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Activation of immune cells is under control of immunological and physiological regulatory
mechanisms to ensure adequate destruction of pathogens with the minimum collateral
damage to “innocent” bystander cells.The concept of physiological negative regulation of
immune response has been advocated based on the finding of the critical immunoregula-
tory role of extracellular adenosine. Local tissue oxygen tension was proposed to function
as one of such physiological regulatory mechanisms of immune responses. In the cur-
rent study, we utilized in vivo marker of local tissue hypoxia pimonidazole hydrochloride
(Hypoxyprobe-1) in the flowcytometric analysis of oxygen levels to which lymphocytes are
exposed in vivo. The level of exposure to hypoxia in vivo was low in B cells and the lev-
els increased in the following order: T cells < NKT cells < NK cells. The thymus was more
hypoxic than the spleen and lymph nodes, suggesting the variation in the degree of oxy-
genation among lymphoid organs and cell types in normal mice. Based on in vitro studies,
tissue hypoxia has been assumed to be suppressive to T cell activation in vivo, but there
was no direct evidence demonstrating thatT cells exposed to hypoxic environment in vivo
are less activated. We tested whether the state of activation of T cells in vivo changes
due to their exposure to hypoxic tissue microenvironments. The parallel analysis of more
hypoxic and less hypoxic T cells in the same mouse revealed that the degree of T cell acti-
vation was significantly stronger in better-oxygenated T cells. These observations suggest
that the extent ofT cell activation in vivo is dependent on their localization and is decreased
in environment with low oxygen tension.
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INTRODUCTION
In vitro studies of immune response have provided many criti-
cal insights into mechanisms of immune recognition. It was also
realized, however, that the conventional in vitro cell culture is
not suitable to studies of regulation of immune response since
it does not faithfully reproduce the in vivo tissue microenviron-
ments especially as it is related to in vivo oxygen tension (Braun
et al., 2001; Caldwell et al., 2001). Although most of in vitro stud-
ies on immune responses have been conducted at normal ambient
atmosphere (21% O2), oxygen concentration in vivo is lower than
this level. Mean oxygen tension drops from ∼100 mmHg in arterial
blood to 40 mmHg in peripheral tissues (Semenza, 2003; Michiels,
2004). The oxygen tension further drops in inflamed tissue, prob-
ably because inflammation damages tissue vasculature and causes
local hypoxia (Karhausen et al., 2005).

The degree of immune cell activation changes dependent on
oxygen tension surrounding the cells. An earlier study showed
that T cell proliferation was maximal when cultured at 20% oxy-
gen (Andersen et al., 1968). Recent in vitro studies culturing cells
at 1–5% oxygen to reproduce cellular responses at more “phys-
iological” oxygen levels resulted in significantly reduced T cell
proliferation as compared to 21% oxygen (Loeffler et al., 1992;
Naldini et al., 1997; Atkuri et al., 2005, 2007; Larbi et al., 2010).
The less oxygenated culture condition decreased IL-2 and IFN-γ

production from stimulated T cells (Zuckerberg et al., 1994; Cald-
well et al., 2001; Kim et al., 2008; Roman et al., 2010). It was also
shown that the hypoxic atmosphere decreased cytotoxic activity of
NK cells (Fink et al., 2003) and retarded development of cytotoxic
T cells in the mixed lymphocyte culture (Caldwell et al., 2001).
Limited maturation of dendritic cells under hypoxic condition
might contribute to the reduction of T cell activation (Yang et al.,
2009; Wang et al., 2010).

These in vitro studies suggest that tissue hypoxia diminishes
lymphocytes activation. A likely explanation for the hypoxic con-
trol of T cell activation involves hypoxia inducible factor-1α

(HIF-1α), a transcriptional factor, which facilitates adaptation
to hypoxic stress by switching the energy supply from oxidative
metabolism to an anaerobic pathway (Majmundar et al., 2010).
Since the switch in energy metabolism considerably reduces ATP
availability, HIF-1α activation may be one of the reasons for the
diminished lymphocyte activities under hypoxia.

Interestingly,HIF-1α overexpression in T cells diminished Ca2+
signaling induced by T cell receptor crosslink (Neumann et al.,
2005). Consistent with the negative role of HIF-1α in T cell acti-
vation, higher levels of IFN-γ were observed from T cells lacking
HIF-1α (Lukashev et al., 2006; Guo et al., 2009). These immuno-
suppressive effects of HIF-1α are consistent with the inhibition
of T cell activation under hypoxia. In B cells, HIF-1α plays an
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important role in normal B cell development and function (Kojima
et al., 2002, 2010). However, other studies revealed an additional
role for HIF-1α in the control of immune cells. Since many
immune cells work in inflamed tissues, which are potentially
hypoxic, adaptation to hypoxic environment might be critical for
their function. Accordingly, HIF-1α-deficient myeloid cells (gran-
ulocytes, monocytes) showed decreased activation and function
(Cramer et al., 2003; Nizet and Johnson, 2009) and it was shown
that in contrast to its effects in T cells,HIF-1α promoted inflamma-
tory cytokines production from macrophages (Peyssonnaux et al.,
2007; Fang et al., 2009). Hypoxia could even prevent apoptosis of
neutrophils (Walmsley et al., 2005).

Extracellular adenosine is another important molecule that
may be involved in the mechanism of hypoxic immunosuppres-
sion in vivo (Sitkovsky et al., 2004; Sitkovsky and Ohta, 2005).
Stimulation of A2A adenosine receptor (A2AR) on the cell sur-
face is known to block activation of granulocytes, monocytes, and
lymphocytes. In T cells, both CD4+ and CD8+ cells are suscep-
tible to A2AR stimulation (Ohta et al., 2009). T cell activation
in the presence of adenosine attenuates proliferation, cytotoxic-
ity, and cytokine producing activities (Ohta et al., 2009). More-
over, A2AR-deficiency was demonstrated to exaggerate proin-
flammatory responses and inflammatory tissue damage in vivo
(Ohta and Sitkovsky, 2001). The result strongly suggests that the
immunoregulatory function of endogenously produced adenosine
is indispensable for the control of immune responses.

Tissue hypoxia is considered to be a trigger for the accumula-
tion of extracellular adenosine by increasing degradation of ATP
(Sitkovsky et al., 2004; Sitkovsky and Ohta, 2005). The whole body
exposure of mice to hypoxic atmosphere resulted in the increase
of blood adenosine levels, and strongly inhibited the induction
of inflammatory tissue injury in the A2AR-dependent fashion
(Choukèr et al., 2008). Tumors, which have potentially hypoxic
microenvironment, were found to contain high levels of adenosine
(Blay et al., 1997; Ohta et al., 2006). The adenosine-rich environ-
ment plays a role in tumors’ escape from immune attack because
the blockade of adenosine-A2AR pathway dramatically improved
tumor regression by immune cells (Ohta et al., 2006). Thus, the
adenosine-A2AR pathway seems to be involved in the mechanism
of hypoxic immunosuppression, though the principal mechanism
for the immunoregulation under hypoxia needs to be investigated.

Since tissue oxygen level can critically affect overall outcome
of immune responses, it is of great interest to study oxygen levels
in lymphoid organs. In general, oxygen availability varies among
tissues and sites within the same tissue (McLaughlin et al., 1996;
Braun et al., 2001; Caldwell et al., 2001; Hale et al., 2002). Direct
measurements by a microelectrode demonstrated that the oxygen
levels in the spleen vary between 0.5 and 4.5% probably dependent
on the distance from the blood vessels (Caldwell et al., 2001). In
the thymus, scattered hypoxic regions were observed in the cortex
and medulla (Hale et al., 2002). These results suggest not only the
presence of variable levels of oxygen in lymphoid organs but also
a possibility that lymphocytes in the same organ may be exposed
to different levels of oxygen dependent on their distribution.

The visualization of hypoxia became feasible with the develop-
ment and improvement of techniques using nitroimidazole com-
pounds, which form stable covalent adducts with cellular proteins

under hypoxia. These compounds have been used to successfully
detect hypoxia in tumors (Lord et al., 1993; Evans et al., 2000;
Vukovic et al., 2001) and other organs (Arteel et al., 1995; Bergeron
et al., 1999; Shabsigh et al., 2001; Koch, 2002) in experimen-
tal animals and humans. Hypoxyprobe-1 (HP-1; pimonidazole
hydrochloride) is a commercially available nitroimidazole com-
pound, which can detect hypoxia as low as 10 mmHg oxygen. In
this study, we utilized flow cytometry in analyses of hypoxic expo-
sure of lymphocytes in vivo using HP-1. We detected different
degrees of hypoxia in lymphoid organs and in lymphocyte sub-
sets. The comparison of more and less hypoxic T cells revealed
that T cells are activated less frequently in the more hypoxic tissue
microenvironments.

MATERIALS AND METHODS
MICE
C57BL/6 mice were purchased from Charles River Laboratories
(Wilmington, MA, USA) or bred in our animal facility in the
Northeastern University. Mice were used at 8–12 weeks of age.
The experiments were approved by the Northeastern University
Institutional Animal Care and Use Committee and were carried
out in accordance with the institutional animal care guidelines.

EXPOSURE TO HYPOXIC OR HYPEROXIC ATMOSPHERE
After the intraperitoneal injection of HP-1 (100 mg/kg; HPI Inc.,
Burlington, MA, USA), the mice were exposed to 21% (normoxic),
8% (hypoxic), or 100% oxygen (hyperoxic atmosphere) for 2 h.
Extended labeling time with HP-1 did not further increase the
intensity of HP-1-labeled cells. This might be because of short
half-life of HP-1 in mice (<30 min). The mice were placed in
air-tight modular incubation chambers (Billups-Rothenberg, San
Diego, CA, USA) supplied with a constant gas flow (1.5 l/min). The
spleen, thymus, lymph nodes, liver and lung were excised from the
mice. Axillary and inguinal lymph nodes were combined to pre-
pare lymph node cells. Mononuclear cells from the liver and lung
were prepared as described previously (Ohta and Sitkovsky, 2001).
The minced liver and lung tissues were extruded through stainless
steel mesh (#200) and spun down (450 × g, 5 min). The pellet was
resuspended in 40% Percoll (GE Healthcare, Upsalla, Sweden) for
density centrifugation (1,750 × g, 10 min). The pellet was treated
with ACK lysing buffer (Invitrogen, Carlsbad, CA, USA) to remove
erythrocytes.

DETECTION OF HYPOXIC CELLS
HP-1 binding was analyzed by intracellular staining followed by
flow cytometry. Lymphocyte populations were discriminated by
using fluorochrome-conjugated antibodies against various sur-
face markers. PE- and allophycocyanin (APC)-conjugated anti-
B220, Cychrome-conjugated anti-CD4, APC-conjugated anti-
CD8, PE-conjugated anti-CD3, APC-conjugated anti-NK1.1, PE-
conjugated anti-CD69, and PE-conjugated anti-CD40 ligand
(CD40L) antibodies were from BD Biosciences (San Diego, CA,
USA). After cell surface staining, the cells were fixed and perme-
abilized using FoxP3 staining buffer set (eBioscience, San Diego,
CA, USA) according to manufacturer’s protocol. FITC-conjugated
anti-HP-1 antibody (clone 4.3.11.3; HPI) was added at 1:1,000.
The data were acquired using FACSCalibur (BD Biosciences).
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T CELL ACTIVATION IN VIVO
Mice were treated with HP-1 and various oxygen atmosphere for
2 h as described above. The mice received intravenous injection of
concanavalin A (10 mg/kg) or anti-CD3 mAb (50 μg/ml) 1 h after
HP-1 injection. Two hours after HP-1, CD69, and CD40L expres-
sion on T cells in the spleen was analyzed together with HP-1
binding.

RESULTS
VARIABLE OXYGEN TENSIONS IN LYMPHOID ORGANS
To analyze oxygen environment of individual lymphocytes, we
utilized flowcytometric detection of HP-1 binding. Spleen cells
were isolated from mice 2 h after the injection of HP-1. Cellular
binding of HP-1 was detected by FITC-labeled anti-HP-1 mAb
(Figure 1A). There was a moderate level of HP-1 labeling of
spleen cells as indicated by a shift (21% O2) from background
levels (shadowed peak). Exposure of mice to hypoxic atmosphere
(8% O2) significantly augmented the HP-1 labeling of spleen cells
(Figure 1B). Conversely, when mice were exposed to hyperoxic
atmosphere (100% O2), the proportion of HP-1-labeled cells was
significantly reduced (Figure 1B). The levels of HP-1-labeling cor-
related with the atmospheric oxygen tension indicating that this
assay is capable of detecting hypoxic lymphocytes. The limitation
of this assay is that HP-1 can detect hypoxia only up to 10 mmHg
pO2. Therefore, the “modestly” hypoxic cells might turn out to be
negative in this assay. However, a portion of normal spleen cells
(21% O2) appeared to be more hypoxic than the rest (Figure 1A).
Spleen cells distributed in a wide range of oxygen tension even after
exposure to hypoxia (8% O2). Indeed, most of the cells became
hypoxic, while a small number of cells still remained less (or non-)
hypoxic. This wide range of distribution is consistent with previ-
ous results from direct measurement using microelectrodes, which
showed variable levels of oxygen in the same spleen ranging from
well-oxygenated to deeply hypoxic (Braun et al., 2001; Caldwell
et al., 2001).

Comparison among lymphoid organs in the same mouse
showed that thymus is an exceptionally hypoxic tissue (Figure 2;
Table 1). The oxygen environment in lymph nodes was simi-
lar to that of spleen although lymph nodes were slightly less
hypoxic. Lymphocytes in the liver and lung were present in better-
oxygenated environment. The levels of HP-1 binding, especially
in the lung, dropped to levels lower than any lymphoid organs.
When mice were exposed to hypoxic atmosphere (8% O2), the
extent of HP-1 binding increased in all tested tissues but the order
of intensity remained the same (Table 1).

DIFFERENCES IN OXYGEN EXPOSURE STATUS OF LYMPHOCYTE
SUBSETS IN VIVO
The flowcytometric assay enabled us to discriminate oxygen sta-
tus in each lymphocyte subsets by combining HP-1 analysis with
lineage markers. Co-staining of spleen cells with B220 showed
that only 20% of B220+ cells were HP-1-positive, while approx-
imately half of B220− cells were hypoxic (Figure 3A). When
exposed to hypoxic atmosphere, HP-1+ cells increased to 45% in
B220+ cells but it was more than 80% of B220− population. This
result suggested that majority of B cells are localized to relatively
well-oxygenated environment. An inverse pattern was observed

FIGURE 1 | Detection of hypoxic cells by flow cytometry. (A) A
representative profile of HP-1 binding to lymphocytes in vivo. After the
injection of HP-1, mice were exposed to ambient (21% O2) or hypoxic (8%
O2) atmosphere for 2 h. HP-1 binding to spleen cells was detected by
FITC-anti-HP-1 mAb. Background level (shadowed peak) was determined
using spleen cells obtained from HP-1-uninjected mouse and incubated
with FITC-anti-HP-1 mAb. (B) Oxygen dependent changes in HP-1 binding.
Spleen cells were analyzed after 2-h exposure of mice to 8, 21, or 100%
oxygen. The data represent average ± SD (n = 6). Numbers in parentheses
indicate means of median fluorescence intensity. The statistical significance
was calculated by Student’s t -test: *P < 0.001.

in the co-staining with CD3. The proportion of HP-1+ cells was
always higher in CD3+ cells than in CD3− population (Figure 3A).
Within T cells, CD4+ and CD8+ cells showed similar intensities
of HP-1 binding, which were higher than B cells (Figure 3B). The
same trend was observed in lymph nodes. We further analyzed
oxygen tension in other lymphocytes including NK and NKT cells.
Interestingly, HP-1 intensity in NK cells was even higher than T
cells (Figure 4). The HP-1 intensity in NKT cells was interme-
diate between T cells and NK cells. These results suggested that
oxygen levels are not uniform to every lymphocyte subsets. In
peripheral lymphoid tissues, B cells were oxygenated well. T cells
and NKT cells are better oxygenated than NK cells. In the thy-
mus, immature T cells showed different degree of HP-1 binding:
CD4−CD8− cells being the highest, followed by CD4+ and CD8+
single positive cells, and the lowest in CD4+CD8+ population
(data not shown).

Since lymphocyte subsets showed various levels of HP-1 bind-
ing, tissue-specific difference in the proportion of these subsets

www.frontiersin.org July 2011 | Volume 2 | Article 27 | 3

www.frontiersin.org
http://www.frontiersin.org/t_cell_biology/archive


Ohta et al. T-cell activation in hypoxic microenvironment

FIGURE 2 | Degree of hypoxia in lymphocytes in different organs. Mice
were treated as described in Figure 1. The spleen, lymph nodes, thymus, liver,

and lung were excised and analyzed for HP-1 binding to the cells. Background
levels (shadowed peaks) are the staining of cells from HP-1-uninjected mice.

Table 1 | Differences in HP-1 binding levels.

21% O2 8% O2

Total CD4+ CD8+ B220+ Total

Spleen 19 22 25 17 31

Lymph nodes 16 20 23 13 23

Liver 14 17 17 10 19

Lung 12 13 15 9 17

Thymus 28 – – – 42

Median fluorescence intensity was shown for total lymphocytes, CD4+, CD8+

and B220+ cells. (Median fluorescence intensity of HP-1 uninjected cells: 7–8).

might have affected the total levels of HP-1 binding in Figure 2.
To confirm the difference in tissue oxygenation levels, we fur-
ther analyzed B220+, CD4+, and CD8+ cells in different organs
(Table 1). In all tested organs, T cells showed higher levels of HP-1
binding than B cells. The binding intensities in each subset were
variable between the tissues. In consistent to the total cell analy-
sis, HP-1 binding in B cells and T cells decreased in the following
order: spleen > lymph nodes > liver > lung (Table 1). This result

supports an implication that immune cells are exposed to different
levels of oxygen dependent on the tissue.

MODULATION OF T CELL ACTIVATION BY OXYGEN TENSION IN VIVO
To test effects of oxygen tension on T cell activation in vivo, we
monitored activation markers after the injection of Con A. Con
A quickly upregulated CD69 and CD40 ligand (CD40L) on T
cells; however, whole body exposure to hypoxic atmosphere inhib-
ited this upregulation (Figure 5A). The decrease was statistically
significant for both markers on CD4+ T cells and for CD69 on
CD8+ T cells (Figure 5B). CD40L was not induced on CD8+
T cells. Conversely, when mice were breathing hyperoxic atmos-
phere (100% oxygen), T cell activation was more pronounced than
at 21% oxygen. The increase was moderate in CD4+ T cells, but
it was statistically significant in CD8+ T cells (Figure 5B). This
experiment showed a positive correlation between oxygen tension
and the extent of T cell activation.

Our flowcytometric assay of HP-1 binding revealed variable lev-
els of oxygen tension within the same cell type in the same tissue:
some of them are more hypoxic than the rest. Since tissue hypoxia
decreased T cell activation in vivo (Figure 5), we speculated that
the extent of T cell activation might vary dependent on oxygen
tension of the environment. To test this possibility, we co-injected
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FIGURE 3 | Distribution of B cells andT cells between more and less

hypoxic environment. (A) Different levels of HP-1 binding in B cells and T
cells. Spleen cells from HP-1-injected mice were stained for HP-1 together
with PE-anti-B220 or PE-anti-CD3 mAb. The numbers represent percentage
in each quadrant. (B) Spleen and lymph node cells were analyzed for HP-1
binding in CD4+, CD8+, and B220+ cells. Background levels were from
HP-1-uninjected mice.

HP-1 with anti-CD3 mAb and analyzed CD69 expression in HP-
1+ and HP-1− T cells. Anti-CD3 mAb induced CD69 on both
CD4+ and CD8+ T cells, especially in less or non-hypoxic cells
(Figure 6). Many of the HP-1− T cells were CD69+; however, the
proportion of CD69+ cells was smaller in HP-1+ T cells. Percent-
age of CD69+ cells was significantly lower in HP-1+ cells for both
CD4+ and CD8+ population (Figure 6C). This result suggests

FIGURE 4 | Distribution of NK cells to hypoxic environment. HP-1
binding was analyzed for NK (NK1.1+ CD3−), NKT (NK1.1+ CD3+), T (NK1.1−

CD3+), and other (NK1.1− CD3−) cells. Background levels were from
HP-1-uninjected mice.

that the difference in local oxygen tension within the same tissue
can affect the extent of T cell activation. In contrast to massive
T cell activation in oxygenated environment, the extent of T cell
activation decreased as the local oxygen tension lowered.

DISCUSSION
The primary purpose of this study was to compare oxygen status
in lymphocytes. Flow cytometry enabled analysis of more hypoxic
and less (or non-) hypoxic cells in individual lymphocyte subsets.
The results revealed that oxygen levels surrounding lymphocytes
vary dependent on the organs and cell types.

In the analysis of various organs, lymphocytes in the thymus
were more hypoxic than in the other lymphoid organs (Figure 2;
Table 1) in agreement with previous studies (McLaughlin et al.,
1996; Braun et al., 2001; Hale et al., 2002). According to the
measurement by microelectrodes, pO2 ranges 4–31 mmHg in the
spleen with vast majority of cells within 10–25 mmHg, while the
pO2 values in the thymus were 0–17 mmHg (Braun et al., 2001).
Our assay confirmed more severe thymic hypoxia than in the
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FIGURE 5 | Oxygen level-mediated regulation ofT cell activation

in vivo. (A) Inhibition of T cell activation by whole body exposure to hypoxia
(8% O2). CD69 and CD40L upregulation on T cells after Con A injection was
analyzed. The numbers represent percentage in each quadrant. (B)

Induction of CD69 and CD40L in mice exposed to different concentrations
of oxygen (8, 21, and 100% O2). Controls (−) were obtained from untreated
mice (no Con A, 21% O2). After the injection of Con A, percentages of
CD69+ or CD40L+ within CD4+ and CD8+ cells were calculated. The data
represent average ± SD (n = 3–6). The statistical significance was calculated
by Student’s t -test: *P < 0.05 vs 21% O2.

spleen and detected less hypoxic environment in the lymph nodes
and other peripheral organs (Figure 2; Table 1). Distribution
of the cells in variable levels of oxygen tensions, which were
indicated by the fluorescence intensity in our assay, also cor-
responded well with the results of direct measurement of pO2

levels (Braun et al., 2001; Caldwell et al., 2001). Microelectrodes
detected a broad range of oxygen levels in lymphoid organs,
and tissue histochemistry study showed localized immunoreac-
tivity of anti-pimonidazole antibody in the thymus (Hale et al.,
2002) suggesting anatomically variable oxygen tension within the
tissue. Interestingly, the flowcytometric assay showed that oxy-
gen environment might differ dependent on cell types in the
same tissue (Figures 3 and 4). We analyzed the extent of hypoxia
for individual lymphocyte subsets in peripheral lymphoid organs
and found non-proportional distribution of lymphocyte subsets
between more and less hypoxic area. Indeed, NK cells preferen-
tially located in the most hypoxic area, followed by NKT cells and
T cells. B cells were present in a well-oxygenated environment.

A caveat with the use of HP-1 is possible enzymatic reduc-
tion of the compound that may cause oxygen-independent label-
ing of the cells. Although studies have not recognized a case
where enzymatic activity overwhelms hypoxia-dependent bind-
ings (Parliament et al., 1992; Arteel et al., 1995, 1998), oxygen-
independent non-specific binding to lymphocytes had to be tested.
We incubated spleen cells with HP-1 in vitro and analyzed the
binding to each lymphocyte subsets. There was not significant
difference after 2 h of incubation; however, it became apparent
after longer time that the intensity in B cells was less than T cells
(data not shown). The intensities in NKT cells and NK cells were
equivalent to T cells. This in vitro experiment suggested a pos-
sibility that B cells and other lymphocytes might have different
levels of non-specific binding. In our in vivo experiments, how-
ever, the difference in HP-1 binding to T cells and B cells became
even larger in mice exposed to hypoxic atmosphere (Figure 3A).
If the difference between T cells and B cells was solely due to
oxygen-independent non-specific binding, the difference will not
be intensified under hypoxia. Therefore, although the possibility
of non-specific binding cannot be excluded, B cells are likely to be
better-oxygenated in vivo.

The reason for this heterogeneous distribution is not clear.
Lymphocyte subsets are often located in a specific area in the tissue
and this localization is important for their functions (Zandvoort
and Timens, 2002; Hoek et al., 2010). It is possible that a cer-
tain range of oxygen tension may be favorable to a specific cell
population. For example, T cells are present in an intermediate
but relatively better-oxygenated condition (Figures 3 and 4). Cer-
tain levels of oxygenation may be important for T cell activation
because this process is very susceptible to hypoxia- and adenosine-
mediated immunosuppression (Sitkovsky et al., 2004; Sitkovsky
and Ohta, 2005). When activated under hypoxia, the resulted T
cells might possess impaired effector functions as was observed
in T cells activated under the influence of adenosine (Ohta et al.,
2009). At the same time, however, lower levels of oxygen might
decrease redox stress in T cells. T cells cultured at 5% oxygen were
found to maintain higher GSH content and GSH/GSSG ratio than
in ambient atmosphere (Atkuri et al., 2005, 2007). In the thymus,
its hypoxic environment in the tissue may be implicated to survival
of thymocytes (McLaughlin et al., 1996). The effect of hypoxia in
B cells is not known well. Mice and humans received immuniza-
tion under hypoxia, but there was no difference in B cell functions
(Meehan, 1987; Meehan et al., 1988; Biselli et al., 1991).

Hypoxic environment is immunosuppressive as in vitro stud-
ies have shown diminished T cell proliferation (Loeffler et al.,
1992; Naldini et al., 1997; Atkuri et al., 2005, 2007; Larbi et al.,
2010) and cytokines production (Zuckerberg et al., 1994; Cald-
well et al., 2001; Kim et al., 2008; Roman et al., 2010). Treatment
of T cells with Co2+ or desferrioxamine, which are often used to
mimic hypoxia, also reduced T cell activation (Lederman et al.,
1984; Carotenuto et al., 1986; Chaudhri et al., 1986; Wang et al.,
1996; Pae et al., 2004). We previously reported that whole body
exposure of mice to hypoxic atmosphere blocked the induction
of inflammatory tissue injury and accompanying cytokines pro-
duction (Choukèr et al., 2008). In humans, in addition to the
inhibition of T cell activation (Conforti et al., 2003; Robbins et al.,
2005), whole body exposure to hypoxia was reported to decrease
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FIGURE 6 | Preferential activation ofT cells in the more oxygenated

environment. (A) Correlation of CD69 upregulation with local oxygen
levels. Mice received co-injection of HP-1 and anti-CD3 mAb, and
CD69 induction on T cells was separately analyzed in HP-1− and HP-1+

cells. The numbers represent percentage in each quadrant.
(B) Comparison of CD69 expression in HP-1− and HP-1+ cells. HP-1−

fraction contains more CD69+ cells but less CD69− cells than HP-1+

fraction. (C) Both CD4+ and CD8+ cells showed stronger activation in
the HP-1− fraction. Percentage of CD69+ cells in CD4+ (CD8+)
population was calculated. The data represent average ± SD (n = 4). The
statistical significance was calculated by Student’s t -test: *P < 0.01;
**P < 0.001.

T cell functions (Meehan, 1987; Meehan et al., 1988). While these
data support the immunosuppressive role of hypoxia, the opposite
observations have been also reported where hypoxia enhanced T

cell proliferation in vitro (Krieger et al., 1996; Carswell et al., 2000).
This contradiction could be resolved by determining the effect of
hypoxia on T cell response in vivo. In the current study, T cell
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activation, as indicated by CD69 and CD40L upregulation, pos-
itively correlated with oxygen concentration in the atmosphere
(Figure 5). Diversity of oxygen environment within the same
organ (Figures 3 and 4) prompted us to compare T cell activation
in more and less hypoxic area. The result showed that response
to activating stimuli was more extensive in better-oxygenated cells
(Figure 6).

Although there was a correlation between local oxygen tension
and extent of T cell activation, some T cells in less hypoxic area
were still negative for CD69, while a certain number of HP-1+
T cells managed to activate. In the current analysis, some of the
hypoxic cells might have appeared HP-1-negative. Nitroimidazole
compounds can detect hypoxic cells when oxygen concentration
is as low as 1%. However, in vitro studies have shown that oxy-
gen deprivation limits T cell activation even at 2–5% oxygen
(Naldini et al., 1997; Atkuri et al., 2005, 2007; Larbi et al., 2010),
and these levels of hypoxia are not detectable by HP-1. There-
fore, if T cells are exposed to this intermediate level of hypoxia,
their activation may well be suppressed but the cells will appear
HP-1-negative. Another possible explanation is the traffic of lym-
phocytes. We allowed 2 h after the injection of HP-1. During which
time, there might be a bidirectional cellular traffic between more
hypoxic and less hypoxic areas. If it were the case, once they vis-
ited more hypoxic area in these 2 h, the cells would be labeled by
HP-1 no matter where they were present at the moment of activa-
tion. Although the assay might have overestimated the number of
severely hypoxic cells, it is interesting that we could still observe a
difference in cell activation between more and less hypoxic cells.

Immunosuppression under hypoxia has pathophysiological
implications. Active inflammation destroys blood vessels and
makes the damaged tissue hypoxic. Correspondingly, tissue
hypoxia in various inflammation was demonstrated previously
(Niinikoski et al., 1972; Peters et al., 2004; Thiel et al., 2007). This
reaction can diminish proinflammatory activities of immune cells

and prevent excessive tissue damage, which might result in critical
tissue dysfunction, if uncontrolled. The importance of negative
feedback from hypoxia–adenosine-mediated immunoregulation
was demonstrated at least in part by much exaggerated inflamma-
tory tissue damage in A2AR-deficient mice (Ohta and Sitkovsky,
2001; Sitkovsky et al., 2004; Sitkovsky and Ohta, 2005).

Although hypoxia can provide a protection to excessive inflam-
mation, the same mechanism may in turn help to establish tumor
microenvironment, in which anti-tumor immune responses are
strongly suppressed. Correspondingly, hypoxia correlates with
poor prognosis in cancer (Harris, 2002; Vaupel and Mayer, 2007).
Anti-tumor immunity severely suffers from the immunosuppres-
sive nature of tumor microenvironment, and this is a potential
obstacle to overcome for successful prevention of tumor pro-
gression and elimination of tumors by immunotherapy (Gajew-
ski et al., 2006; Bai et al., 2008; Mellor and Munn, 2008). The
improvement of tumor regression in the absence of A2AR sig-
naling suggested a promising treatment of cancer by inhibiting
the hypoxia–adenosine pathway (Ohta et al., 2006). In our study,
more oxygenated environment in vivo was advantageous to T cell
activation (Figures 5 and 6) and exposure to hyperoxic atmos-
phere could alleviate hypoxia (Figure 1B). Moreover, exposure
to hyperoxic atmosphere was shown to exaggerate inflammation
(Thiel et al., 2005). Therefore, hyperoxic exposure may improve
anti-tumor immune responses by the reversal of local hypoxia.

In conclusion, we found variable levels of oxygen in lympho-
cyte subsets within the same organ. The levels of tissue oxygenation
may critically affect overall immune response. Our results suggest
management of oxygen levels as a possible intervention against
diseases of hypoxic tissues, e.g., cancer and inflammation.
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