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Functional tracts of the cerebellum—essentials for the neurosurgeon

Thomas Beez1 & Christopher Munoz-Bendix1 & Hans-Jakob Steiger1 & Daniel Hänggi1

Received: 15 October 2019 /Revised: 1 January 2020 /Accepted: 9 January 2020
# The Author(s) 2020

Abstract
The cerebellum is historically implicated in motor coordination, but accumulating modern evidence indicates involvement in
non-motor domains, including cognition, emotion, and language. This correlates with the symptoms observed in postoperative
cerebellar mutism syndrome (CMS). Profound knowledge of cerebellar functional topography and tractography is important
when approaching cerebellar tumors, as surgical trauma to relevant structures of cerebellar pathways plays a role in the patho-
genesis of CMS. The aim of this systematic review is to provide a concise overview of relevant modern neuroimaging data and
cerebellar functional tracts with regard to neurosurgical procedures.

Keywords Neuroanatomy . Cerebellar mutism syndrome . Posterior fossa . Children .Medulloblastoma

Introduction

The cerebellum is a frequent localization of brain tumors,
especially in the pediatric age group. Resections of such tu-
mors are nowadays characterized by low overall neurological
morbidity rates, with routinely performed intraoperative
neuromonitoring of cranial nerves and cerebrospinal path-
ways being an important factor [38]. However, despite mod-
ern approaches to cerebellar tumors, some sequelae are not
completely preventable: postoperative cerebellar mutism syn-
drome (CMS) occurs in 10–25% of children, with the highest
incidence apparently after medulloblastoma resections [9].
While there is consensus on the definition of this syndrome,
its etiology and pathophysiology remain unclear [13]. CMS is
clinically characterized by delayed onset of mutism and emo-
tional lability, which can occur in combination with muscular
hypotonia, dysphagia, as well as cerebellar cognitive affective
syndrome, and cerebellar motor syndrome [13]. Although
modern publications refined the identification of risk factors
or at least revealed correlations, the incidence of CMS appears
to be stable over time according to preliminary results from an
ongoing prospective study [12, 45]. This observation could be

explained by incomplete understanding of the exact patho-
physiology and/or inability to effectively monitor and protect
the relevant anatomical structures at risk during surgery. These
structures at risk are the cerebellar nuclei and cerebellar pe-
duncles [26], due to their high probability of playing a role in
CMS, their intimate proximity to most posterior fossa tumors
and their (currently) low electrophysiological monitorability
during surgery. Compared with supratentorial functional sys-
tems, such as the primary motor cortex and the corticospinal
tract, cerebellar functional anatomy is rarely considered in
detail in general neurosurgical practice [30]. However, mod-
ern neuroimaging provides structural (e.g., diffusion tensor
imaging, DTI) and functional (e.g., functional magnetic reso-
nance imaging, fMRI) data on the cerebellum (Fig. 1) [4].
Recent fMRI studies revealed distinct functional subregions
activated by motor, working memory, language, social, and
emotional tasks, not always congruent with the classical ana-
tomical lobular subdivisions [14, 22]. The aim of the current
review is to provide a scientifically sound and accessible over-
view of modern knowledge on cerebellar functional connec-
tivity relevant for a broad neurosurgical audience.

Materials and methods

Following the “Preferred Reporting Items for Systematic
Reviews and Meta-Analyses” (PRISMA) guidelines, a system-
atic PubMed search was performed for the terms “cerebellum”
and “tractography” in literature published between January 2000
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and December 2017 [29]. Results were manually filtered for
studies using structural and functional magnetic resonance im-
aging (MRI)methods on healthy humans and provided explicitly
connectivity information on the following nodes: (1) cerebellar
localization, (2) cerebellar afferent or efferent pathway, and (3)
extracerebellar localization. As the publications were heteroge-
neous with regard to definitions and reported parameters,
pooling of data at the level of individual subjects was not feasi-
ble. With regard to the present study’s pragmatic aim, we thus
compiled a quantitative descriptive analysis of N studies
reporting each functional connection. Cerebellar cortical

nomenclature is based on the proposal by Stoodley and
Schmahmann [42]. Data was processed using GraphPad Prism
for Windows (GraphPad Software, San Diego, USA) and visu-
alized in a circular layout using Circos [23].

Results

From 162 records, ultimately 25 studies were included in the
analysis, providing MRI-based connectivity data for 1917 sub-
jects with an age range from 30 gestational weeks to 87 years

Fig. 1 Diffusion tensor imaging
of a 12-year-old boy with
pilocytic astrocytoma with axial
sections demonstrating the inferi-
or (a), middle (b), and superior (c)
cerebellar peduncles. The right
sided image distortion results
from a shunt valve artifact

Fig. 2 PRISMA flow diagram of
the present study
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(Fig. 2) [2, 3, 7, 8, 10, 11, 15–17, 19–21, 24, 25, 28, 31, 33–37,
39, 40, 43, 44]. Fifteen studies reported sensorimotor connectiv-
ity [2, 7, 10, 15, 19, 21, 24, 28, 33, 35–37, 39, 43, 44].
Cognitive, associative, and limbic connectivities were described
in 14 studies [3, 7, 8, 17, 20, 21, 31, 34, 35, 37, 39, 40, 43, 44].

As visualized in Fig. 3a, connectivity of the anterior cerebel-
lum, which is predominantly involved in sensorimotor func-
tion, was reported in similar frequency with the superior cere-
bellar peduncle (SCP), middle cerebellar peduncle (MCP), and
inferior cerebellar peduncle (ICP). For the posterior cerebellum,
which is mainly associated with cognitive, emotional, and lim-
bic functions, connectivity was reported mainly for the MCP, a
lesser frequency for the SCP, and only rarely for the ICP.

The vast majority of reported connections of the dentate
nucleus (DN) were projections via the SCP, and to a smaller
extent via the ICP (Fig. 3b). Direct connectivity of the MCP to
several cerebellar cortical locations was evident, reflecting
corticocerebellar and pontinocerebellar tracts.

With regard to connectivity to supratentorial cerebral struc-
tures (Fig. 3c), the SCP was found to connect mainly to thal-
amus as well as prefrontal and primary motor cortex.
Connectivity of the MCP was reported for a broad spectrum
of cerebral areas, including cortex, basal ganglia, and limbic
system (but not thalamus). At the level of the brainstem, the
pontine, red, and inferior olivary nuclei are implicated in these
connections.

Discussion

This systematic review of structural and functional MRI data
confirms a basic dichotomy in the human cerebellum, with
sensorimotor functions being located in the anterior cerebel-
lum and cognitive, emotional, and limbic functions found in
the posterior cerebellum. For both functional areas, broad con-
nectivity to supratentorial structures via the cerebellar pedun-
cles was confirmed. The SCP is connected to the DN and
thalamus, reflecting the dentate (rubro) thalamic tract. The
MCP is connected to the posterior cerebellum and a variety
of supratentorial areas reflecting the pontinocerebellar tracts.
The ICP is connected to the anterior cerebellum, reflecting
spinocerebellar and olivocerebellar tracts.

The widespread connectivity and topography of the human
cerebellum with cerebral areas implicated in non-motor func-
tions was demonstrated in a previous activation-likelihood
meta-analysis of neuroimaging studies investigating cerebel-
lar activation in language, verbal workingmemory, spatial and
executive function, as well as emotional processing [42]. This
involvement in several functional systems as well as the topo-
graphic dichotomy is clinically relevant, as patients suffering
cerebellar stroke develop predominantly motor versus cogni-
tive deficits depending on the location of the ischemic damage
in the posterior versus anterior cerebellum [41]. For CMS, the

Fig. 3 Circular chart visualization of the connectivity between
dichotomized functional cerebellar region and cerebellar peduncles (a),
cerebellar cortical and nuclear anatomical areas and cerebellar peduncles
(b), and cerebellar peduncles and supratentorial anatomical areas (c)
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exact localization of functional disruption remains unclear.
The dentato-thalamo-cortical pathway has been implicated to
play a role in CMS [6, 32]. Moreover, hypertrophic olivary
degeneration (HOD) has been observed in children suffering
CMS (Fig. 4b), which generally indicates injury of the
dentato-rubro-olivary pathway and occurs after different types
of primary insults, including ischemic stroke [5, 27]. In the
context of CMS, the occurrence of HOD appears to be a sur-
rogate parameter for damage to the DN and cerebellar path-
ways in general. The underlying functional anatomic correlate
is the triangle of Guillain and Mollaret, which comprises the
DN, ICP, and SCP [27]. Anatomical studies have emphasized
the close spatial relationship between the DN and the cerebel-
lar peduncles with its fiber tracts terminating at or surrounding
the DN [1]. From an anatomical point of view, the risk of DN
injury is reduced in the telovelar and sub tonsillar approaches
compared with the transvermian approach [1]. From a techni-
cal point of view, thermal injury due to the use of cavitron
ultrasonic surgical aspirators (CUSA) and bipolar coagulation
as well as surgical retraction might be mechanisms putting the
relevant anatomical structures at risk (Fig. 4a) [30].

The risk of developing CMS is higher in children compared
with adults. A higher incidence of posterior fossa tumors and
higher vulnerability of the developing brain are possible expla-
nations. However, the anatomical substrate might be very simi-
lar, as certain characteristics described in the literature review by
Ildan et al. are similar when comparing children and adults [18].
The higher incidence of CMS in medulloblastoma patients is a
striking resemblance: 31% of patients in the adult CMS cohort
had a medulloblastoma, whereas medulloblastoma accounts for
only 1% of overall adult brain tumor cases. This notion is sup-
ported byWibroe et al. who found linguistic impairments in 16%
of adult patients after posterior fossa surgery [46].

Considering the findings of this systematic review, the land-
mark papers on functional topography of the cerebellum, the data
derived from pathological entities other than CMS sharing sim-
ilar symptoms, and the indirect evidence generated by clinical

and imaging studies of CMSpatients, we conclude that cerebellar
functional anatomy should receive similar awareness during
infratentorial surgery as for instance motor or language systems
during supratentorial tumor resections. Based on this assumption,
further insight into the pathophysiology of CMS enhancing pre-
operative individual risk assessment as well as intraoperative
measures to protect the DN and cerebellar pathways (e.g., by
optimal surgical approach, avoidance of mechanical and thermal
injury, and developing specific neuromonitoring) are required. A
better insight into possible presurgical deficits due to disruption
of cerebellar functional systems by the tumor itself can further
enhance risk stratification. For instance, invasion of cerebellar
peduncles is sometimes observed on initial imaging of medullo-
blastoma (Fig. 4a). In the age of molecular medicine, as we are
accumulating knowledge of molecular tumor subtypes and their
implications for prognosis, prediction of the risk of developing
CMS might be one factor guiding the aggressiveness of the sur-
gical treatment as part of a personalized approach to each patient.

Limitations of this study are mainly related to the pragmatic
study design. Due to considerable heterogeneity with regard to
methodology, definitions, and reported parameters, pooling of
data at the level of individual subjects was not feasible. By
performing a quantitative descriptive analysis of N studies
reporting each functional connection irrespective of cohort
size, the results represent the number of studies reporting each
connectivity as a surrogate parameter rather than the actual
anatomical size of the tract. Although this might introduce
bias, we nevertheless consider the results sufficient with re-
gard to the study’s aim, i.e., to provide a stimulating overview
of modern knowledge on cerebellar functional connectivity
relevant for a broad neurosurgical audience.

Conclusion

This systematic review provides a pragmatic summary of the
literature on functional connectivity of the cerebellum focused

Fig. 4 T2-weighted magnetic
resonance imaging in the axial
plane. Panel a shows preoperative
imaging of a medulloblastoma
with perifocal edema extending
into the right middle cerebellar
peduncle (red box) and right
dentate nucleus (red arrow). Panel
b demonstrates right-sided hyper-
trophic olivary degeneration (red
arrow) occurring 5 months after
medulloblastoma resection as a
morphological correlate of post-
operative cerebellar mutism
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on a tractographic approach most relevant from a neurosurgical
perspective. Cerebellar involvement in sensorimotor function
and in cognitive, associative, and limbic functions correlates
with the complex and widely scattered symptoms found in
CMS, including the disruption of higher cerebral functions. In
addition to the cerebellar cortex, the DN, MCP, and SCP are
major posterior fossa structures involved in cerebellar connec-
tivity. During infratentorial tumor resections, these structures
cannot be reliably monitored at present, but are at risk due to
their proximity and exposure. Certainly, the dogma of the cere-
bellum being merely responsible for motor coordination is his-
torical and has to be abandoned, especially in the operating room
when approaching a cerebellar or fourth ventricular tumor.
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