S Buried 0.094 13.02 
80 G − 0.858 8 N,H,G Buried 0.184 14.447 
84 F − 0.965 9 C, F Buried 0.184 37.024 
85 P − 0.917 9 G, V, P Buried 0.094 13.32 
91 V − 0.972 9 L,X,V,C,M Buried 0.062 9.596 
93 G − 0.889 8 K,G,R,X Exposed 0.526 41.429 
96 P − 0.715 8 S,A,K,P,E Exposed 0.369 52.33 
100 Y − 1.095 9 Y Buried 0.068 14.536 
104 M − 0.334 6 M,V,I,A,T Buried 0.009 1.773 
105 D − 1.138 9 D Buried 0.174 25.002 
107 V − 1.025 9 I, V Buried 0.163 25.004 
108 P − 0.651 8 A,T,S,Q,P Buried 0.218 31.002 
110 D − 1.138 9 D Exposed 0.347 50.019 
111 D − 0.774 8 E, D Exposed 0.653 94.129 
113 R − 1.137 9 R Exposed 0.277 63.479 
114 Y − 1.095 9 Y Buried 0.064 13.575 
121 W − 0.647 8 W,R,C Buried 0.249 59.799 
125 G − 0.861 8 G,P,S Exposed 0.293 23.038 
133 G − 0.794 8 P,R,G,K Exposed 0.507 39.935 
135 L − 0.875 9 M,L,P Buried 0.216 39.513 
137 V − 0.981 9 P,I,V,L Exposed 0.292 44.873 
140 D − 0.944 9 A,S,D Exposed 0.559 80.603 
142 P − 1.116 9 P Exposed 0.297 42.08 
143 A − 0.875 8 P,V,G,S,A Buried 0.223 24.613 
145 G − 0.901 9 D,G,T Buried 0.042 3.271 
153 V − 0.761 8 I, V, L Buried 0.041 6.232 
160 L − 0.81 8 R,P,T,L Buried 0.034 6.174 
170 H − 0.889 8 H,F,S,Q Buried 0.165 29.977 
174 N − 0.884 8 A,G,S,N,R Exposed 0.279 40.854 
186 V − 0.825 8 A,L,S,M,V,P Buried 0.046 7.095 
189 D − 0.802 8 H,P,A,S,D,T Exposed 0.44 63.434 
204 H − 0.657 8 H,R,F,Q,Y,A Buried 0.141 25.641 
205 V − 0.275 6 W,A,S,L,V,M,I Exposed 0.44 67.687 
208 E − 0.846 8 L,W,P,V,E Exposed 0.283 49.385 
213 A − 0.689 8 G,T,S,A,P,M Buried 0.028 3.079 
222 I − 0.944 9 I,V,N,W Buried 0.044 8.056 
223 T − 1.012 9 T, Q, N Buried 0.159 22.092 
226 K − 1.021 9 R, K Buried 0.128 26.428 
232 F − 0.808 8 N,Y,F,L Exposed 0.4 80.298 
237 R − 1.099 9 R Exposed 0.545 124.801 
261 S − 0.451 7 N,D,S,T Exposed 0.424 49.711 
323 C − 0.522 7 C,R,Y,L,S,G Buried 0.247 34.65 
337 P 1.6 1 G,T,D,L,S,Q,E,P,A,H Exposed 0.578 81.958 
375 R − 0.72 8 G,S,Q,R Exposed 0.412 94.327 
401 W − 1.02 9 W Exposed 0.309 74.289  

a RSA = Relative Surface Accessibility. 
b ASA = Absolute Surface Accessibility. 
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3.2.6. Prediction of change in stability of the mutated proteins by iStable 
2.0 

The amino acid substitutions were next analyzed by protein stability 
prediction tool, iStable 2.0. iStable 2.0 predicted 47 substitutions as 
destabilizing (Table 3). 

3.2.7. Prediction of the effects of amino acid substitutions on the structural 
integrity of TBX5 protein by Missense3D and normal mode analysis 

The amino acid substitutions were subsequently analyzed by Mis
sense3D to see how these amino acid substitutions would affect protein 
tertiary structure. 15 substituted structures were predicted to be 
‘Damaging’ by Missense3D (Table 3). Details of Missense3D predictions 
can be found in Supplementary Figs. 3–17. DynaMut predicted 37 

Fig. 3. Detection of conserved amino acids by ConSurf. Here, e = an exposed residue, b = a buried residue, f = a functional residue (highly conserved and exposed), 
and s = a structural residue (highly conserved and buried). 
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substitutions as destabilizing for the TBX5 protein. Among the 15 sub
stitutions predicted to be detrimental by Misssense3D, 13 were also 
predicted as damaging by either iStable2.0 or DynaMut, and 5 were 
predicted to be destabilizing by both (Fig. 5). Table 3 provides pre
dictions of these tools. 

3.2.8. Molecular dynamics simulation 
Differences between the backbone atom RMSD profiles of the native 

(5BQD_A) and mutant structures are visible in Fig. 6 (A). RMSD profiles 
of most mutant structures (P85S, W121R, V153D, and E208D) showed 
more deviations than the native structure. RMSD of these mutants 
showed an upward pattern from approximately 50 ns, whereas RMSD of 
5BQD_A remained uniform from 15 ns onward. From the RMSF profiles 
(Fig. 6 (B)), it can be found that residue-wise RMSF values of the mutant 
structures were greater than the native structure for most residues. 
Greater deviations in the RMSD and RMSF profiles support more flexible 
nature of these TBX5 mutants. However, RMSD and RMSF profiles of 
I222N were found more stable than 5BQD_A. 

The radius of gyration (Rg) profile of 5BQD_A remained regular 

during the simulation period (Fig. 6 (C)). All the mutants showed 
increased Rg values than 5BQD_A up to 50 ns. Then, the Rg values of 
W121R and E208D decreased than 5BQD_A but became fluctuating, 
especially of W121R. V153D and I222N maintained a higher Rg profile 
than 5BQD_A throughout the simulation period. Rg profile reflects the 
compactness of a protein. From Fig. 6(C), it can be deduced that none of 
the mutants would be as stable as the native protein. 

SASA values of P85S, W121R, and I222N were greater than 5BQD_A 
for most of the time, and V153D and E208D had lower SASA than 
5BQD_A. A lower than normal SASA may prevent effective contact be
tween TBX5 and DNA, and thereby interfere with its activity as a tran
scription factor. 

E208D and I222N had more hydrogen bonds present than 5BQD_A 
during the simulation (Fig. 6 (E)). This may be the cause of stable RMSD 
and RMSF of I222N and decreased SASA and Rg values of E208D. Other 
mutants had hydrogen bonds more or less similar to 5BQD_A. 

The above-mentioned findings from molecular dynamics simulations 
suggest TBX5 mutant proteins bear the possibility to hamper the bio
logical activities of the native protein, because these mutants become 

Fig. 4. Solvent accessibility predictions of TBX5 residues. Here, Relative Surface Accessibility: Red upward elevations are exposed residues and sky-blue low ele
vations are buried residues, thresholded at 25%; Secondary Structures: orange spiral = helix, indigo arrow = strand, and pink straight line = coil; disorder: swollen 
black line, thickness of line corresponds to the probability of disorder. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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either more flexible or rigid compared to the native state. 

3.2.9. Prediction of post-translational modification site missense SNPs 
Among the 58 high-confidence deleterious SNPs, AWESOME pre

dicted P108T, D111Y, and A143T substitutions could create new phos
phorylation sites (AWESOME scores are − 0.711, − 1.458, and − 0.05, 
respectively), and S261C substitution can cause loss of a phosphoryla
tion site (AWESOME score 2.752). R237P, R237Q, R237W, and R375W 
can cause loss of methylation sites (AWESOME scores are 0.834, 0.834, 
0.834, and 0.768, respectively). S261C substitution can cause loss of 
serine mediated O-linked N-acetylgalactosamine (AWESOME score 

0.8291) and O-linked N-acetylglucosamine formation (AWESOME score 
0.4322). P108T and A143T substitutions can cause threonine mediated 
O-linked N-acetylglucosamine formation (AWESOME scores are 
− 0.3507 and − 0.354, respectively). 

3.3. Evidence of deleteriousness from experiments 

Among our identified 58 missense SNPs, G80R [76], G125R [77], 
T223 M [78], R237P [79], R237Q, and R237W [76] have been 
confirmed experimentally to be responsible for HOS. G80R, R237P, 
R237Q, and R237W cause loss of function, whereas G125R leads to gain 

Table 3 
Prediction of stability of the mutated proteins by iStable 2.0, DynaMut, and Missense3D.  

AAS iStable 2.0 DynaMut Missense3D 

Confidence Score Stability ΔΔG (kcal/ 
mol) 

Stability Structural 
Damage 

Comment 

L58P − 1.7689416 Decrease − 1.348 Destabilizing No  
T72K − 1.0673743 Decrease 0.677 Stabilizing Yes Buried charge introduced 
T72 M − 0.067792356 Increase 0.472 Stabilizing No  
G80R − 1.4305459 Decrease 0.826 Stabilizing Yes Clash alert, Buried charge introduced, Disallowed phi/psi alert, Buried Gly 

replaced 
F84L − 1.3939497 Decrease − 0.815 Destabilizing No  
P85L − 0.40284556 Increase − 0.257 Destabilizing Yes Cis proline replaced 
P85S − 1.9663911 Decrease − 0.991 Destabilizing Yes Cis proline replaced 
V91A − 2.363688 Decrease − 1.751 Destabilizing No  
G93S − 1.005738 Decrease − 0.948 Destabilizing No  
G93D − 1.0917563 Decrease − 0.592 Destabilizing No  
G93V − 1.1831716 Increase − 0.153 Destabilizing No  
P96S − 1.0492245 Decrease 1.117 Stabilizing No  
Y100C − 1.5898333 Decrease − 0.83 Destabilizing No  
Y100F − 1.0702753 Decrease 0.061 Stabilizing No  
M104T − 3.143975 Decrease − 0.444 Destabilizing No  
D105 N − 0.9833634 Decrease 0.443 Stabilizing Yes Buried salt bridge breakage 
V107E − 1.7875004 Decrease 0.555 Stabilizing No  
P108T − 0.82126737 Decrease 0.924 Stabilizing No  
D110E − 0.68696284 Decrease − 1.513 Destabilizing No  
D110 N − 0.63278186 Decrease − 1.912 Destabilizing No  
D111Y − 0.11971706 Decrease − 0.260 Destabilizing No  
R113I − 0.0076336265 Increase − 0.166 Destabilizing No  
R113K − 1.2718449 Decrease − 0.449 Destabilizing No  
Y114H − 2.133617 Decrease − 1.729 Destabilizing No  
W121R − 1.7060409 Decrease − 1.785 Destabilizing Yes Cavity altered (expansion of the cavity volume by 76.464 Å^3) 
G125R − 0.8936368 Decrease 1.276 Stabilizing Yes Disallowed phi/psi alert 
G133C − 0.7795974 Decrease 0.599 Stabilizing No  
L135R − 0.6822803 Decrease − 0.049 Destabilizing No  
V137A − 1.5604656 Decrease − 0.738 Destabilizing No  
D140E − 0.47431314 Increase 0.009 Stabilizing No  
P142S − 1.0563802 Decrease 0.281 Stabilizing Yes Cis proline replaced 
A143T − 1.4433032 Decrease 0.885 Stabilizing No  
G145W − 0.910699 Increase − 0.37 Destabilizing Yes Clash alert, Buried Gly replaced 
V153D − 2.2433639 Decrease − 1.831 Destabilizing Yes Buried hydrophilic residue introduced, Buried charge introduced 
L160F − 1.6011777 Decrease − 0.659 Destabilizing No  
H170L 0.340119 Increase 0.057 Stabilizing No  
N174D − 0.6325445 Decrease − 0.051 Destabilizing No  
V186G − 2.7898633 Decrease − 0.109 Destabilizing No  
V186 M − 0.37593216 Decrease 0.347 Stabilizing No  
D189Y − 1.0340729 Decrease − 0.006 Destabilizing No  
H204D − 1.2200044 Decrease − 1.702 Destabilizing No  
V205F − 1.4460453 Decrease 0.454 Stabilizing No  
E208D − 1.1203609 Decrease − 1.772 Destabilizing Yes Buried H-bond breakage 
A213T − 1.3542162 Decrease − 1.086 Destabilizing No  
I222N − 2.3990505 Decrease − 1.566 Destabilizing Yes Buried hydrophilic residue introduced 
T223 M − 0.053840578 Decrease 0.863 Stabilizing No  
K226R − 0.55279315 Decrease − 0.600 Destabilizing No  
K226E − 1.2064422 Decrease − 1.730 Destabilizing No  
F232V − 0.04029095 Decrease − 0.108 Destabilizing No  
R237P − 1.6782372 Decrease − 0.338 Destabilizing No  
R237Q − 0.98735225 Decrease − 0.627 Destabilizing No  
R237W − 0.68915725 Increase 0.903 Stabilizing No  
S261C − 0.1880107 Increase 1.311 Stabilizing Yes Cavity altered (expansion of the cavity volume by 113.616 Å^3) 
C323Y − 0.45005268 Increase 0.91 Stabilizing Yes Clash alert 
P337H − 0.93664145 Decrease 0.614 Stabilizing No  
R375W − 0.0087457895 Increase − 0.659 Destabilizing No  
W401C − 0.64045143 Decrease 1.108 Stabilizing Yes Cavity altered (expansion of the cavity volume by 103.68 Å^3)  
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of function [79]. 

3.4. Identification and analyzing nonsense and stop lost SNPs 

2 stop gained (nonsense) and 1 stop lost SNP were analyzed by 
PredictSNP2. It predicted the nonsense mutations as deleterious and the 
stop lost mutation as neutral. Q156Ter nonsense mutation is significant 
because it disrupts the highly conserved T-box (amino acid position 
58–238). Table 4 shows the results from PredictSNP2 server. 

3.5. Prediction of the effects of UTR SNPs 

UTR SNPs that can affect transcriptional motifs were retrieved from 
the UTRdb server. Three SNPs in the 3′ UTR (rs28730760, rs28730761, 
and rs883079) were found to be present in the polyadenylation (poly-A) 
sites, and hence may be pathogenic. In addition, UTRdb output returned 
six transcriptional motif matches in the 5′ UTR and three transcriptional 
motif matches in the 3′ UTR. Table 5 provides results from UTRdb. 

3′ UTR SNPs that might create or break an miRNA target site, or 
enhance or decrease miRNA binding to mRNA were predicted by 
MirSNP. A total number of 86 SNPs in the 3′ untranslated region of the 
TBX5 gene were predicted to alter miRNA-mRNA binding. Supplemen
tary Table 3 shows the results from MirSNP server. 

3.6. Prediction of the effects of splice site SNPs 

Human Splicing Finder (HSF) web tool was employed to predict the 
effects of SNPs located in the 5′ and 3′ splice sites. A total number of 11 
splice site SNPs were subjected to assessment. All were found to have 
‘probably no impact on splicing’ by HSF. Table 6 shows the predictions 
obtained from HSF. 

3.7. Prediction of the effects of deep functional intronic SNPs 

19 among all the TBX5 intron variants were predicted to affect 
transcription factor binding sites by FuncPred. These 19 SNPs were 
further analyzed by RegulomeDB 2.0 server, and only two among these 
SNPs (rs12827969 and rs61931002) were considered functionally 
important. Table 7 summarizes results from SNP FuncPred and 
RegulomeDB. 

RegulomeDB ranks: 1a-1f: likely to affect transcription factor 
binding and linked to expression of a gene target, 2a-2c: likely to affect 
binding, 3a-3b: less likely to affect binding, 4,5,6: minimal binding 
evidence. 

3.8. 3D structure prediction of full TBX5 protein 

Due to the unavailability of a TBX5 full-length crystal structure, full- 
length 3D models of TBX5 were created employing three different pro
tein structure prediction tools which were later energy minimized and 
refined. Supplementary Fig. 1 shows cartoon presentations of the energy 
minimized and refined models. 

3.9. Evaluation of TBX5 3D models 

3D Model evaluation is indispensable for checking the credibility of a 
generated model. PROCHECK, Verify3D, and SWISS-MODEL Structure 
Assessment Tool assessed the 3D models generated in the current study. 
Ramachandran plot is a reliable qualitative indicator of protein structure 
[70]. PROCHECK calculated Ramachandran plots for the created 
models. A model is considered reasonable by PROCHECK if >90% of the 
residues are present in the most favored regions of Ramachandran plot. 
Only one model (generated by Robetta and later energy minimized and 
refined) was found to fulfill this criterion. It has 94.5% of residues in the 

Fig. 5. Close-up views of the 5 substitutions predicted to be damaging by iStable 2.0, Missense3D, and DynaMut. These 5 substitutions are: A) P85S, B) W121R, C) 
V153D, D) E208D, and E) I222N. Native amino acids are shown in green and mutated amino acids are shown in red in this figure. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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most favored regions. Supplementary Fig. 2 shows the Ramachandran 
plots calculated by PROCHECK. Verify3D is another tool that approves a 
model if its 80% or more amino acid residues score ≥0.2 in the 3D/1D 
profile. However, none of the models could fulfill this requirement. 
MolProbity score and QMEAN Z-score of our models were obtained from 
SWISS-MODEL Structure Assessment Tool. A low MolProbity score and a 
high QMEAN Z-score are preferred. A negative QMEAN Z-score indicates 

instability in protein structure [71]. All of our models have a negative 
QMEAN Z-score. This disagreement can be explained by the fact that 
presently available ab initio protein modeling tools predict poorly about 
the proteins having more than 120 residues [80], and for our protein 
models, 279 residues (5BQD-A chain extends from 1 to 239 residues only 
and the full-length protein has 518 residues) do not have any template. 
However, among the models, energy minimized and refined Robetta 

Fig. 6. (A) RMSD values of the backbone atoms of native and mutant TBX5 proteins, (B) Residue-wise RMSF values of native and mutant TBX5 proteins, (C) radius of 
gyration values, (D) SASA values, and (E) number of hydrogen bonds of native and mutant TBX5 proteins. 

Table 4 
Predictions about nonsense and stop lost SNPs by PredictSNP2.  

Variant PredictSNP2 CADD DANN FATHMM FunSeq2 GWAVA 

P S P S P S P S P S P S 

W514Ter Del 0.6777 Del 46 Del 0.9959 Del 0.9623 Del 5 ? 0.39 
Q156Ter Del 1 Del 38 Del 0.9984 Del 0.9167 Del 5 Del 0.5 
Ter519Q Neu − 0.1146 Neu 14.06 Neu 0.758 Del 0.9717 Neu 0 Del 0.31 

P= Prediction, S= Score, Del = Deleterious, and Neu = Neutral. 

Table 5 
Transcriptional motifs present in TBX5 untranslated regions.  

Signal Name UTR region Match total NCBI Reference Sequence Genomic Position (NCBI36/hg18) 

Uorf (Upstream Open Reading Frame) 5′ 1 NM_181486.4 Chr12:113328041–113328106 
2 NM_000192.3 Chr12:113330378–113330629 

Chr12:113330136–113330216 
2 NM_080717.3 Chr12:113330378–113330629 

Chr12:113330136–113330216 
IRES (Internal Ribosome Entry Site) 5′ 1 NM_000192.3 Chr12:113326087–113330055 
CPE (Cytoplasmic polyadenylation element) 3′ 1 NM_181486.4 Chr12:113276118–113276332 
K-Box 3′ 1 NM_181486.5 Chr12:113276848–113276855 
PAS (Polyadenylation Signal) 3′ 1 NM_181486.6 Chr12:113276118–113276144  
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model has the lowest MolProbity score and the least negative QMEAN 
Z-score. Considering Ramachandran plot, MolProbity scores, and 
QMEAN Z-scores, it can be decided that Robetta outperformed two other 
protein structure prediction tools used in this study. Supplementary 
Table 4 summarizes the results obtained from PROCHECK, Verify3D, 
and SWISS-MODEL Structure Assessment Tool, and Supplementary 
Fig. 2 shows the Ramachandran plots obtained from PROCHECK. 

4. Discussion 

Recently bioinformatics approaches have become popular for iden
tifying different human gene SNPs and predicting their structural and 
functional consequences. In the past few years, damaging SNPs of CCR6 
gene [81], SMPX gene [82], human aldehyde oxidase gene [83], PTEN 
gene [84], folate pathway genes [85], human bone morphogenetic 
protein receptor type 1A gene [86], SKP2 gene [87], human adiponectin 
receptor 2 gene [88], MMP9 gene [89], etc. have been identified with 
the help of different computational biology tools. With the rapid 
development of genomics, the number of reported SNPs in different 
databases is continuously increasing for the last few years. However, 
determining the SNPs that result in diseases is challenging. Various 
pathogenicity prediction tools can narrow this number to a list of 
high-confidence deleterious SNPs [90]. 

TBX5 gene is an essential regulator of cardiac and upper limb 
development, and mutations in this gene are responsible for Holt-Oram 
syndrome, especially missense mutations. It is estimated that 1 in 
100,000 neonates are born with Holt-Oram syndrome, and male and 
female children are affected equally. Since HOS is an autosomal domi
nant inheritance, it is imperative that all individuals with HOS and their 
parents and siblings get genetic counseling [91]. In the past years, some 
mutations, including SNPs have been reported in association with the 
TBX5 gene. However, most of the SNPs of this gene have not been 
characterized yet. In this study, we have tried to fill this gap. 

In our current study, we have analyzed all currently available TBX5 
SNPs. Since results from a single bioinformatics tool may be inconclu
sive, we have appointed 9 highly reliable prediction tools for identifying 
deleterious missense SNPs. The 58 deleterious missense SNPs that were 
initially identified by concordance among PROVEAN, SIFT, and 
PolyPhen-2 were also found to be damaging by 6 other tools (Pre
dictSNP1, PredictSNP2, MetaLR, MetaSVM, and REVEL) with few ex
ceptions. Among these 58 missense SNPs, 5 missense SNPs (G80R, 
G125R, T223 M, R237P, R237Q, and R237W) have been proven to be 
responsible for HOS [76–79]. 

The amino acid conservation analysis found that 55 among the 58 
missense SNPs cause amino acid substitution in highly conserved posi
tions (ConSurf score 7–9). This further corroborates the importance of 
identified SNPs. Furthermore, 8 of these 58 missense SNPs (P108T, 
D111Y, A143T, R237P, R237Q, R237W, S261C, and R375W) were 
found to have the ability to modify post-translational sites. 

We have also analyzed the effects of these 58 SNPs on the stability of 
native TBX5 protein structure. 15 SNPs were predicted to cause struc
tural damage by Missense3D. G80R, T72K, and V153D substitutions 

Table 6 
Predictions about splice site SNPs by HSF.  

rsIDs Alleles Predicted Signal Interpretation 

Splice Acceptor Variant 
rs1555226330 C > A No significant splicing 

motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs1031873727 G > A ESS Site broken Alteration of an intronic ESS 
site, Probably no impact on 
splicing 

rs1031873727 G > T ESS Site broken Alteration of an intronic ESS 
site, Probably no impact on 
splicing 

rs891464399 G > A New ESE Site Creation of an intronic ESE 
site, Probably no impact on 
splicing 

rs958951320 C > T No significant splicing 
motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs181078973 A > C No significant splicing 
motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs181078973 A > G No significant splicing 
motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs374919751 C > G New ESE Site Creation of an intronic ESE 
site, Probably no impact on 
splicing 

rs374919751 C > T No significant splicing 
motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs1288475235 C > A No significant splicing 
motif alteration 
detected 

This mutation has probably 
no impact on splicing 

rs1015550731 T > C ESS Site broken Alteration of an intronic ESS 
site, Probably no impact on 
splicing  

Table 7 
Predictions regarding deep intronic SNPs.  

SNP FuncPred RegulomeDB 

rsID Chromosome Position Allele Regulatory Potential Conservation Rank Probability 

rs11067100 12 113328237 G/T 0.271604 0.998 4 0.60906 
rs11067101 12 113328586 A/G 0.186436 0 4 0.60906 
rs11613605 12 113326220 C/G 0.099303 0 4 0.60906 
rs11837917 12 113329990 G/T 0.096837 0 4 0.60906 
rs12319868 12 113329396 G/T 0.150806 0 4 0.60906 
rs12372585 12 113330591 A/G 0.225674 0.19 4 0.60906 
rs12423887 12 113327989 C/T 0.410483 0.025 4 0.60906 
rs1248046 12 113329889 T/C 0 0 4 0.60906 
rs12827969 12 113326517 A/T 0.181987 1 2b 0.80975 
rs1522368 12 113329052 A/G 0.148659 0.997 3a 0.6893 
rs1522369 12 113329156 A/G 0.076716 0 4 0.60906 
rs2113436 12 113326379 G/A 0.469676 0.006 4 0.60906 
rs35203448 12 113328816 A/G 0.113463 0.5 4 0.60906 
rs3782467 12 113327309 C/G 0.000319 0.001 4 0.60906 
rs4553413 12 113328827 A/G 0.0709 0.567 4 0.60906 
rs57820630 12 113330823 C/T NA NA 4 0.60906 
rs61931002 12 113326665 A/G NA NA 2b 0.64343 
rs736560 12 113327637 A/C 0.393482 0 4 0.60906 
rs7957609 12 113331519 A/G 0.316415 0.022 4 0.60906  
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introduce buried charges. V153D and I22 N mutations substitute buried 
hydrophobic residues with hydrophilic residues. G80R and G145W 
replace buried glycines; P85L, P85S, and P142S replace cis prolines, 
D105 N breaks a buried salt bridge, and E208D disrupts a side-chain/ 
side-chain H-bond and a side-chain/main-chain H-bond. W121R, 
S261C, and W401C cause an expansion of the internal protein cavity, 
and thus make the protein structure unstable. G80R, G145W, and C323Y 
substitutions trigger clash alerts. These three substitutions lead to a 
MolProbity clash score ≥30, and the increase in clash score is >18 when 
compared to the wild-type residues. G80R and G125R mutations induce 
disallowed phi/psi alerts. 5 of these 15 substitutions (P85S, W121R, 
V153D, E208D, and I222N) were predicted to destabilize the native 
protein structure by the consensus of Missense3D, DynaMut, and iStable 
2.0. This finding was further supported by MD simulation results. These 
5 SNPs [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 
(V153D), rs769113870 (E208D), and rs1318021626 (I222N)], which 
have not yet been reported, are most likely to cause HOS. 

We have also employed 6 other tools to identify deleterious non- 
coding SNPs in the TBX5 gene. 86 SNPs in the 3′ UTR of the TBX5 
gene were identified that can affect miRNA-mRNA binding. No signifi
cant SNP was identified in the splice sites of TBX5, and 2 deep intronic 
SNPs were identified to affect transcription factor binding and gene 
expression. 

Due to the unavailability of a full-size experimental TBX5 protein 
structure, TBX5 3D models were also predicted employing I-TASSER, 
Phyre2, and Robetta. Later, the 3D structures were evaluated by PRO
CHECK, Verify3D, and SWISS-MODEL Structure Assessment Tool. A 
model is considered good if >90% of its residues are present in the most 
favored regions of the Ramachandran plot. In the case of our TBX5 
models, only Robetta generated model passed this requirement. On the 
other hand, verify3D results and QMEAN Z-scores indicate poor quality 
of the generated models. This can be attributed to the inability of the 
available ab initio protein modeling tools to predict the correct structure 
of proteins having more than 120 residues [80]. These template-less 
regions are responsible for the deviations of our models from an ideal 
one. 

5. Conclusion 

This extensive in silico study attempts to find the most damaging 
TBX5 SNPs. Our obtained results can guide further wet-lab studies of 
TBX5 gene-related diseases and may potentiate finding cure in the 
future. 
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[63] R. Vaz-Drago, N. Custódio, M. Carmo-Fonseca, Deep intronic mutations and human 
disease, Hum. Genet. 136 (2017) 1093–1111, https://doi.org/10.1007/s00439- 
017-1809-4. 

[64] Z. Xu, J.A. Taylor, SNPinfo: integrating GWAS and candidate gene information into 
functional SNP selection for genetic association studies, Nucleic Acids Res. 37 
(2009) W600–W605, https://doi.org/10.1093/nar/gkp290. 

A.M.U.B. Mahfuz et al.                                                                                                                                                                                                                        

https://doi.org/10.1038/ng0197-21
https://doi.org/10.1002/(sici)1096-8628(20000605)92:4<237::aid-ajmg2>3.0.co;2-g
https://doi.org/10.1002/(sici)1096-8628(20000605)92:4<237::aid-ajmg2>3.0.co;2-g
https://doi.org/10.1002/ajmg.a.31340
https://doi.org/10.1002/ajmg.a.31340
https://doi.org/10.1038/ejhg.2012.16
https://doi.org/10.1159/000430232
https://doi.org/10.2147/TACG.S183418
https://doi.org/10.1002/humu.9449
https://doi.org/10.1002/humu.9449
http://refhub.elsevier.com/S2405-5808(21)00273-9/sref23
http://refhub.elsevier.com/S2405-5808(21)00273-9/sref23
http://refhub.elsevier.com/S2405-5808(21)00273-9/sref23
http://refhub.elsevier.com/S2405-5808(21)00273-9/sref23
https://doi.org/10.1016/j.bbrc.2015.02.094
https://doi.org/10.3892/ijmm.2015.2206
https://doi.org/10.1371/journal.pone.0160467
https://doi.org/10.1002/ajmg.a.36783
https://doi.org/10.1002/ajmg.a.36783
https://doi.org/10.1038/celldisc.2017.26
https://doi.org/10.1038/celldisc.2017.26
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1093/nar/gkg509
https://doi.org/10.1038/nprot.2009.86
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1038/s41467-020-19669-x
https://doi.org/10.1038/s41467-020-19669-x
https://doi.org/10.1371/journal.pcbi.1004962
https://doi.org/10.1371/journal.pcbi.1003440
https://doi.org/10.1371/journal.pcbi.1003440
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1093/nar/gkw408
https://doi.org/10.1016/j.pbiomolbio.2016.10.002
https://doi.org/10.1182/blood-2002-06-1851
https://doi.org/10.1002/prot.25674
https://doi.org/10.1002/prot.25674
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1016/j.jmb.2019.04.009
https://doi.org/10.1016/j.jmb.2013.07.014
https://doi.org/10.1016/j.jmb.2013.07.014
https://doi.org/10.1016/j.csbj.2020.02.021
https://doi.org/10.1016/j.csbj.2020.02.021
https://doi.org/10.1093/nar/gky300
https://doi.org/10.1021/jp984217f
https://doi.org/10.1093/nar/gky821
https://doi.org/10.1186/gb-2002-3-3-reviews0004
https://doi.org/10.1002/wrna.1474
https://doi.org/10.1002/ajmg.a.36703
https://doi.org/10.1002/ajmg.a.36703
https://doi.org/10.1002/mgg3.282
https://doi.org/10.1038/76088
https://doi.org/10.1038/76088
https://doi.org/10.1038/ng.276
https://doi.org/10.1038/ng.276
https://doi.org/10.1074/jbc.M005199200
https://doi.org/10.1038/ejhg.2015.61
https://doi.org/10.1038/ejhg.2015.61
https://doi.org/10.1093/nar/gkp902
https://doi.org/10.1016/S0092-8674(04)00045-5
https://doi.org/10.1186/1471-2164-13-661
https://doi.org/10.1186/1471-2164-13-661
https://doi.org/10.1007/s13353-018-0444-7
https://doi.org/10.1007/s13353-018-0444-7
https://doi.org/10.1038/nrg2164
https://doi.org/10.1038/nrg2164
https://doi.org/10.1093/nar/gkp215
https://doi.org/10.1007/s00439-017-1809-4
https://doi.org/10.1007/s00439-017-1809-4
https://doi.org/10.1093/nar/gkp290


Biochemistry and Biophysics Reports 28 (2021) 101179

16

[65] A.P. Boyle, E.L. Hong, M. Hariharan, Y. Cheng, M.A. Schaub, M. Kasowski, et al., 
Annotation of functional variation in personal genomes using RegulomeDB, 
Genom. Res. 22 (2012) 1790–1797, https://doi.org/10.1101/gr.137323.112. 

[66] J. Yang, Y. Zhang, I-TASSER server: new development for protein structure and 
function predictions, Nucleic Acids Res. 43 (2015) W174–W181, https://doi.org/ 
10.1093/nar/gkv342. 

[67] L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J.E. Sternberg, The Phyre2 web 
portal for protein modeling, prediction and analysis, Nat. Protoc. 10 (2015) 
845–858, https://doi.org/10.1038/nprot.2015.053. 

[68] Y. Song, F. DiMaio, R.Y.-R. Wang, D. Kim, C. Miles, T. Brunette, et al., High- 
resolution comparative modeling with RosettaCM, Structure 21 (2013) 
1735–1742, https://doi.org/10.1016/j.str.2013.08.005. 

[69] E. Krieger, K. Joo, J. Lee, J. Lee, S. Raman, J. Thompson, et al., Improving physical 
realism, stereochemistry, and side-chain accuracy in homology modeling: four 
approaches that performed well in CASP8: high-Resolution Homology Modeling, 
Proteins 77 (2009) 114–122, https://doi.org/10.1002/prot.22570. 

[70] R.A. Laskowski, M.W. MacArthur, J.M. Thornton, PROCHECK : Validation of 
Protein-Structure Coordinates, 2012, pp. 684–687, https://doi.org/10.1107/ 
97809553602060000882. 

[71] R. Lüthy, Bowie Ju, D. Eisenberg, Assessment of protein models with three- 
dimensional profiles, Nature 356 (1992) 83–85, https://doi.org/10.1038/ 
356083a0. 

[72] C.J. Williams, J.J. Headd, N.W. Moriarty, M.G. Prisant, L.L. Videau, L.N. Deis, et 
al., MolProbity: more and better reference data for improved all-atom structure 
validation, Protein Sci. 27 (2018) 293–315, https://doi.org/10.1002/pro.3330. 

[73] G. Studer, C. Rempfer, A.M. Waterhouse, R. Gumienny, J. Haas, T. Schwede, 
QMEANDisCo—distance constraints applied on model quality estimation, in: 
A. Elofsson (Ed.), Bioinformatics 36, 2020, pp. 1765–1771, https://doi.org/ 
10.1093/bioinformatics/btz828. 

[74] P. Benkert, M. Biasini, T. Schwede, Toward the estimation of the absolute quality of 
individual protein structure models, Bioinformatics 27 (2011) 343–350, https:// 
doi.org/10.1093/bioinformatics/btq662. 

[75] Clustered RefSNPs (Rs) and Other Data Computed in House, National Center for 
Biotechnology Information (US), 2005. Available, https://www.ncbi.nlm.nih. 
gov/books/NBK44417/. 

[76] C.T. Basson, T. Huang, R.C. Lin, D.R. Bachinsky, S. Weremowicz, A. Vaglio, et al., 
Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome 
mutations, Proc. Natl. Acad. Sci. 96 (1999) 2919–2924, https://doi.org/10.1073/ 
pnas.96.6.2919. 

[77] Alex V. Postma, B.A. van de Meerakker Judith, B. Mathijssen Inge, Phil Barnett, 
M. Christoffels Vincent, Ilgun Aho, et al., A gain-of-function TBX5 mutation is 
associated with atypical holt–oram syndrome and paroxysmal atrial fibrillation, 
Circ. Res. 102 (2008) 1433–1442, https://doi.org/10.1161/ 
CIRCRESAHA.107.168294. 

[78] W. Heinritz, Identification of new mutations in the TBX5 gene in patients with 
Holt-Oram syndrome, Heart 91 (2005) 383–384, https://doi.org/10.1136/ 
hrt.2004.036855. 

[79] Boogerd Cjj, D. Dooijes, A. Ilgun, I.B. Mathijssen, R. Hordijk, I.M.B.H. van de Laar, 
et al., Functional analysis of novel TBX5 T-box mutations associated with Holt- 
Oram syndrome, Cardiovasc. Res. 88 (2010) 130–139, https://doi.org/10.1093/ 
cvr/cvq178. 

[80] J. Lee, P.L. Freddolino, Y. Zhang, Ab initio protein structure prediction, in: 
J. Rigden D (Ed.), From Protein Structure to Function with Bioinformatics, Springer 
Netherlands, Dordrecht, 2017, pp. 3–35, https://doi.org/10.1007/978-94-024- 
1069-3_1. 

[81] M. Akhtar, T. Jamal, H. Jamal, J.U. Din, M. Jamal, M. Arif, et al., Identification of 
most damaging nsSNPs in human CCR6 gene: in silico analyses, Int. J. 
Immunogenet. 46 (2019) 459–471, https://doi.org/10.1111/iji.12449. 

[82] Md Arifuzzaman, S. Mitra, R. Das, A. Hamza, N. Absar, R. Dash, In silico analysis of 
non-synonymous single-nucleotide polymorphisms (nsSNPs) of the SMPX gene, 
Ann. Hum. Genet. 84 (2020) 54–71, https://doi.org/10.1111/ahg.12350. 

[83] C. Coelho, J. Muthukumaran, T. Santos-Silva, M. João Romão, Systematic 
exploration of predicted destabilizing non-synonymous single nucleotide 
polymorphisms (nsSNPs) of human aldehyde oxidase: a Bio-informatics study, 
Pharmacol. Res. Perspect. 7 (2019), https://doi.org/10.1002/prp2.538. 

[84] I. Khan, I.A. Ansari, P. Singh, J.F.P. Dass, Prediction of functionally significant 
single nucleotide polymorphisms in PTEN tumor suppressor gene: an in silico 
approach: prediction in PTEN Tumor Suppressor Gene, Biotechnol. Appl. Biochem. 
64 (2017) 657–666, https://doi.org/10.1002/bab.1483. 

[85] M. Vohra, A.R. Sharma, B. Paul, M.K. Bhat, K. Satyamoorthy, P.S. Rai, In silico 
characterization of functional single nucleotide polymorphisms of folate pathway 
genes, Ann. Hum. Genet. 82 (2018) 186–199, https://doi.org/10.1111/ahg.12231. 

[86] MdJ. Islam, MdR. Parves, S. Mahmud, F.A. Tithi, MdA. Reza, Assessment of 
structurally and functionally high-risk nsSNPs impacts on human bone 
morphogenetic protein receptor type IA (BMPR1A) by computational approach, 
Comput. Biol. Chem. 80 (2019) 31–45, https://doi.org/10.1016/j. 
compbiolchem.2019.03.004. 

[87] S.M.Z. Hosen, R. Dash, Md Junaid, S. Mitra, N. Absar, Identification and structural 
characterization of deleterious non-synonymous single nucleotide polymorphisms 
in the human SKP2 gene, Comput. Biol. Chem. 79 (2019) 127–136, https://doi. 
org/10.1016/j.compbiolchem.2019.02.003. 

[88] Md Solayman, MdA. Saleh, S. Paul, MdI. Khalil, S.H. Gan, In silico analysis of 
nonsynonymous single nucleotide polymorphisms of the human adiponectin 
receptor 2 ( ADIPOR2 ) gene, Comput. Biol. Chem. 68 (2017) 175–185, https://doi. 
org/10.1016/j.compbiolchem.2017.03.005. 

[89] R. Bhatnager, M. Bhasin, A.S. Dang, Comprehensive analysis of damage associated 
SNPs of MMP9 gene: a computational approach, Comput. Biol. Chem. 77 (2018) 
97–108, https://doi.org/10.1016/j.compbiolchem.2018.09.008. 

[90] P. S, D. Tk, C. Gpd, R. S, Zayed H, Determining the role of missense mutations in 
the POU domain of HNF1A that reduce the DNA-binding affinity: a computational 
approach, in: C. Verma (Ed.), PLoS ONE 12 (2017), e0174953, https://doi.org/ 
10.1371/journal.pone.0174953. 

[91] A.F. Krauser, S. Ponnarasu, M.P. Schury, Holt Oram Syndrome. StatPearls. Treasure 
Island (FL), StatPearls Publishing, 2021. Available: http://www.ncbi.nlm.nih. 
gov/books/NBK513339/. 

A.M.U.B. Mahfuz et al.                                                                                                                                                                                                                        

https://doi.org/10.1101/gr.137323.112
https://doi.org/10.1093/nar/gkv342
https://doi.org/10.1093/nar/gkv342
https://doi.org/10.1038/nprot.2015.053
https://doi.org/10.1016/j.str.2013.08.005
https://doi.org/10.1002/prot.22570
https://doi.org/10.1107/97809553602060000882
https://doi.org/10.1107/97809553602060000882
https://doi.org/10.1038/356083a0
https://doi.org/10.1038/356083a0
https://doi.org/10.1002/pro.3330
https://doi.org/10.1093/bioinformatics/btz828
https://doi.org/10.1093/bioinformatics/btz828
https://doi.org/10.1093/bioinformatics/btq662
https://doi.org/10.1093/bioinformatics/btq662
https://www.ncbi.nlm.nih.gov/books/NBK44417/
https://www.ncbi.nlm.nih.gov/books/NBK44417/
https://doi.org/10.1073/pnas.96.6.2919
https://doi.org/10.1073/pnas.96.6.2919
https://doi.org/10.1161/CIRCRESAHA.107.168294
https://doi.org/10.1161/CIRCRESAHA.107.168294
https://doi.org/10.1136/hrt.2004.036855
https://doi.org/10.1136/hrt.2004.036855
https://doi.org/10.1093/cvr/cvq178
https://doi.org/10.1093/cvr/cvq178
https://doi.org/10.1007/978-94-024-1069-3_1
https://doi.org/10.1007/978-94-024-1069-3_1
https://doi.org/10.1111/iji.12449
https://doi.org/10.1111/ahg.12350
https://doi.org/10.1002/prp2.538
https://doi.org/10.1002/bab.1483
https://doi.org/10.1111/ahg.12231
https://doi.org/10.1016/j.compbiolchem.2019.03.004
https://doi.org/10.1016/j.compbiolchem.2019.03.004
https://doi.org/10.1016/j.compbiolchem.2019.02.003
https://doi.org/10.1016/j.compbiolchem.2019.02.003
https://doi.org/10.1016/j.compbiolchem.2017.03.005
https://doi.org/10.1016/j.compbiolchem.2017.03.005
https://doi.org/10.1016/j.compbiolchem.2018.09.008
https://doi.org/10.1371/journal.pone.0174953
https://doi.org/10.1371/journal.pone.0174953
http://www.ncbi.nlm.nih.gov/books/NBK513339/
http://www.ncbi.nlm.nih.gov/books/NBK513339/

	Identification of deleterious single nucleotide polymorphism (SNP)s in the human TBX5 gene & prediction of their structural ...
	1 Introduction
	2 Materials and methods
	2.1 Retrieval of amino acid sequence and wild structure
	2.2 Retrieval of SNPs
	2.3 Identification and analysis of damaging missense SNPs
	2.3.1 Prediction of damaging missense SNPs by sequence-homology based tools
	2.3.2 Prediction of damaging missense SNPs by structure-homology based tool
	2.3.3 Prediction of pathogenic amino acid substitutions by MutPred2
	2.3.4 Scrutinization of predicted pathogenicity by meta-predictors
	2.3.5 Identification of conserved amino acid residues
	2.3.6 Solvent accessible surface area (SASA) and secondary structure prediction
	2.3.7 Prediction of change in stability of the mutated proteins by iStable 2.0
	2.3.8 Prediction of the effects of amino acid substitutions on the structural integrity of TBX5 protein by Missense3D and n ...
	2.3.9 Molecular dynamics (MD) simulation
	2.3.10 Prediction of post-translational modification site missense SNPs

	2.4 Analysis of nonsense and stop lost SNPs
	2.5 Prediction of the effects of UTR SNPs
	2.6 Prediction of the effects of splice site SNPs
	2.7 Prediction of the effects of deep functional intronic SNPs
	2.8 3D structure prediction of full TBX5 protein
	2.9 Evaluation of TBX5 3D models

	3 Results
	3.1 SNP information retrieval
	3.2 Identification and analysis of damaging missense SNPs
	3.2.1 Prediction of missense SNPs by sequence-homology based tools
	3.2.2 Prediction of missense SNPs by structure-homology based tool
	3.2.3 Prediction of pathogenic amino acid substitutions by MutPred2
	3.2.4 Scrutinization of predicted pathogenicity by meta-predictors
	3.2.5 Prediction of amino acid conservation status, solvent accessibility, and TBX5 secondary structure
	3.2.6 Prediction of change in stability of the mutated proteins by iStable 2.0
	3.2.7 Prediction of the effects of amino acid substitutions on the structural integrity of TBX5 protein by Missense3D and n ...
	3.2.8 Molecular dynamics simulation
	3.2.9 Prediction of post-translational modification site missense SNPs

	3.3 Evidence of deleteriousness from experiments
	3.4 Identification and analyzing nonsense and stop lost SNPs
	3.5 Prediction of the effects of UTR SNPs
	3.6 Prediction of the effects of splice site SNPs
	3.7 Prediction of the effects of deep functional intronic SNPs
	3.8 3D structure prediction of full TBX5 protein
	3.9 Evaluation of TBX5 3D models

	4 Discussion
	5 Conclusion
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and material
	Funding
	Declaration of competing interest
	Abbreviations:
	Appendix A Supplementary data
	References


