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We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering
in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale
line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image
maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessianmatrix.These points are
expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of
the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different
scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is
the STARE project’s dataset and the second one is the DRIVE dataset.The experimental results, applied on the STARE dataset, show
a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average
reaches 91.55%.

1. Introduction

For decades, retinal images are widely used by ophthalmolo-
gists for the detection and follow-up of several pathological
states [1–5]. Fundus photographs, also called retinal pho-
tography, are captured using special devices called “Charged
Coupled Devices” (CCD), which are cameras that show the
interior surface of the eye [6–10]. These images directly pro-
vide information about the normal and abnormal features in
the retina. The normal features include the optic disk, fovea,
and vascular network. There are different kinds of abnor-
mal features caused by diabetic retinopathy (DR) such as
microaneurysm, hard exudate, soft exudate, hemorrhage, and
neovascularization. An example of retinal images obtained by
fundus photography is given in Figure 1, where two retinal
images are shown. The first one does not show any DR sign

(Figure 1(a)) and the second one demonstrates advanced-
DR signs indicated by color arrows (Figure 1(b)). However,
the manual detection of blood vessels is very difficult since
the blood vessels in these images are complex and have
low level contrast [11]. Also, not all the images show signs
of diabetic retinopathy. Hence, a manual measurement of
the information about blood vessels, such as length, width,
tortuosity, and branching pattern, becomes tedious. As a
result, it increases the time of diagnosis and decreases the
efficiency of ophthalmologists.Therefore, automaticmethods
for extracting and measuring the vessels in retinal images are
needed to save the workload of the ophthalmologists and to
assist in characterizing the detected lesions and identifying
the false positives [12].

Several works have been proposed for detecting the
2D complex vessel network, such as single scale matched
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(a) Normal retina (b) Abnormal retina

Figure 1: Retinal images [32].

filter [13–15], multiscale matched filter [16], adaptive local
thresholding [17], single-scale Gabor filters [18], and mul-
tiscale Gabor filters [19]. Cinsdikici and Aydin [20] put
forward a blood vessel segmentation based on a novel hybrid
model of the matched filter and the colony algorithm, which
extracts vessels perfectly but the pathological areas can affect
the result. In [21–23] authors adapted another approach
which applied mathematical morphological operators. The
suggested method in [21] proved to be a valuable tool for
the segmentation of the vascular network in retinal images,
where it allowed obtaining a final image with the segmented
vessels by iteratively combining the centerline image with the
set of images that resulted from the vessel segments’ recon-
struction phase using the morphological operator. However,
the inconvenience of this method is when a vessel centerline
ismissing, so the corresponding segmented vessel is normally
not included in the final segmentation result. In [22], the
authors proved that it was possible to select vessels using
shape properties and connectivity, as well as differential
properties like curvature.The robustness of the algorithm has
been evaluated and tested on eye fundus images and on other
images. Gang et al. [24] showed that the Gaussian curve is
suitable for modeling the intensity profile of the cross section
of the retinal vessels in color fundus images. Based on this
elaboration, they proposed the amplitude-modified second-
order Gaussian filter for retinal vessel detection, which
optimized thematched filter and improved the successfulness
of the detection. Staal et al. [25] explained a method for
an automated segmentation of vessels in two-dimensional
color images. The system was based on extracting image
ridges that coincide approximately with vessel centerlines,
where the evaluation was done using the accuracy of hard
classifications and the values of soft ones. In [26], the authors
presented a hybrid method for an efficient segmentation of
multiple oriented blood vessels in colour retinal images. The
robustness and accuracy of the method demonstrated that it
might be useful in a wide range of retinal images even with
the presence of lesions in the abnormal images. Dua et al.
[27] presented a method for detecting blood vessels, which
employs a hierarchical decomposition based on a quad tree
decomposition. The algorithm was faster than the existing
approaches. In the recent years, alternative approaches for an
automated vessel segmentation have used the Hessian-based

multiscale detection of curvilinear structures, which has been
effective in discerning both large and small vessels [28–31].

In this paper, we propose a multiscale response to detect
linear structures in 2D images. We will use the formulation,
which was suggested in [36, 37]. The presented detection
algorithm is divided into two steps. First, we present a flux-
based anisotropic diffusion method and apply it to denoise
images corrupted by an additive Gaussian noise. In order to
extract only the pixels belonging to a vessel region, we use
a Gaussian model of the vessels for interpreting the eigen-
values and the eigenvectors of the Hessian matrix. Then, we
compute the multiscale response from responses computed
at a discrete set of scales. The method has been evaluated
using the images of two publicly available databases, the
DRIVE database [34] and the STARE database [33]. Prior
to analysing fundus images, we have used the green channel
alone, since it gives the highest contrast between the vessel
and the background.

2. Methodology

2.1. Preprocessing Technique. In the ocular fundus image,
edges and local details between heterogeneous regions are
the most interesting part for clinicians. Therefore, it is very
important to preserve and enhance edges and local fine
structures and simultaneously reduce the noise. To reduce
the image noise, several approaches have been proposed
using techniques such as linear and nonlinear filtering. In
linear spatial filtering, such as Gaussian filtering, the content
of a pixel is given by the value of the weighted average
of its immediate neighbors. This filtering not only reduces
the amplitude of noise fluctuations but also degrades sharp
details such as lines or edges, so the resulting images appear
blurred and diffused [24, 38]. This undesirable effect can
be reduced or avoided by designing nonlinear filters. The
most common technique is median filtering. With it the
value of an output pixel is determined by the median of the
neighborhood pixels.This filtering retains edges but results in
a loss of resolution by suppressing fine details [39]. In order
to perform this task, Perona and Malik (PM) [18] developed
an anisotropic diffusionmethod, amultiscale smoothing, and
the edge detection scheme, which were a powerful concept
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in image processing. The anisotropic diffusion was inspired
from the heat diffusion equation by introducing a diffusion
function, 𝑔, which depended upon the norm of the gradient
of the image:

𝜕𝑢

𝜕𝑡
= div(𝑔(|∇𝑢|) ⋅ ∇𝑢), (1)

where ∇ and 𝑢(𝑥, 𝑡) denote gradient operation and image
intensity, respectively, div is the divergence operator, and
| ⋅ | denotes the magnitude. The variable 𝑥 represents the
spatial coordinate, while the variable 𝑡 is used to enumerate
iteration steps in the discrete implementation. Perona and
Malik suggested the following diffusion functions:

𝑔(|∇𝑢|) =
1

1 + (|∇𝑢|/𝑘)
2
,

𝑔(|∇𝑢|) = exp[−(|∇𝑢|
𝑘

)

2

],

(2)

where 𝑘 is a parameter of the norm gradient. In this method
of anisotropic diffusion, the norm gradient is used to detect
edges or frontiers in the image as a step of intensity discon-
tinuity. To understand the relation between the parameter 𝑘
and the discontinuity value |∇𝑢|, 𝐹(∇𝑢) can be defined as the
following product 𝐹(∇𝑢) = 𝑔 × ∇𝑢, called the flow diffusion.

(i) If |∇𝑢| ≫ 𝑘, then 𝑔(|∇𝑢|) → 0 and we have a filter
pass-all.

(ii) If |∇𝑢| ≪ 𝑘, then 𝑔(|∇𝑢|) → 1 and we obtain an
isotropic diffusion filter (like a Gaussian filter), which
is a low-pass filter that attenuates high frequencies.

The one-dimensional discrete implementation of (1) is
given by

𝜕𝑢
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≈ 𝐹right − 𝐹left if 𝑑𝑥 = 1,
(3)

where 𝐹right = 𝐹(𝑥 + (𝑑𝑥/2), 𝑡) and 𝐹left = 𝐹(𝑥 − (𝑑𝑥/2), 𝑡).
The above result is generalized in 𝑛-dimensional:
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Figure 2: PM anisotropic diffusion.
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Figure 3: Directional anisotropic diffusion.

Up to now, the anisotropic diffusion has been defined
as the case where the diffusivity is a scalar function varying
with the location in the image. As described earlier, the PM
diffusion (Figure 2) limits the smoothing of an image near
the pixels with a high gradient magnitude (edge pixels). As
the diffusion near an edge is very weak, the noise smoothing
near the edge is also small. To address this, diffusions using
matrices instead of scalars have been put forward [36, 40,
41], where the anisotropic diffusion allows the diffusion to
be different along various directions defined by the local
geometry of the structures in the image (Figure 3). Thus,
the diffusion on both sides of an edge can be prevented
while allowing the diffusion along the edge.This prevents the
edge from being smoothed and then being removed during
denoising.

The 𝐹 flux of the matrix diffusion (MD) form can be
written as

div(𝐷∇𝑢), (5)

where 𝐷 is a positive definite symmetrie matrix that may be
adapted to the local image structure, which can be written in
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Table 1: Parameters and results of different filters for vessel image.

Filter 𝑁 𝑘 𝛽 𝜎 𝑑𝑡 Neig. PSNR (dB) MSE
GF — — — 2 — 9 × 9 37.7717 10.8620
MF — — — — — 5 × 5 38.6364 8.9011
PM 13 7 — — 0.15 — 39.6735 7.0103
DAD 50 7 0.05 0.8 0.05 — 40.4337 5.8845

terms of its eigenvectors V
1
and V
2
and eigenvalues 𝜆

1
and 𝜆

2
,

as follows:

𝐷 = [V1 V
2] [

𝜆
1

0

0 𝜆
2

][

[

V𝑇
1

V𝑇
2

]

]

. (6)

Subsequently, the gradient vector field can be written as

∇𝑢 = 𝑢V
1

V
1
+ 𝑢V

2

V
2
. (7)

Following the eigenvalues and eigenvectors that we have
chosen, different matrix diffusions can be obtained [36,
41]. The diffusion matrix proposed by Weickert et al. [41]
had the same eigenvectors as the structure tensor, with
eigenvalues that are a function of the norm of the gradient
[41, 42]. In our work, we have used a 2D basis (V∗

1
, V∗
2
) which

corresponds, respectively, to unit vectors in the directions of
the gradient and to the minimal curvature of the regularized
(or smoothed) version of the image, which is the image
convolved with a Gaussian filter with a standard deviation
𝜎. This basis is of particular interest in the context of
small, elongated structures such as blood vessels, where the
minimal curvature holds for the axis direction orthogonal
to the gradient. These directions are obtained as two of the
eigenvectors of the Hessian matrix of the smoothed image:
𝐻
𝜎
(further details are described in Section 2.3). Therefore,

the eigenvectors are defined as follows:

V∗
1
‖ ∇𝑢
𝜎
,

V∗
2
⊥ ∇𝑢
𝜎
,

(8)

where ∇𝑢
𝜎
is the gradient of the image convolved with a

Gaussian filter with a standard deviation 𝜎, V∗
2
gives an

estimation of the vessel direction, and V∗
1
is its orthogonal.

Also, we have used the eigenvalues in (6) as a diffusion
function associated to each vector of the basis depending on
the first order derivative of the intensity in this direction,
instead of the traditional norm of the smoothed gradient.
Furthermore, the diffusion can be decomposed as a sum of
diffusions in each direction of the orthogonal basis and the
divergence term can be written as [36]

div(𝐹) = div(
2

∑

𝑖=1

𝜙
𝑖
(𝑢V∗
𝑖

) ⋅ V∗
𝑖
) =

2

∑

𝑖=1

div(𝜙
𝑖
(𝑢V∗
𝑖

) ⋅ V∗
𝑖
), (9)

where 𝑢V∗
𝑖

and 𝜙
𝑖
indicate the first order derivative of the

intensity in the direction V
𝑖
and the 𝑖th diffusion function,

respectively. Also, 𝜙
1
can be chosen to be any of the diffusivity

functions from the traditional nonhomogeneous isotropic

diffusion equation, which depends on the first order deriva-
tive of the intensity in this direction, as 𝜙

1
(𝑢V∗
1

) = 𝑢V∗
1

𝑒
−(𝑢V∗
1

/𝑘)
2

and 𝜙
2
(𝑢V∗
2

) = 𝛼 ⋅ 𝑢V∗
2

, with 0 < 𝛼 < 1, being only a diffusing
function to allow smoothing in a V∗

2
direction. For further

details, the reader could refer to [36, 43].
As in [36], we use a data attachment term with a

coefficient 𝛽 which allows a better control of the extent to
which the restored image differs from the original image
𝑢
0
(at 𝑡 = 0) and of the result of the diffusion process at

convergence. The anisotropic diffusion equation becomes

𝜕𝑢

𝜕𝑡
=

2

∑

𝑖=1

div(𝜙
𝑖
(𝑢V∗
𝑖

) ⋅ V∗
𝑖
) + 𝛽(𝑢 − 𝑢

0
). (10)

In order to evaluate the denoising effects of the directional
anisotropic diffusion (DAD), we have added aGaussianwhite
noise to each of the images in Figure 4. Once the diffusion
method is applied to these noisy images, its effectiveness in
reducing the noise is got by calculating the peak signal to
noise ratio (PSNR) relative to the original image as follows:

PSNR = 10 ⋅ log
10
(

𝑑
2

MSE
), (11)

where 𝑑 = 255 and MSE is the mean-squared error which is
written as

MSE = 1

𝑁𝑀

𝑁

∑

𝑖=1

𝑀

∑

𝑗=1

(𝐼original(𝑖, 𝑗) − 𝐼denoised(𝑖, 𝑗))
2

, (12)

where 𝐼original refers to the original image without noise and
𝐼denoised is the image after the denoising process.

The higher the PSNR is, the better the effect of the
denoising is. Note that this measure does not necessarily
imply that an image with a higher PSNR is also more visually
gratifying. However, based on our experiments using the
three test images with an additive white Gaussian noise, we
can draw some observations. First, all the techniques we have
tried have several parameters that must be selected carefully
to obtain the best results. Since we have a “clean” original
image, as well as one with noise, we can use the increment in
the PSNR value to guide our choice of the parameters. These
parameters and the obtained results are indicated in Tables 1,
2, and 3, where we can observe that for the images corrupted
with an additive Gaussian noise, the DAD method performs
better than the PMmethod. It gains a higher PSNR (40.4337,
20.9045, and 33.3515) and a smaller MSE (5.8845, 527.9932,
and 30.0557) than the aforementioned three methods.

Figure 4 represents some of the best results for the differ-
ent methods (GF, MF, PM, and DAD) on the presented three
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Figure 4: Original images (a) and the corresponding images with additive Gaussian noise (b); denoised images: best result with GF (c), best
result with MF (d), best result with PM filter (e), and best result with directional anisotropic diffusion filter (f).

Table 2: Parameters and results of different filters for phantom image.

Filter 𝑁 𝑘 𝛽 𝜎 𝑑𝑡 Neig. PSNR (dB) MSE
GF — — — 2 — 5 × 5 18.8731 842.8924
MF — — — — — 5 × 5 20.2437 614.7677
PM 20 3 — — 0.15 — 20.8821 530.7294
DAD 75 2 0.05 0.8 0.05 — 20.9045 527.9932

Table 3: Parameters and results of different filters for Lena image.

Filter 𝑁 𝑘 𝛽 𝜎 𝑑𝑡 Neig. PSNR (dB) MSE
GF — — — 2 — 5 × 5 31.4598 46.4621
MF — — — — — 5 × 5 29.14504 79.1734
PM 10 7 — — 0.15 — 32.9911 32.6562
DAD 20 7 0.05 0.8 0.05 — 33.3515 30.0557

test images (Vessels, phantom, and Lena). For instance, the
results recorded after applying the DAD method show that
this latter improves much more the visual rendering of the
image compared to othermethods. As shown in the images of
the first row, a DAD filter can effectively improves the quality
of a noisy image and also well enhances edges and preserves
more details than other filters. Indeed, the Gaussian filter
smooths very strongly the planar areas which causes loss of
information regarding the fine structures of the image, and it
blurs the image.TheMedian filter, compared to the Gaussian
filter, preserves edges but losses details. Comparing the results
of the DAD method to those obtained by the PM diffusion
in Figures 5 and 6, we can derive several observations. The
denoising of PM diffusion model is sensitive to the value
of the conductance parameter 𝑘, and, therefore, smoothing
is performed along ridges but not across a ridge line which
causes enhancing the desired ridges as well as the noise.
To be compared to the DAD diffusion filter, the diffusivity

is a tensor-valued function varying with the location and
orientation of edges in an image. So, when this filter is applied
to a ridge line smoothing is performed along ridges as across
a ridge line while preserving the details.

2.2. Multiscale Medialness. The general approach of multi-
scale methods is to choose a range of scales between 𝑡min and
𝑡max (corresponding to 𝜎min and 𝜎max), which are discretized
using a logarithmic scale in order to have more accuracy
for low scales and to compute a response for each scale
from the initial image [36, 43, 47]. The user specifies the
minimal and maximal radius of the vessels to extract. Thus,
the computation of the single scale response requires different
steps. First, a number of points are preselected using the
eigenvalues of the Hessian matrix. These points are expected
to be near a vessel axis. Then, for each preselected point, the
response is computed at the current scale 𝜎. The response
function uses eigenvectors of the Hessianmatrix of the image
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Figure 5: PM anisotropic diffusion (𝑘 = 3,𝑁 = 100).

Figure 6: Directional anisotropic diffusion (𝑘 = 3, 𝑁 = 100, 𝛼 =

0.5).

to define at each point an orientation 𝐷(𝜎, 𝑥) orthogonal to
the axis of a potential vessel that goes through𝑀. From this
direction, the two points located at an equal distance of𝑀 in
the direction 𝐷, noted 𝑀

1
and 𝑀

2
(Figure 7). The response

𝑅
𝜎
(𝐼) at 𝑀 is taken as the maximum absolute value, among

these two points, of the first derivative of the intensity in the
𝐷 direction:

𝑅
𝜎
(𝑥)

= max{∇
𝜎
𝐼(𝜎, 𝑥 + 𝜎 ⋅ 𝑑) ⋅ (+𝑑), ∇

𝜎
𝐼(𝜎, 𝑥 − 𝜎 ⋅ 𝑑) ⋅ (−𝑑)},

(13)

where 𝑑 is the unitary vector of the direction 𝐷, that is,
𝑑 =

→V
1
, and ∇

𝜎
𝐼 is the gradient of the image at the scale 𝜎.

∇
𝜎
𝐼 is obtained by the convolution with the first derivative

of a Gaussian function of the standard deviation 𝜎, where
multiplying the derivatives by 𝜎 ensures the scale invariance
property and allows comparing the responses obtained from
different scales.The gradient vector∇

𝜎
𝐼 can be computed by a

bilinear interpolation for better accuracy, which is especially
needed when looking at small vessels [37, 39].

A vessel of a radius 𝑟 is detected at a scale 𝑡, so we use
the scales corresponding to each radius for the multiscale
processing. For a fixed scale 𝑡, we calculate a response
image 𝑅

𝑡
(𝐼) where 𝐼 is the initial image. Then we calculate

∇I(𝜎, x + r · d)

+d

x + r · d

x

x − r · d

−d

∇I(𝜎, x − r · d)

Figure 7: Representation of vesselness measure calculation (from
the point 𝑥 on the central line, 𝑑 is the unit vector perpendicular to
the main direction of the vessel and 𝑟 = 𝜎 is the current scale).

the multiscale response for the image 𝑅multi(𝐼) which is the
maximum of the responses over scales: for each point 𝑥 ∈ 𝐼

and a range [𝑡min, 𝑡max] of scale:

𝑅multi(𝑥) = max
𝑡

{𝑅
𝑡
(𝑥), 𝑡 ∈ [𝑡min, 𝑡max]}. (14)

This response𝑅multi(𝑥) can be interpreted as an indicator that
the point 𝑥 belongs to the center line of a vessel, and𝑅

𝑡
(𝑥) can

be interpreted as an indicator that the point 𝑥 belongs to the
center line of a vessel with a radius 𝑡. Finally, this response
is normalized to give a multiscale response that combines
interesting features of each single scale response.

One difficulty with the multiscale approach is that we
want to compare the result of a response function at different
scales, whereas the intensity and its derivatives are decreasing
scale functions. So far, all considerations have been made at
a single scale defined by the scale parameter 𝜎. In his work,
about scale space theory, Lindeberg and Fagerström [48]
showed the need for a multiscale analysis to take the varying
size of objects into account. He also showed the necessity of
normalizing the spatial derivatives between different scales.
Thus, the normalized vesselness response is obtained by the
product of the normalization term 𝜎

𝛾 and the final vesselness:

𝑅
∗
(Σ, 𝛾, 𝑥) := max

𝜎∈Σ

𝜎
𝛾
⋅ 𝑅(𝜎, 𝑥) = max

𝑖=1,...,𝑛

𝜎
𝛾

𝑖
⋅ 𝑅(𝜎
𝑖
, 𝑥). (15)

The parameter 𝛾 can be used to indicate the preference for
a particular scale (Figure 8). If it is set to one, no scale is
preferred. Besides, the multiscale response is got by selecting
the maximum response over a set of different scales between
𝜎min and 𝜎max.

2.3. Extraction of Local Orientations. The proposed model
assumes that the intensity profile of the vessels in the cross
section is Gaussian (Figure 9). This is a common assumption
that it is employed in numerous algorithms [28, 35, 49].
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(a) (b) (c)

Figure 8: Influence of the normalization parameter 𝛾 on multiscale response; (a) 𝛾 = 1 is neutral; (b) 𝛾 > 1 favors large scales; finally, (c)
𝛾 < 1 favors small scales.
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Figure 9: Example of cross sectional profile of blood vessel from gray scale 2D image (the gray intensities are plotted in a 3D view. The 𝑥, 𝑦
axis is the position of the pixel in the 2D plane of the image, whereas the 𝑧-axis is the gray value or intensity of the pixel).

It is also commonly assumed that the intensity does not
change much along vessels [49–51]. Recently, the Hessian
matrix could be used to describe the local shape charac-
teristics and orientation for elongated structures [35, 52].
The eigenvalues of this matrix, when the gradient is weak,
express the local variation of the intensity in the direction
of the associated eigenvectors. Subsequently, we assume that
we want to characterize the dark vessels (low intensity) on a
white background (high intensity).

Let us denote 𝜆
1
and 𝜆

2
as the eigenvalues of the Hessian

matrix with 𝜆
1

≥ 𝜆
2
and →V

1
, →V
2
being their associated

eigenvectors (Figure 10). For a linear model with a Gaussian
cross section, the vessel direction is defined by the eigenvector
with the smallest eigenvalue at the center of the vessel, but it
is less determined at the contours because both eigenvalues
of the Hessian matrix are zero.

To summarize, for an ideal linear structure in a 2D image,

𝜆2
 ≈ 0,

𝜆1
 >

𝜆2
.

(16)

In retinal images, some large vessels may have a white
line in their center and some elongated and disjoint spots
(Figures 11(a), 11(b), and 11(c)); accordingly, the vessels do
not invalidate the Gaussian profile assumption. So, such lines
are usually lost after the preselection of vessel pixels using
the Hessian eigenvalue analysis and classified as background
pixels. Therefore, the responses of the gradient magnitude
are a task which is of particular importance in improving
the detection vessels (Figure 11). The experimental results are
demonstrated in Figure 11, which shows hand labeled “truth”
images, and segmented images obtained, respectively, by the
Hessian eigenvalue analysis and the gradient magnitude.
From these results we can deduce that responses based on the
gradient magnitude can availably detect white lines as vessel
pixels an removes some noise spots.

3. Results

In this section, the proposed method has been evaluated on
two publicly available retinal image databases, the STARE
database [33] and the DRIVE database [25]. The STARE
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Figure 10: Eigenvalue analysis. (a) vessel cross section; (b) intensity distribution (𝜎 = 4.55) vessel cross section; (c) corresponding eigenvalues.
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Figure 11: Retinal blood vessel detection. (a, b, and c) original images [33]; (d–g, e–h, and f–i) subimage of hand labeled image, vessel detection
based Hessian eigenvalue analysis, and improved vessel detection with gradient magnitude.
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(a) (b)

Figure 12: Binary mask of STARE project retinal image [33].

dataset contains twenty fundus colour retinal images, ten of
which are from healthy ocular fundi and the other ten are
from unhealthy ones.These images are captured by a Topcon
TRV-50 fundus camera at a 35 Field Of View (FOV), which
have digitized with a 24-bit gray-scale resolution and a size
of 700 × 605 pixels. The dataset provides two sets of standard
hand-labeled segmentations, which are manually segmented
by two eye specialists.We create for this dataset a binarymask
of the gray channel of the image using a simple threshold
technique (Figure 12). We adapt the first eye specialist hand
labelled as the ground truth to evaluate our vessel detection
technique. The DRIVE dataset consists of 40 fundus ocular
images, which have been divided into a training set and a
test set by the authors of the database. These images are
captured by the Canon CR5 camera at 45 FOV, which have
been digitized at 24 bits with a resolution of 565 × 584 pixels.
The dataset also gives two sets of standard hand-labeled
segmentations by two human experts as a 9-ground truth.

The first expert hand labelled segmentation has been
adapted as a ground truth to evaluate segmentation tech-
niques on both STARE and DRIVE datasets. It is a common
practice to evaluate the performance of retinal vessel seg-
mentation algorithms using receiver operating characteristic
(ROC) curves [25, 35]. An ROC curve plots the fraction
of pixels correctly classified as vessels, namely, the true
positive ra te (TPR), versus the fraction of pixels wrongly
classified as vessels, namely, the false positive rate (FPR), by
varying the rounding threshold 𝑇 from 0 to 1 (Figure 13).
The closer the curve approaches the top left corner, the better
the performance of the system. In order to facilitate the
comparisonwith other retinal vessel detection algorithms, we
have selected the value of the area under the curve (AUC),
which is 1 for an ideal system.

To measure the performance of the proposed enhance-
ment filter, we ran our multiscale analysis filter with the
following set of parameters:

(i) 𝑟min, 𝑟max, 𝑠, and the minimal and maximal radii used
in this application are 𝑟min = 1.25 and 𝑟max = 7, dis-
cretized using 𝑠 = 4 scales;

(ii) the parameter 𝛾 set to one to indicate no scale is
preferred;

(iii) the value 𝑘 is a constant threshold on the norm of
gradient on the image;

(iv) 𝑁 is the number of iterations for the anisotropic
diffusion filter.

The computing time of our algorithm for an image of the
STARE database is about 64 seconds, including anisotropic
diffusion filtering, and about the same time for the DRIVE
database. The implementation of the filter has been done in
MATLAB, on a personal computer with a 2.13 Intel Core
Duo processor and 4GB of memory. In the first experiment,
we apply a preprocessing task such as filtering data with
an anisotropic diffusion version, cited above, in order to
remove or at least reduce noise. The DAD filter denoises
the original image by preserving edges and details. To show
that the segmentationworks betterwith anisotropic diffusion,
Figure 14 presents a segmentation result before and after the
application of the anisotropic diffusion scheme. In this figure,
we show the improvements provided by the DAD model,
which tends to remove noise effects and, unfortunately,
smaller objects. So, it preserves efficiently the vessels while
making the background more homogeneous.

On the other hand, for computing the response, it is
possible to retain the mean of the two calculated values (the
gradient of the two points located at an equal distance from
the current point), like in the 3D case proposed by [36], or
the minimal calculated value in the 2D case [37]. We prefer
retaining the maximum of these two values. Figure 15 shows
a synthetic image which consists of 100 × 100 pixels with an 8-
bit resolution. We have chosen this image because it contains
an object close to the vessel form. The latter figure shows the
segmentation results by maximum, average, and minimum
response functions. We note that for the case of minimum or
average responses, the ring is not completely detected like in
the original image, since we can see it has beenmissing pixels
belonging to the edges, in contrast to maximum case where
the extraction of the ring is complete. Table 4 presents the
AUC calculatedwith ourmethod for the test set of the STARE
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Figure 13: ROC curve of retinal image (06 test.tif) downloaded from DRIVE dataset [34]; (a) original image; (b) segmented image; (c) Roc
curve.
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Figure 14: Effect of anisotropic diffusion. (a) Green channel of the original image downloaded from the STARE project dataset [33]. (b)
Subimage of the original image, rescaled for better visualization, (c) segmentation without anisotropic diffusion, and (d) segmentation with
anisotropic diffusion, 𝑘 = 1.25, 𝛽 = 0.05, and𝑁 = 30.
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Figure 15: Original synthetic image, maximum response, average response, and minimum response 𝜎 ∈ {0.25, 0.5, 1, 2, 4} (left to right-top
to bottom).

Table 4: STARE project database [33].

Mean Min Max
AUC 0.9329 0.9053 0.9445

database, using the green channel images. As given in the
table, the experimental results show that themaximummodel
(AUC = 0.9445) performs much better than the average
(AUC = 0.9329) or minimummodel (AUC = 0.9053).

Figure 16 presents the obtained response image of a real
retinal image, where four scales have been used for radii of
vessels ranging from 1.25 to 7: {1.25, 2.22, 4, 7}. This figure
shows that small and large vessels can be better distinguished
in the maximum case than the minimum or average ones.

Although the contrast is not very high in the original
figure (Figure 14(a)), the method detects most vessels, over
a large size range. For example, in Figure 17, an image of
the retinal tree vasculature is presented, where different
responses recorded at increasing scales are represented. The
last image shows a quite good performance of the vessel
subtraction. Yet Figure 18 proves that it is possible to design a
system that approaches the performance of human observers.

In order to evaluate the suggested method, experiment
results of the 20-image sets of the STARE database are shown
in Table 5. In Table 6, our method is compared to the most

Table 5: ROC curve analysis of STARE project database [33].

Number MAA TPR FPR
1 0.9014 0.5537 0.0398
2 0.8740 0.1178 0.0045
3 0.9168 0.3819 0.0119
4 0.9286 0.5525 0.0135
5 0.9240 0.5678 0.0218
6 0.9414 0.5128 0.0139
7 0.9672 0.7626 0.0141
8 0.9683 0.7534 0.0149
9 0.9652 0.7366 0.0123
10 0.9420 0.6171 0.0182
11 0.9503 0.6379 0.0133
12 0.9655 0.7694 0.0105
13 0.9864 0.6992 0.0180
14 0.9480 0.6899 0.0162
15 0.9487 0.6882 0.0207
16 0.9226 0.6788 0.0215
17 0.9499 0.7099 0.0168
18 0.9484 0.6812 0.0102
19 0.9585 0.6058 0.0114
20 0.9345 0.6000 0.0172

Av.MAA Av.TPR Av.FPR
0.9402 0.6145 0.0162
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Figure 16: Real angiography image downloaded from DRIVE dataset [34], average response, maximum response, and minimum response
(left to right-top to bottom).

Table 6: Comparison of vessel segmentation results on STARE
project database [33].

Method MAA TPR FPR
2nd human
observer 0.9354 0.8949 0.0610

Hoover [33, 35] 0.9267 0.6751 0.0433
Mendonça (green)
[21] 0.9440 0.6996 0.0270

Staal [25] 0.9516 0.6970 0.0190
Soares [44] 0.9480 0.7165 0.0252
Matched filter [13] 0.9384 0.6134 0.0245
Martinez-Perez
[45] 0.9410 0.7506 0.0431

MF-FDOG [14] 0.9484 0.7177 0.0247
Proposed method 0.9402 0.6145 0.0162

recent methods in terms of TPR, FPR, and maximum accu-
racy average (MAA) where the maximal accuracy indicates

how to extract a binary image that matches the vessel images
to a high degree. The accuracy is estimated by the ratio of
the sum of the number of correctly classified foreground and
background pixels, divided by the total number of pixels in
the image. In this latest table, the performance measures of
Staal et al. [25], Zhang et al. [14], Mendonça and Campilho
[21], Chaudhuri et al. [13], Martinez-Perez et al. [45], and
Hoover et al. [35] have been reported by their original papers.
In addition, these performance results are the average values
for the whole set of 20 images, except the method of Staal
[25] which used 19 out of 20 images of the STARE images,
among which ten were healthy and nine were unhealthy.
Table 5 presents our results on all 20 images in the STARE
database, estimated using the hand-labeled images set of
the first human expert designated as a ground truth. The
estimated experimental results are the average TPR = 0.6145

corresponding to an FPR of around 0.0162 and a maximum
average accuracy MAA = 0.9402. The results show that our
method has a competitive maximum average accuracy value
where it performs better than the matched filter [13] and
remains close to the others.
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Figure 17: Different responses for different scales of Figure 14(a) (top to bottom); the first four images show the vesselness obtained at
increasing scales. The last image is the result after the scale selection procedure (normalized image).

The results of the proposed method are also compared
with those on twenty images from the DRIVE database,
and the result is depicted in Table 7. The hand-labeled
images by the first human expert have been used as ground
truth. The experimental results show an MAA around of
0.9155. Also, we have compared the performance of the
suggested technique with the sensitivities and specificities of
the methods cited in Table 7. It has been found that for the
DRIVE database the method has provided a sensitivity of
0.5879 and a specificity of 0.0166. We have shown that the
proposed method performs well with a lower specificity even
in the presence of lesions in the abnormal images.

4. Conclusion

The purpose of this work is to detect linear structures in
real retinal images in order to help the interpretation of
the vascular network. We put forward to combining an
anisotropic diffusion filter to reduce the image noise with a
multiscale response based on the eigenvectors of the Hessian
matrix and on the gradient information to extract vessels
from retinal images. The main advantage of this technique
is its ability to extract large and fine vessels at various image
resolutions. Furthermore, the directional anisotropic diffu-
sion plays a vital role in denoising images and in decreasing
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Figure 18: An image of a retina [35], the segmented image, and the hand labeled “truth” images (im0077.vk and im0077.ah) (left to right-top
to bottom) [33].

Table 7: Comparison of vessel segmentation results on DRIVE
database [34].

Method MAA TPR FPR
2nd human
observer [34] 0.9473 0.7761 0.0275

Martinez-Perez
[45] 0.9344 0.7246 0.0345

Staal [25, 34] 0.9442 0.7194 0.0227
Mendonça [21] 0.9452 0.7344 0.0236
Matched filter [13] 0.9284 0.6168 0.0259
Niemeijer [34, 46] 0.9417 0.6898 0.0304
Proposed method 0.9155 0.5879 0.0166

the difficulty of vessel extraction especially for thin vessels.
Our first results show the robustness of the method against
noise as well as its applicability to detect blood vessels. The
MAA is used as a performance measure, and the values
achieved with our algorithm are competitive compared to the
existing methods. Therefore, from the experimental results,
it can be seen that the number of classified pixels has been
slightly lower compared to the other methods using the
same database mainly due to the weakness of blood vessels,
causing missing vessels, and also because of lesions, resulting
in a detection error. Also, the retinal images suffer from
nonuniform illumination and have a poor contrast. Thus,

to avoid wrong classified pixels ormiss classified ones, caused
by an occasional falsemeasurement, this system can very well
be improved in the future with adding, for instance, some
postprocessing tasks to reachmore accuratemeasurement for
blood vessels.
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