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Abstract

The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing

68% to total milk production in Pakistan. In this study, we identified genome-wide single

nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such

as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and

for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy

bulls that they may pass on to their daughters who are retained for milking purposes. The

genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs

with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis

revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence

of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed

the extent of admixture of these two lineages in our bull collection. LD analysis revealed

4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo

genome. Genome-wide association study involved a multi-locus mixed linear model for milk

yield and body weight to identify genome-wide male effects. Our study further illustrates the

utility of the genotyping by sequencing approach for identifying genomic regions to uncover

additional demographic complexity and to improve the complex dairy traits of the Pakistani

Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy

industry.
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Introduction

The domestic Nili-Ravi water buffalo (Bubalus bubalis) is a well-used dairy animal in livestock

in Pakistan because it contributes about 68% of the total milk production in Pakistan [1].

Besides this, it is more adaptive to environment such as heat, disease and environmental stress

and a better converter of poor quality roughages into nutritious and quality food [1, 2]. There

is a high variation in phenotypic attributes, which indicates that further enhancement might

be possible. Milk yield of the Nili-Ravi breed is commonly associated with many influential

factors; however, the breed has high milk potential as compared with other buffalo species in

Asia [2]. This variability indicates the possibility of using genomic selection to improve milk

traits in future breeding programs. Some bulls excel in certain economic traits but not all. All

the selected bulls for this study have been made available for artificial insemination, and so

these bulls were genetically tested for various traits deemed important in milk production and

body weight [3].

Several genetic studies for milk yield exist and a meta-analysis suggested that a majority of

female traits that contributed to milk yield in dairy cattle tend to be lowly heritable (0.02 to

0.04) when compared to the studies involving male animals with mean heritability estimates

between 0.05 and 0.22 [4]. Though superior genetic effects in both males and females are fun-

damental to breed for high milk production, male genetics is more informative as breeding

values of AI bulls can be estimated with lesser bias [5].

Advances in high-throughput sequencing technologies provide the ability to identify

genome-wide diversity and bottlenecks in domestication. Superior gene pools can be enriched

to reproduce buffalos efficiently with the existing genomic resources and plan future conserva-

tion strategies [2, 6]. Genetic control of any trait specifies the interaction of environmental and

genetic variance [7]. Inbreeding could cause further loss of genetic diversity and could accu-

mulate deleterious alleles in the genomes, thereby resulting in deterioration of the breed,

reduced milk yield, calving performance, udder health, fertility and survivability [8, 9].

Inbreeding gives rise to continuous segments of homozygous genotypes that are linked to

inbreeding depression [10]. For example, one percent increase in FROH (association between

increased inbreeding based on ROH) was associated with 20 kg decrease in 205-days milk

yield [11], and also with 0.4-days extended insemination interval in heifers [12]. Informed

decisions based on molecular knowledge could result in selecting diverse and superior animals

for sustaining milk production.

With next generation sequencing (NGS), genome-wide single nucleotide polymorphisms

(SNPs) can be developed affordably and can be effectively used for genome analysis of various

traits in unexplored livestock such as water buffalo of Pakistan. A normal dam typically con-

ceives on average up to 5 or 6 times in whole life-span but once an elite bull is effectively iden-

tified, its ability to produce a large number of offspring in life-time can be maximized by using

artificial insemination. The detection and development of genome-wide SNP markers are

essential tools for mapping and analyses of quantitative traits for superior bull selection [13–

15].

Recently, many genotyping by sequencing (GBS) studies have been conducted on dairy

breeds because it is a highly multiplexed and simple approach to construct NGS libraries [16–

23]. De Donato et al. [24] used the GBS approach for genotyping 47 cattle breeds from Africa

and the United States, producing 1.4 million unique reads per animal, and identified 63,697

SNPs. The authors concluded that the GBS approach is flexible, novel, sufficiently high-

throughput and capable of providing acceptable genetic markers for genomic selection and

genome-wide association study (GWAS). Ibeagha et al. [25] used the GBS approach to identify

population-specific SNPs for use in improving complex dairy traits. Akanno et al. [26]
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reported seven SNPs with significant dominance associations for birth, weaning and yearling

weight. Surya et al. [27] annotated the genome-wide SNPs of B. bubalis and reported 436 SNPs

in 38 genes affecting fertility and 483 SNPs in 66 genes affecting milk production. Gao et al.

[20] used SNP genotyping and identified two novel SNPs associated with body measurement

traits of cattle.

The present study aimed to identify the chromosome-based distribution of SNPs, resolve

the genetic diversity, and examine linkage disequilibrium (LD) and population structure for

use in GWAS of body weight and milk yield traits in Nili-Ravi buffalo bulls from Pakistan to

determine the quantity of specific traits that they may pass to their daughters. In addition, we

resolved chromosome-based population demography and bottlenecks.

Materials and methods

The animal study was reviewed and approved by institutional guidelines of ethical review com-

mittee, University of Veterinary and Animal Sciences, Lahore, Pakistan.

Population and phenotypes

In total, 167 bulls were randomly selected for this study comprising single generation. Out of

167 breeding bulls, 155 bulls were from Semen Production Unit, Qadirabad, District Sahiwal,

Punjab, Pakistan and other animals were from various other private dairy farms of Punjab in

Pakistan. Animals selected for the study had no history of genital infections [28] and had

diverse physical parameters with reference to the length from shoulder to pin-bone, wither

height, height at sacrum, width between angles of the hip, and girth and width of the face

above the eyes. In addition, bulls were selected based on reproductive parameters (scrotal cir-

cumference and scrotal length). All animals were dewormed and vaccinated regularly for foot-

and-mouth disease, black quarter and haemorrhagic septicaemia. Blood samples were col-

lected by a competent veterinary surgeon after the regular quarantine of animals. Source and

phenotypic details of bulls in the study are in S1 Table.

Genotyping by sequencing

Genomic DNA for genotyping assay was isolated from blood samples of Nili-Ravi breeding

bulls by using Qiagen columns (QIAamp DNA minikit, Qiagen, Hilden, Germany). The quan-

tity of extracted DNA was measured by using the Qubit 3 Fluorometer with a double-stranded

DNA HS assay kit (Invitrogen by Thermo Fischer Scientific, USA). GBS was performed as

described [29, 30]. Briefly, total DNA from all samples was digested with ApeKI to reduce

genome complexity. Digested fragments were ligated to common and barcode adapters with

appropriate overhangs. Ligated products were then further pooled and amplified with compat-

ible primers. Amplified sample pools constituted a sequencing “library”. After PCR reaction,

pooled samples were gel-purified; a GBS “library” distribution of fragment sizes was checked

by using BioAnalyzer (Agilent Technologies, USA). The GBS library was considered appropri-

ate for sequencing reaction if the number of adapter dimers (approximately 128 bp in length)

was minimal and the length of most of the genomic DNA fragment lengths was 170 to 350 bp.

Templates were then quantified and diluted perfectly for sequencing reactions by using Next-

Seq 500 (Illumina, San Diego, CA).

Raw sequence reads were trimmed with use of Sickle (https://github.com/najoshi/sickle),

adopting a minimum PHRED quality threshold of 20 in a sliding window. Then reads were

demultiplexed and barcodes were removed. Trimmed reads were aligned to the B. bubalis ref-

erence sequences (www.ncbi.nlm.nih.gov/biosample/SAMN08640746) with Burrows-Wheeler

Aligner [29]. Aligned reads were processed to identify SNPs by using SAMtools [31, 32] and
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barcode reads were handled and interpreted into a distinct sequence tag set, with a single Tag-

Counts file generated per input file of FASTQ. We used TASSEL-GBS, an efficient bioinfor-

matics pipeline considered for processing raw sequence dataset into a variant genotype file

[33].

Genetic diversity and population structure analysis

Expected nucleotide diversity (θ per bp) and Tajima’s D for various chromosomes were esti-

mated with sliding-window analysis by using TASSEL v5.0 as described [34]. Estimation of fix-

ation index (FST) was based on Wright’s F statistic [35] with use of SNP and Variation Suite

(SVS) v8.1.5. For quantitative assessment of the number of groups in the panel, we used a

Bayesian clustering analysis with a model-based approach implemented in STRUCTURE v2.2

[36]. This approach involves use of multi-locus genotypic data to assign individuals to clusters

or groups (K) without prior knowledge of their population affinities. The program was run

with SNP markers for K values 1 to 9 (hypothetical number of subgroups), with 100,000 burn-

in iterations, followed by 500,000 Markov Chain Monte Carlo iterations for accurate parame-

ter estimates with a high-performance cluster. To verify the consistency of the results, we used

3 independent runs for each K. An admixture model with correlated allele frequencies was

used. The optimal K value was determined by use of an ad-hoc statistic, ΔK [37]. The number

of Ks in each dataset was evaluated by ΔK values estimated with the software Structure Har-

vester, a website and program for visualizing STRUCTURE output and implementing the

Evanno method. In a second approach, we used principal component analysis (PCA) with SVS

v7.7.6 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com). Female genetics was not

included in the present study, which is in similar lines with several reports [3, 38–42].

Linkage disequilibrium (LD) analysis

For GBS study, we considered only SNPs that were successfully mapped to the B. bubalis
whole genome sequence (WGS) draft to avoid spurious LD and incorrect association mapping.

Before analyzing LD distribution, a block of the haplotypes was called for all adjacent SNPs by

using SVS v8.1.5. Adjacent and pairwise measurements of LD were calculated separately for

each chromosome. For computing LD, we used an expectation-maximization (EM) algorithm,

formalized by Dempster et al. [43], an iterative technique for obtaining maximum likelihood

estimates of sample haplotype frequencies.

Identification of runs of homozygosity (ROH)

ROHs were estimated using SNP and Variation Suite (SVS) that uses a sliding window to iden-

tify both ROHs and consecutive stretches that contain a minimum number of homozygous

SNPs, at a minimum pre-specified distance. With this method, the software carries out basic

detections of homozygous stretches identified by the sliding window, and the user only needs

to define the parameter “minimum size” of segments to be identified [44].

GWAS mapping

GWAS comprises a multiple-locus mixed linear model that utilizes a backward and forward

stepwise manner to identify genetic markers in the model as fixed-effects covariates and

applied in SVS v8.1.5 [45]. Manhattan plots were evaluated in Genome Browse v1.0 (Golden

Helix) for significantly associated SNPs. The SNP P-values from GWAS underwent sequential

Bonferroni adjustments [46] and false discovery rate (FDR) study [47, 48]. Gene ontology and
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annotation terms for the SNP-containing sequences for each trait were identified with the

WGS draft of the B. bubalis genome assembly.

Results

Genotyping of water buffalo collection and variation identification

We genotyped 167 water buffalo samples by GBS, which generated approximately 3.71 billion

reads of 75 bp long. The median number of reads for each sample was 1.5 million (range

~100K to 11.0 million). Good barcoded tags with at least 10 read counts, corresponding to

~1.75 billion reads, were obtained and used for SNP calling. The 1.75-billion GBS reads were

aligned to the B. bubalis reference genome (version 1; https://www.ncbi.nlm.nih.gov/genome/

791?genomeassemblyid=374666), with 98% of the unique tags mapped to the genome. From

the alignments, we identified 114,760 SNPs. After retaining SNPs with�5 0% missing data

(representing at least 617 accessions) and minor allele frequency (MAF)� 0.01 (i.e., SNPs

present in at least 7 accessions), we obtained 24,319 SNPs distributed across the B. bubalis ref-

erence genome, with an average of one SNP per 10.6 kb. Only eight regions >500 kb in the ref-

erence genome were not covered by SNPs, because these eight regions were centromeric or

pericentromeric. The MAF distribution of these SNPs is shown in S1 Fig. Among the 24,319

SNPs with� 50% missing data and MAF� 0.01, only biallelic SNPs were retained in the final

SNP dataset.

Chromosome-wise SNPs

When screening for 70% call rate with 0.05 MAF, we isolated 13,039 SNPs for the 167 bulls

studied; 659, 482, 507, 417, 847, 254, 317, 270, 285, 4566, 231, 230, 279, 694, 166, 236, 293, 149,

220, 145, 124, 158, 189, 89 and 1229 were mapped to the WGS draft and located on chromo-

somes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, X and Y,

respectively.

Genetic diversity

Using the final SNP dataset, we performed PCA, which illustrated two clusters and some outli-

ers (Fig 1 and S2 Table). Our results are consistent with those from Lu et al. [49], who also clas-

sified water buffalos into two primary groups, with some outliers. To validate the results of

PCA, we analyzed the population structure of the water buffalo with the Bayesian clustering

algorithm implemented in the STUCTURE program.

ΔK analysis showed that two populations (K = 2) represented the best number of clusters

for these 167 bulls (Fig 2 and S1 Fig). As shown in Fig 2, at K = 2, bulls were grouped into two

groups, which indicated the presence of two lineages in Pakistan and the extent of admixture

of these two lineages (S2 Fig). The population structure at this optimal K was consistent with

the PCA results; all suggested two primary clusters in the Pakistan water buffalo bull collection.

These two lineages indicated that Nili-Ravi is crossbred buffalo originated from the Nili and

River-type buffalos.

Nucleotide diversity

Because of the strong population structure, we assessed patterns of expected nucleotide diver-

sity (θ) and Tajima’s D separately for each chromosome to understand genome-wide bottle-

neck effects. Such information will be of immense use when inferring the evolutionary

dynamics of domestication across the water buffalo genome. Water buffalo domestication is

often associated with “population bottlenecks” because of the limited number of founding
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individuals experiencing domestication events. The frequency of segregating SNPs, as reflected

by various chromosomal measures of mean θ and Tajima’s D, is presented in Fig 3. For water

buffalo, chromosomes 5, 10 and 14 showed reduced nucleotide diversity as compared with the

remaining chromosomes. For chromosome 10, Tajima’s D was also reduced along with mean

θ, which indicates purifying selection as compared with the other chromosomes. Chromosome

21 showed increased nucleotide diversity and Tajima’s D, which indicates the accumulation of

rapid mutations on this chromosome.

LD and recombination rate analysis across the chromosomes

Distribution of LD is essential to understand patterns of historical recombination and the

non-random association of loci. We performed LD analysis for the whole dataset of water buf-

falo breeding bulls, involving all the adjacent pairs of SNPs mapped to various chromosomes

(Fig 4). For computing LD, we used the EM algorithm [43] as an iterative technique for

Fig 1. Principal component analysis (PCA) of 13,039 single nucleotide polymorphisms (SNPs) in 167 Pakistani

Nili-Ravi breeding bulls. Colors are representative of high (blue), medium (pink) and low (red) milk yield bulls,

majorly (93%) based on Semen Production Unit, Qadirabad, District Sahiwal, Pakistan while others are collected from

different dairy farms of Punjab in Pakistan. Each point represents an individual animal and position of the points can

be identified using Eigen values in S2 Table.

https://doi.org/10.1371/journal.pone.0242500.g001

Fig 2. Two clusters inferred from the Pakistani Nili-Ravi population by using STRUCTURE analysis.

https://doi.org/10.1371/journal.pone.0242500.g002
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obtaining maximum likelihood estimates of sample haplotype frequencies. The number of

associations mean LD block and maximum LD block sizes for various chromosomes are pre-

sented in Table 1. As expected, the largest LD block was in chromosome Y, because the Y chro-

mosome in mammals is fixed and will not undergo recombination. In this study, we identified

4169 adjacent SNP pairs in LD, with an average LD decay at 90 kb for the Pakistan water buf-

falo genome.

Distribution of ROH and haplotype blocks

The genome-wide pattern of ROH was determined to examine local homozygosity in Pakistan

water buffalo bulls (Fig 5 and S3 Table). ROH regions can be critically analyzed to identify sus-

ceptibility/deleterious loci across the genome where there has been significant evolutionary

pressure. ROH regions form as a result of selective sweeps around the gene candidates that

have evolutionary significance. Large regions of homozygous SNPs can be common between

subpopulations without a direct common lineage, and these regions can be areas of functional

significance [50]. In this study, we resolved ROH regions on chromosomes 1, 3, 5, 10, 16 and

Y of varied lengths. The Y chromosome showed the highest ROH islands, which is expected,

as in other mammals [51].

Characterization of selection sweeps and domestication signature

A highly significant pairwise FST (P<0.001) distribution with low and high milk yield and

body weight for the buffalo bulls is presented in Fig 6 and S4 Table. These sliding windows

allowed for identifying differential evolutionary signatures across the genome for milk yield

Fig 3. Frequency spectrum for chromosomal means for expected nucleotide diversity (θ) and Tajima’s D for Nili-

Ravi breeding bulls to understand genome-wide bottleneck effects. It shows highly variable nucleotide diversity and

Tajima’s D across various chromosomes.

https://doi.org/10.1371/journal.pone.0242500.g003
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and body weight of the bulls. Furthermore, the patterns of FST variation indicated genomic

areas with the signatures of positive selection and sweeps across various chromosomes. The

pairwise analysis involving low and high bull groups showed higher genetic differentiation rel-

ative to low and high milk yield rather than body weight. Selection signatures detected loci

with larger effects under strong selection on chromosomes 10, 18 and 20 for milk yield with

0.4 cut-off value (Fig 6A). The sliding window of pairwise FST for low and high body-weight

bulls showed higher positive selection signals on chromosomes 7 and 18 with 0.35 cut-off

value (Fig 6B).

GWAS for milk yield and body weight

A Multi-Locus Mixed Linear model was implemented by using the EMMAX algorithm that

involves stepwise regression and Byes Information Criteria (BIC) [45] to identify significantly

associated SNPs for milk yield and body weight. Variance plots (Figs 7A and 8A) include

Fig 4. Linkage disequilibrium decay as measured by r2 averaged in distance intervals across the 25 Nili-Ravi bull

chromosomes. Each LD bar represents a chromosome, and individual LD blocks are colored based on the scale

presented.

https://doi.org/10.1371/journal.pone.0242500.g004
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partitioned error, genetic variance, variance explained in the current model and variance

explained by covariates. Partition of variance explained in current study for milk yield and

body weight was in the range of 70% to 80%. The–log10 P-values for the tested SNPs from

GWAS analyses for both traits are shown as Manhattan plots (Figs 7B and 8B). All significant

SNPs identified by GWAS showed cumulative phenotypic variance of 14% for milk yield and

20% for body weight. On chromosome 10, 14 SNPs were strongly associated with both milk

yield and body weight. These 14 SNPs formed a tag, which is a representative in a region of the

genome with high linkage disequilibrium. Such tag SNPs would reduce time and expense of

mapping the genome areas associated with milk yield and body weight, because they eliminate

Table 1. Chromosome-wise distribution of linkage disequilibrium (LD) blocks for Nili-Ravi.

Chromosome number No. of Associations Mean LD Block size (Kb) Maximum LD Block size (Kb)

1 243 65.45 2068.56

2 179 100.46 3047.04

3 169 63.43 3715.18

4 156 109 1598.18

5 221 47.47 2895.55

6 100 110.17 1793.58

7 101 102.76 3821.12

8 94 109.24 2068.86

9 93 122.87 2611.62

10 1231 13.53 3259.68

11 84 103.8 3043.47

12 63 116.018 2032.92

13 98 53.43 1425.26

14 204 27.52 1445.27

15 50 117.41 2297.35

16 85 81.23 2490.50

17 132 51.64 1773.93

18 51 86.14 2075.73

19 91 56.24 2481.07

20 47 170.13 4782.65

21 52 159.45 2232.41

22 51 67.072 1182.09

23 65 150.68 3362.06

X 27 117.03 1098.19

Y 482 51.73 16734.94

Overall 4169 90.156

https://doi.org/10.1371/journal.pone.0242500.t001

Fig 5. Incidence of each single nucleotide polymorphism (SNP) in a run of homozygosity (ROH) across the Nili-

Ravi water buffalo chromosomes. The X-axis shows the distribution of ROH across the genome and Y-axis represents

the frequency (%) of overlapping ROH shared among samples. See S3 Table for a list of ROH across all the

chromosomes.

https://doi.org/10.1371/journal.pone.0242500.g005
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the need to study each SNP [52]. The tag we identified on chromosome 10 explained the phe-

notypic variance of 14% and 22% for milk yield and body weight, respectively.

P-values, regression beta and minor and major allelic effects are presented for milk yield

and body weight in Tables 2 and 3. Level of significance, allelic effects and phenotypic variance

explained for the other milk yield-associated SNPs on chromosomes 1, 3, 5, 8, 9, 12, 13, 16, 18,

X and Y are also presented. A total of 14% and 85% of the significant SNPs exhibited positive

contribution for milk yield and body weight, respectively. For milk yield, significant SNPs

present on chromosomes 3 and 8 participated in positive contribution. For body weight,

Fig 6. Highly significant pairwise FST (P<0.001) distribution (low vs. high) for a) milk yield and b) body weight

across the Nili-Ravi buffalo chromosomes. SNPs were plotted relative to their physical positions within each autosome.

Individual FST values are in S4 Table.

https://doi.org/10.1371/journal.pone.0242500.g006

Fig 7. Genome-wide association results for dam’s yield (liters) in Nili-Ravi buffalo. a) Variance plots partitioned error, genetic

variance, variance explained in current model and variance explained by covariates. b) Manhattan plot of the chromosome coordinates

on the X-axis, with the negative log-10 of the association P-value for each SNP on the Y-axis. High negative log-10 indicates strong

association with milk yield.

https://doi.org/10.1371/journal.pone.0242500.g007
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chromosomes 1, 6, 7, 9, 10, 14 and Y positively contributed to the phenotypic variance. For

body weight, each significant SNP accounted for about 16% for chromosome 1, 18% for chro-

mosomes 6 and 9, 21% for chromosome 7, 22% for chromosome 10, and 19% for chromosome

Y. Independently, all SNPs for milk yield showed a phenotypic variance of 12% for chromo-

somes 1, 5 and 8; 13% for chromosomes 3, 12, 18 and Y; 16% for chromosomes 9 and 16; 14%

for chromosome 10 and X; and 15% for chromosome 13.

Some of the important gene candidates associated with milk yield were gamma-secretase

subunit APH-1B pseudogene/Rho guanine nucleotide exchange factor 26 (S1_158054912), 26S

proteasome non-ATPase regulatory subunit 5 (S3_172820617), Coilin (S3_55703175), unchar-

acterized LOC112586670/3-beta-hydroxysteroid-Delta(8), Delta(7)-isomerase pseudogene

(S8_2495291, S8_2495296 and S8_2495349), kelch-like family member 29 (S12_75087502),

multidrug resistance-associated protein 4-like (S13_18088155), fatty acid desaturase 2-like pro-

tein FADS2P1/olfactory receptor 5G3-like (S16_3831231), MARVEL domain-containing 3/U6

spliceosomal RNA (S18_39186829), MAPK-interacting and spindle-stabilizing protein-like

(S24_1645) and EF-hand domain-containing 2 (S25_42968291). Apart from the strongly associ-

ated tag on chromosome 10, other SNPs associated with body weight were on chromosomes 1,

6, 7, 9, 14, X and Y. Levels of significance, allelic effects and phenotypic variance for the body

weight-associated SNPs are also presented in Table 3. Notable candidate genes in the genomic

regions associated with body weight were alpha-N-acetylgalactosaminide alpha-2,6-sialyltrans-

ferase 3 (S6_67621520), U6 spliceosomal RNA/Bardet-Biedl syndrome 7 (S7_114945813),

FAM172A family with sequence similarity 172 member A (S9_17523778), glutaredoxin-related

protein 5, mitochondrial (S14_83340556), spermatid nuclear transition protein 3-like

(S25_110079376) and Bombesin receptor subtype 3/Protein CXorf40A-like (S25_115449301).

Discussion

Nili-Ravi bulls are currently classified as a half herd and are an important source of milk in

Pakistan [2, 53]. Because of the narrow gene pool among this herd, transferring superior alleles

Fig 8. Genome-wide association results for body weight (Kg) by mixed linear model analysis. a) Variance plots partitioned error,

genetic variance, variance explained in current model and variance explained by covariates. b) Manhattan plot: the black line represents

the threshold at −log 10 P-value and plots above this line are significantly associated with body weight.

https://doi.org/10.1371/journal.pone.0242500.g008
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to progeny is important. Previous genotyping methods using low density marker systems had lim-

itations in understanding admixture and genome-wide diversity [54]. This is the first report of the

use of genome-wide SNPs generated using GBS to estimate population structure and demo-

graphic history across various chromosomes in Nili-Ravi bulls. In addition, this study is important

to breeders because we identified several genomic regions associated with milk yield and body

weight that could help in genetic improvement of these important economic traits. Boison et al.

[55] summarized various advantages of using genomic methods for breeding buffalo bulls.

Among the 167 animals included in this study, we noted two different lineages based on

admixture analysis. Similar findings were also found by Lu et al. [49] for Chinese indigenous

buffalo breeds. We further noted highly variable nucleotide diversity and Tajima’s D across

various chromosomes, which also agrees with previous studies of Asian buffalo breeds that

used microsatellite [56–58] and mitochondrial markers [59, 60]. For example, chromosome 10

showed reduced nucleotide diversity and Tajima’s D, and chromosome 21 indicated higher

nucleotide diversity and Tajima’s D.

Parameters such as diversity, Tajima’s D pattern, LD decay and ROH address various

aspects of population demography and help in understanding the dynamics of genome-wide

Table 2. Major SNPs pertaining to milk yield in Nili-Ravi.

SNP Chr P-Value -LOG10 (P-

Value)

Regression

Beta

Beta Standard

Error

Prop. Var.

Explained

Minor Allele (Test Allele)!

Major Allele

Minor Allele D

Frequency

S1_158054912 1 0.00083 3.08 -1627.16 468.80 0.13 T!A 0.06

S3_172820617 3 0.000322 3.49 -1768.04 470.74 0.15 T!C 0.06

S3_55703175 3 0.000724 3.14 791.81 225.39 0.13 G!A 0.39

S5_76106561 5 0.000757 3.12 -1092.39 312.16 0.13 T!C 0.09

S8_2495291 8 0.000884 3.05 829.70 240.40 0.13 T!A 0.49

S8_2495296 8 0.000884 3.05 829.70 240.40 0.13 G!C 0.49

S8_2495349 8 0.000884 3.05 829.70 240.40 0.13 C!T 0.49

S9_4493004 9 0.000118 3.93 -1888.13 466.93 0.17 C!G 0.07

S9_4493022 9 0.000118 3.93 -1888.13 466.93 0.17 T!C 0.07

S10_104237148 10 0.000654 3.18 -1216.83 343.36 0.13 T!G 0.06

S10_104295834 10 0.000627 3.20 -1031.78 290.09 0.13 A!T 0.15

S10_104295869 10 0.000627 3.20 -1031.78 290.09 0.13 T!G 0.15

S10_104332442 10 9.22E-05 4.04 -1521.84 369.98 0.17 C!G 0.07

S10_104379763 10 0.000744 3.13 -930.90 265.64 0.13 G!A 0.16

S10_104401718 10 0.000302 3.52 -1037.95 274.97 0.15 T!A 0.15

S10_104401719 10 0.000302 3.52 -1037.95 274.97 0.15 A!T 0.15

S10_104401762 10 0.000302 3.52 -1037.95 274.97 0.15 C!G 0.15

S10_104410613 10 0.000207 3.68 -1377.10 354.59 0.16 C!G 0.07

S10_104422767 10 0.000481 3.32 -1731.56 476.12 0.14 A!T 0.08

S10_104434319 10 0.000632 3.20 -948.36 266.81 0.13 A!G 0.23

S10_104440997 10 0.000264 3.58 -1297.72 340.24 0.15 T!C 0.08

S10_104484172 10 0.000111 3.95 -1278.47 314.77 0.17 C!A 0.11

S10_104514430 10 0.000726 3.14 -1077.40 306.76 0.13 A!G 0.11

S12_75087502 12 0.000166 3.78 -1688.66 427.71 0.16 T!G 0.07

S13_18088155 13 0.00021 3.68 -1449.74 373.59 0.16 T!C 0.05

S16_3831231 16 0.00015 3.83 -1866.75 469.36 0.16 G!A 0.05

S18_39186829 18 0.000708 3.15 -1045.17 296.96 0.13 T!C 0.09

S24_1645 24 0.000372 3.43 -1418.84 382.08 0.14 C!T 0.06

S25_42968291 25 0.000649 3.19 -1235.26 348.32 0.13 G!T 0.08

https://doi.org/10.1371/journal.pone.0242500.t002
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bottleneck effects for predicting genetic gain for commercial traits. LD is a random association

of alleles in subpopulations and is an important parameter for LD mapping or GWAS [61–64].

One description for such varying LD would be the “Bulmer effect,” whereby eminent LD-car-

rying regions are mostly clustered with unique sweeps harboring crucial genes underlying

domestication [65, 66]. In this study, LD analysis revealed 4169 significant SNP associations,

with an average LD decay of 90 kb for the Pakistani Nili-Ravi population. We observed the

maximum LD score for chromosome 10 and largest LD block for chromosome Y. Similar

results observed the LD decline at approximately 50 kb, with an average r2� 0.2 in Chinese

crossbred buffalo groups [Jianghan × Nili-Ravi × Mediterranean and Nili-Ravi × Murrah ×
local (Fuzhong or Xilin)] [67] and an r2 value from 0.412 to 0.139 in Indian Nili-Ravi buffalo

[68], which is much lower than that found in our study. However, comparing our findings

directly with previous reports is difficult because of differences in the scale of sampling, given

that the level of LD decreases with increasing sample size [69]. Recently, the pattern of LD

decay was reported in various cattle and buffalo breeds across the world, including an Iranian

water buffalo population at an average of 57 kb decay [70], Chinese buffalo breeds at 50 kb

for the river group and 15 kb for the swamp group [49], Tunisian cattle at 73.4 kb [71],

Korean cattle breeds from 26 to 32 kb [72] and Colombian Creole cattle breeds from 70 to 100

kb [73].

We performed GWAS using genome-wide SNPs for several novel candidate genes related

to milk yield and body weight traits that are significant breeding goals for dairy industry.

Gamma-secretase subunit APH-1B pseudogene/Rho guanine nucleotide exchange factor 26

gene (Gene ID: S1_158054912) present on chromosome 1 encodes a large protein that func-

tions as a GDP-to-GTP exchange factor and is reported to be a significant candidate gene for

the maternal effect on weaning weight and milk yield traits in cattle [74–76]. In this study,

chromosome 3 harbored at least two genes that affect milk yield. The first is 26S proteasome

non-ATPase regulatory subunit 5 (Gene ID: S3_172820617). The second is Coilin (Gene ID:

S3_55703175) and is one of the main molecular components of Cajal bodies. Both of these

gene members are involved in protein-mediated degradation found in mammary glands of

cows, and this mechanism is involved in milk production of dairy cows [77, 78]. The forma-

tion of various cellular bodies and small nuclear ribonucleoproteins depends on specific struc-

tural proteins, such as Coilin in Cajal bodies [79, 80]. A subset of nuclear bodies uses specific

Table 3. Association results pertaining to body weight in Nili-Ravi.

SNP Chr P-Value -LOG10 Regression Beta Beta Standard Error Prop. Var. Explained SNP allele Minor Allele Frequency

(P-Value)

S1_38497677 1 0.000926 3.03 151.94 43.60 0.17 G!T 0.06

S6_67621520 6 0.000469 3.33 78.10 21.10 0.19 A!T 0.26

S7_114945813 7 0.000128 3.89 136.36 33.29 0.22 G!A 0.10

S9_17523778 9 0.000528 3.28 96.66 26.38 0.18 C!T 0.15

S10_104244729 10 8.13E-05 4.09 119.56 28.27 0.23 G!C 0.15

S10_104244743 10 8.13E-05 4.09 119.56 28.27 0.23 C!T 0.15

S10_104244754 10 8.13E-05 4.09 119.56 28.27 0.23 A!T 0.15

S10_104303781 10 5.74E-05 4.24 -146.72 33.88 0.24 T!G 0.11

S10_104392764 10 0.000151 3.82 95.22 23.53 0.21 C!A 0.35

S10_26780436 10 0.00033 3.48 83.16 21.83 0.19 T!A 0.19

S14_83340556 14 0.000112 3.95 140.95 34.09 0.22 G!T 0.13

S25_110079376 25 0.000134 3.87 141.97 34.77 0.22 A!T 0.41

S25_115449301 25 0.000756 3.12 -106.37 29.96 0.17 C!A 0.18

https://doi.org/10.1371/journal.pone.0242500.t003
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long noncoding RNA (lncRNA) as their scaffolding molecule and is required for mammary

gland development and lactation [81, 82].

Uncharacterized LOC112586670/3-beta-hydroxysteroid-Delta(8) is one of the major

enzymes that participates early in lactation in dairy cattle. An lncRNA (LOC112586670) frag-

ment is a candidate gene associated with buffalo milk production [49, 74, 83–86]. From func-

tional analysis of liver microarray data from mid-lactating Holstein cows, delta(7)-isomerase

pseudogene (Gene ID: S8_2495291, S8_2495296, S8_2495349) is involved in the cholesterol

biosynthesis pathway [87, 88]. This finding suggests that the candidate gene may contribute to

milk metabolic pathways. Many studies have reported the kelch-like family member 29 (Gene

ID: S12_75087502) involved in growth [89] and milk production in dairy cattle and buffalos

[78, 90, 91]. Recently, it was also identified as the closest gene mapped by novel QTL-lead SNP

for milking speed in French Holstein cattle, and T was an effect allele with a −0.08 allelic sub-

stitution effect of the SNP [92]. Multidrug resistance-associated protein 4-like (Gene ID:

S13_18088155) is a member of C subfamily of ATP-binding cassette (ABC) transporters.

ABCC4 acts in basic metabolic pathways and is highly polymorphic, with potential effects in a

variety of phenotypes, and has also been detected in milk during early lactation [74, 91, 93–

95]. The genetic effects of ABCG2 polymorphism have been observed for milk yield traits in

Chinese Holstein cattle [96, 97]. Alim et al. [98] reported that the A allele was the more fre-

quent in Chinese Holstein cattle (0.53), followed by the C allele (0.47). The authors identified

that the CC genotype was associated with increased milk yield and protein percentage during

the first and second lactation, whereas the C-A genotype decreased protein yield, so the C allele

is associated with superior milk performance [97, 98], which is in partial agreement with our

findings. Multidrug resistance-associated protein 4-like may be a novel candidate gene associ-

ated with milk yield.

In the bovine, fatty acid desaturase 2-like protein FADS2P1/olfactory receptor 5G3-like

(Gene ID: S16_3831231) is a potential genetic marker for fatty acid composition in cattle milk

[99–101]. In Jersey cattle, the major allele was A, and significant associations were recorded

for the milk lauric, behenic, lignoceric, oleic, eicosatrienoic, and docosadienoic fatty acids. In

Polish Holstein-Friesian cows, the G allele was prevalent, and significant associations were

observed for erucic and docosahexaenoic acids [99]. MARVEL domain-containing 3/U6 spli-

ceosomal RNA (Gene ID: S18_39186829) could be a novel marker related to milk trait because

on relative expression analysis, its closest members (RNU6B, RNU5A and RNU1A) were used

to assess the suitability of a combination of small nuclear RNAs as a reference RNA in milk

somatic cells of lactating yaks [91, 102, 103]. MAPK-interacting and spindle-stabilizing pro-

tein-like (Gene ID: S24_1645) is involved in regulating milk synthesis [91, 104–106]. EF-hand

domain-containing 2 (Gene ID: S25_42968291) is one of the most common calcium-binding

structural motifs, and a well-defined helix-loop-helix structural domain, present in many cal-

cium-binding proteins, has been identified in milk [107–110]. Our results support these

important insights into the synthesis of milk proteins and potential targets for the future

improvement of milk quality.

We identified alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 3 (Gene ID:

S6_67621520) as a novel marker for body weight, and it also contributes to protein glycosyla-

tion for milk synthesis [111–113]. U6 spliceosomal RNA/Bardet-Biedl syndrome 7 (Gene ID:

S7_114945813) is associated with a rare hereditary disorder that has several phenotypic fea-

tures including retinopathy, obesity, polydactyly and hypogenitalism. Among them, obesity is

the major clinical finding and the incidence is reported to be 72% to 86% in the Bardet-Biedl

syndrome population [114, 115]. From previous findings, Bardet-Biedl syndrome 7 gene could

be considered a good marker for body weight. FAM172A family with sequence similarity 172

member A (Gene ID: S9_17523778) plays an important role in cell proliferation and facilitates
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S-phase entry. Thus, this gene is important as a cell growth regulator [116, 117]. FAM172A is also

reported as a candidate gene for CHARGE syndrome (heart defects, atresia of choanae, retarda-

tion of growth and genital abnormalities) [118]. Glutaredoxin-related protein 5, mitochondrial

(Gene ID: S14_83340556) is required for normal cell growth [119, 120]. Loss of glutaredoxin 3

impedes mammary lobuloalveolar development during pregnancy and lactation [121]. Our study

adds further support to the importance of this gene in relation to the body weight trait. Spermatid

nuclear transition protein 3-like (Gene ID: S25_110079376) was found a new marker for body

mass. Large testes in relation to body mass (relative testes mass) is a strong predictor of high

sperm competition levels in many taxa [122]. This gene family member is essential in chromatin

condensation during spermiogenesis and hence, the family members are candidate genes for

identifying sperm motility markers [123] and for semen quality traits [124]. Bombesin receptor

subtype 3/Protein CXorf40A-like (Gene ID: S25_115449301) has been studied in animals as an

important regulator of body weight, energy expenditure and glucose homeostasis [125–127].

Several female fertility traits in dairy cattle showed reduced genetic correlations among

milk production traits because of low or moderate heritabilities [4, 128]. The male lines

received the greatest attention in selection because of accurate prediction of sire’s heritability

[129]. Estimated breeding values of AI bulls are considered to be more reliable for various pre-

dictions [130]. For this reason, many GWAS studies in dairy cattle has been carried out based

on bulls’ performance for use in genomic selection programs. The use of female data in GS

programs has raised some debatable issues such as readjustment of phenotypes for comparison

with the bulls [131]. A study that identified 105 genome-wide significant SNPs for milk pro-

duction traits was through a paternal transmission disequilibrium test that explored associa-

tions from the sire families [132]. In similar lines to the current study, Nayeri and Stothard

[86] utilized 3,729 North American Holstein bulls for GWAS and a genome scan with 4280

Nordic Red Cattle bulls was used to identify loci affecting milk yields Touru et al. [133].

We also performed pairwise population FST (P<0.001) differentiation for low and high

bulls for milk yield and body weight to understand pattern of selection [134]. All significant

SNPs present on chromosomes 10 and 18, including MARVEL domain-containing 3/U6 spli-

ceosomal RNA (S18_39186829), had high FST values indicating positive selection at these

regions. Flori et al. [135] indicated reduced FST values for GHR gene in milk yield of cattle and

also identified 13 highly significant genomic regions with varied pairwise FST subjected to

recent and/or strong positive selection. For body weight in our study, chromosomes 7 and 18

had high positive selection signals.

Defining ROH in a complex pedigree can be a way to examine homozygosity levels across

the genome that has resulted by inbreeding and selection [136]. In this study, we observed

ROH regions across the buffalo genome on chromosomes 1, 3, 5, 10, 16 and Y, with varied

lengths. Chromosome 10 showed the longest ROH indicating functional significance of several

important milk yield associated loci. Similar results were reported in several cattle breeds:

shorter ROH results from the crosses with distant haplotype relatedness, and recombination

has had more time to trim down ROH that is the target of selection sweeps, whereas greater

ROH length is mostly caused by recent inbreeding [137, 138]. We identified two significant

SNPs (S5_76106561; S10_104237148) in ROH that were negatively associated with the milk

yield trait, so those could be deleterious alleles and fixed in the population. Three other body

weight associated SNPs (S10_104303781; S10_104392764; S25_110079376) are in the ROH

region, S10_104303781 was negatively associated with the weight. Longer ROH had stronger

linear relationship with the number of individuals that carry deleterious homozygous muta-

tions reducing the biological fitness [51]. For example, a large number of genomic regions that

contain long ROH manifested unfavorable associations because of deleterious mutations with

milk yield in Holstein cattle [139].
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Conclusion

Our study demonstrates the utility of the GBS approach for genetic analysis of complex dairy

traits and for understanding the population structure of Pakistani Nili-Ravi buffalos. Our SNP

analysis revealed that Nili-Ravi bulls are admixed with two lineages. Our GWAS for milk yield

and body weight identified SNPs located in candidate genes previously identified in other

dairy breeds. Results of this study suggested that male effects contribute strong genetic effects

for milk yield. In future, favorable allele combinations from this study could be used to gener-

ate Nili-Ravi breeding bulls with high milk yield and body weight by selecting the bull with

higher genetic merit is tantamount that will produce a daughter, who in-turn produces the

greatest net revenue for dairy industry in terms of improved or superior commercial traits.

Performance of their daughters will later be used to update these measures. Since these dairy

bull data were publicly available, individual bull efficiency results can be disseminated to

potential semen buyers.
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