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Abstract

Identifying the neural correlates of intelligence has long been a goal in neuroscience. Recently, 

the field of network neuroscience has attracted researchers’ attention as a means for answering 

this question. In network neuroscience, the brain is considered as an integrated system whose 

systematic properties provide profound insights into health and behavioral outcomes. However, 

most network studies of intelligence have used univariate methods to investigate topological 

network measures, with their focus limited to a few measures. Furthermore, most studies have 

focused on resting state networks despite the fact that brain activation during working memory 

tasks has been linked to intelligence. Finally, the literature is still missing an investigation of 

the association between network assortativity and intelligence. To address these issues, here we 

employ a recently developed mixed-modeling framework for analyzing multi-task brain networks 

to elucidate the most critical working memory task network topological properties corresponding 

to individuals’ intelligence differences. We used a data set of 379 subjects (22–35 y/o) from the 

Human Connectome Project (HCP). Each subject’s data included composite intelligence scores, 

and fMRI during resting state and a 2-back working memory task. Following comprehensive 

quality control and preprocessing of the minimally preprocessed fMRI data, we extracted a 

set of the main topological network features, including global efficiency, degree, leverage 

centrality, modularity, and clustering coefficient. The estimated network features and subject’s 

confounders were then incorporated into the multi-task mixed-modeling framework to investigate 

how brain network changes between working memory and resting state relate to intelligence 

score. Our results indicate that the general intelligence score (cognitive composite score) is 
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associated with a change in the relationship between connection strength and multiple network 

topological properties, including global efficiency, leverage centrality, and degree difference 

during working memory as it is compared to resting state. More specifically, we observed a 

higher increase in the positive association between global efficiency and connection strength 

for the high intelligence group when they switch from resting state to working memory. The 

strong connections might form superhighways for a more efficient global flow of information 

through the brain network. Furthermore, we found an increase in the negative association between 

degree difference and leverage centrality with connection strength during working memory tasks 

for the high intelligence group. These indicate higher network resilience and assortativity along 

with higher circuit-specific information flow during working memory for those with a higher 

intelligence score. Although the exact neurobiological implications of our results are speculative at 

this point, our results provide evidence for the significant association of intelligence with hallmark 

properties of brain networks during working memory.
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1. Introduction

Understanding the neural basis of intelligence has been a longstanding research focus 

for neuroscientists, as intelligence can significantly impact an individual’s academic 

achievement (Laidra et al., 2007; Malykh, 2017). Furthermore, studies have reported that 

a low intelligence score is associated with autism (Crespi, 2016) and is a risk factor for 

developing dementia and Alzheimer’s disease (Yeo et al., 2011; Anderson et al., 2020) and 

amyotrophic lateral sclerosis (ALS) (Longinetti et al., 2017) in later life. Intelligence has 

also been related to other conditions, including stroke, coronary heart disease (Kajantie 

et al., 2012), obesity (Kanazawa, 2013), and some types of cancer (Kanazawa, 2014). 

Recent neuroimaging techniques, including functional magnetic resonance imaging (fMRI), 

diffusion tensor imaging (DTI), and structural MRI morphometry, have provided unique 

insight into the study of the brain and intelligence (Satary Dizaji et al., 2021), which has 

resulted in several theories about their relationship (Barbey, 2018).

2. Intelligence theories based on neuroimaging findings

Most early theories of brain and intelligence focused on activation-based analysis. The 

neural efficiency hypothesis of intelligence is one of the first neuroimaging extracted 

theories of intelligence, stating that individuals with higher intelligence scores demonstrate 

lower brain activation during cognitive tasks (Haier et al., 1988). This theory was later 

disputed in a review stating that while early task-based studies align with this hypothesis, 

recent studies have cast doubt on this hypothesis or have identified that some variables 

like gender, task type, and task complexity can affect this relationship (Neubauer and 

Fink, 2009). The early theories were also focused on localizing the brain area related to 

intelligence, including the Lateral Prefrontal Cortex (PFC) theory, stating that the individual 
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differences in general intelligence are related to functionally localized regions in the lateral 

prefrontal cortex (Duncan and Owen, 2000). The network theories of intelligence emerged 

with the Parieto-Frontal Integration Theory (P-FIT). In a review study of neuroimaging 

studies (i.e., fMRI, DTI, positron emission tomography (PET), and magnetic resonance 

spectroscopy (MRS)) of intelligence, Jung and Haier reported that variation in the 

frontal and parietal regions and connections of the brain predict individual differences in 

intelligence. They described their finding as P-FIT (Jung and Haier, 2007). However, the 

inferred networks related to intelligence were obtained mainly by activation-based analysis, 

necessitating the direct investigation of brain networks (Yoo et al., 2019) and intelligence.

3. Network investigation of intelligence and the brain

With the emergence of network neuroscience, the direct study of the brain network as 

an integrated system has grabbed attention. The ability of network science to tackle the 

complex problem of investigating interactions between brain regions has made it a valuable 

tool for functional brain analysis (Bassett and Sporns, 2017). The current literature has 

promoted several network topological characteristics as the critical features of individuals 

with higher intelligence scores, including global efficiency, modularity, centrality measures, 

and clustering coefficient. Global efficiency, the inverse of average shortest paths (Bassett 

and Bullmore, 2006) of the brain network, has been associated with intelligence in resting 

state fMRI (van den Heuvel et al., 2009; Pamplona et al., 2015), electroencephalogram 

(EEG) (Langer et al., 2012), and DTI (Li et al., 2009; Zalesky et al., 2011; Yeo et al., 

2016) studies. Van den Heuvel et al. suggested that the shorter functional path length 

between brain regions helps with more efficient information integration in individuals with 

higher intelligence scores (van den Heuvel et al., 2009). In contrast, a few studies report 

no association between global efficiency and general intelligence (Kruschwitz et al., 2018; 

Hilger et al., 2017a). Neuroimaging studies of intelligence have also investigated measures 

of network centrality (Langer et al., 2012; Hilger et al., 2017a, 2017b). Centrality measures 

help identify the network’s hubs, assortativity, and resilience. Most of these studies have 

focused on investigating the hubs. For example, using functional connectivity extracted 

from EEG data, the parietal lobe was identified as the central hub of the brain related to 

intelligence based on the high correlation between its degree centrality and intelligence 

(Langer et al., 2012). Intelligence has also been related to measures of modularity (Hilger et 

al., 2017a, 2020). Modularity characterizes how well a network subdivides into subnetworks 

for an efficient information process. High modularity represents high within subnetwork 

connections and low between subnetwork connections (Newman, 2006). Hilger et al. 

reported that while no association between intelligence and global modularity features was 

observed, node-specific measures (within module degree and participation coefficient) were 

associated with intelligence (Hilger et al., 2017a). Finally, intelligence has been linked with 

the clustering coefficient (van den Heuvel et al., 2009; Pamplona et al., 2015; Langer et 

al., 2012). The clustering coefficient is another measure of the segregation of the network. 

Segregation defines a network’s ability to perform specific tasks in highly intraconnected 

subnetworks. The existing brain network studies of intelligence highlight links between 

topological features and differences in an individual’s intelligence. However, the literature 

still lacks a comprehensive study of all these network measures in a multivariate framework.
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4. Working memory and measures of intelligence

Neuroimaging studies of intelligence have focused on three main intelligence measures: 

fluid, crystallized, and general intelligence. Cattell proposed the idea of fluid and 

crystallized intelligence (Cattell, 1987). Fluid intelligence is an individual’s ability to 

solve new problems without prior knowledge. Cattell referred to this ability as fluid 

intelligence as it “has the ‘fluid’ quality of being directable to almost any problem.” On 

the contrary, crystallized intelligence is an individual’s gained knowledge and experience 

and is associated with language, verbal skills, and academic success. He referred to gained 

knowledge as crystallized intelligence as it “is invested in the particular areas of crystallized 

skills which can be upset individually without affecting the others” (Cattell, 1987). Fluid 

and crystallized intelligence each can capture a specific part of the general cognitive ability, 

known as general intelligence. Spearman proposed the idea of general intelligence in the 

early 19th century after observing that an individual’s success rate in different cognitive 

tasks positively correlates with this measure. He defined this overlap of success rate in the 

different cognitive tasks as general intelligence (Duncan et al., 2000). In this study, we 

will investigate all three measures of intelligence and their relationship to functional brain 

network architecture during a working memory task, during resting state, as well as the 

difference in network topology between the working memory and resting state.

Working memory is a process that transiently maintains and manipulates information in a 

highly accessible state (Cowan, 2014). Prior studies have shown that working memory has 

a close relationship with fluid (Kane et al., 2005) and general intelligence (Colom et al., 

2004) and also can affect crystallized intelligence (Alloway and Alloway, 2009). In fact, 

it has been one of the most common tasks used in fMRI studies of intelligence to find 

brain regions and networks related to intelligence (Tang et al., 2010; Waiter et al., 2009; 

Finn et al., 2015; Assem et al., 2020; Cole et al., 2012; Basten et al., 2013). However, 

network neuroimaging studies of intelligence have mainly focused on resting state network 

characteristics. The literature still lacks a comprehensive investigation of the relationship 

between brain topological network features and intelligence during a working memory task.

Taken together, previous studies highlighting links between intelligence and brain network 

properties demonstrate the network fingerprint of intelligence. However, most of these 

studies have focused on the resting state network, with the majority of the working memory 

studies focusing on activation instead of network analyses. Furthermore, these studies 

mostly focused on one or two graph measures, such as modularity, which may have low 

sensitivity and specificity, or mass-univariate vertex or edge comparisons that neglect the 

network’s multivariate topological properties. More specifically, most studies compared 

the mean of nodal topological network measures across subjects which fails to capture 

the variability at the nodal level. Finally, there is a lack of studies investigating brain 

assortativity and how it relates to intelligence. Assortativity relates to tendency of nodes in 

a network to connect to other nodes with the same specific characteristic. To address these 

issues, we used our recently developed multivariate mixed modeling framework (Simpson et 

al., 2019; Simpson and Laurienti, 2015) for multi-task data to study the association between 

intelligence composite scores and brain network topological properties during a working 

memory task as it compared to resting state. This model can evaluate the relationship 
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between multiple variables of interest, and topological network features on the whole brain 

network structure, which enables characterizing the most critical network measures during 

brain working memory compared to the resting state for intelligent individuals.

5. Material and methods

5.1. Data acquisition

We used a subset from 1200 human connectome project young adult (HCP-YA) data (Van 

Essen et al., 2013) with resting state, task-based fMRI during a working memory task, 

and NIH cognitive scores available for each subject. Resting state fMRI data acquisition 

was done in two runs with different phase encoding (RL and LR) using a 3T Siemens 

connectome-Skyra scanner with TR = 720 ms, voxel size = 2 × 2×2 mm and scan time of 

864 s/run (1200 vol/run). Task-based fMRI data acquisition was performed with the same 

imaging protocol (two runs) but in shorter time (303 s/run (420 vol/run)). Each task-based 

run included eight blocks (four 0-back and four 2-back), with each block lasting for 25 

s. Four categories of pictures, including faces, tools, places and body parts, were used as 

stimuli, with each run including two blocks of each image type. At the start of each block, a 

2.5 s cue was presented to specify the task type and the cue (Barch et al., 2013a).

Cognitive abilities scores were obtained using NIH cognitive toolbox tests (http://

www.nihtoolbox.org). The fluid intelligence composite score was assessed by five 

tests, including two executive function tests (inhibition and cognitive flexibility), a 

processing speed test, a working memory test, and an episodic memory test. Crystalized 

intelligence composite score was estimated by two verbal tasks, including language reading 

decoding and vocabulary comprehension. The cognitive function composite score, general 

intelligence, was estimated by averaging the normalized scores of fluid and crystalized 

cognitive measures, followed by scaling scores based on the new distribution (Heaton et al., 

2014; Barch et al., 2013b). Fig. 1 illustrates the cognitive tests used to assess each cognitive 

ability and the structure of the composite scores. This study investigated crystallized, 

fluid, and general intelligence composite scores’ relationship with brain network differences 

during a working memory task as compared resting state.

5.2. Preprocessing

We used the minimally preprocessed resting state and working memory task fMRI data 

provided by the HCP (Glasser et al., 2013). Out of 1200, 937 subjects had both resting state 
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and working memory task data in our version of HCP data. Prior to any preprocessing, data 

went through a quality control check, and subjects with high motion and distortion were 

removed from the study. More specifically, 116 subjects had artifact issues (74 subjects had 

movement greater than 2 mm or rotation higher than 2°, 32 subjects had warping issues and 

25 still had fMRI signal artifacts after AROMA noise correction). In addition, we excluded 

subjects with family relations by finding subjects with the same family identification number 

and selecting an individual randomly. Out of 937, there were 435 subjects with unique 

family IDs. Finally, we removed subjects with cognitive test incompletion and missing 

demographic information. These procedures yielded a final sample size of 379 subjects. We 

further divided the data into two high and low scoring groups based on the median of three 

measures of intelligence (general, fluid, and crystallized).

To further clean the data, we removed the first 10 s of the data (14 vol). Next, we 

performed motion correction using ICA-Aroma (Pruim et al., 2015) to remove any motion 

artifacts. Bandpass filtering was done with 0.009 and 0.08 cut off to remove the scanner’s 

low-frequency drift and physiological low and high-frequency noises. Next, we concatenated 

the two runs (RL and LR phase encoding). We performed a single regression analysis using 

SPM12 to remove unwanted signals from time series data. Regressors included the whole 

brain mean signals for gray matter, white matter and cerebrospinal fluid (CSF), realignment 

parameters, and a final regressor for the concatenation of the two runs. For working memory 

data we included additional regressors extracted by modeling the block design for 0-back, 

rest, and cue blocks. For both rest and task data, we removed artificial excess high-frequency 

noise derived from the concatenation of the runs, using a continuous wavelet transform with 

a window size of 30 s, centered at the joint of the two runs.

HCP’s working memory task data includes working memory blocks (2-back blocks), long-

term memory blocks (0-back blocks), and the resting state. This design is a preferable 

design for activation-based analysis. However, using the whole working memory task time 

series data in a correlation based analysis to study working memory can be misleading. We 

extracted the time series related to only the 2-back task and concatenated them (Fig. 2) to 

investigate the brain oscillation associated with the working memory instead of the whole 

series of events.

Following the preprocessing, we parcellated the brain into 268 regions using the Shen Atlas 

(Shen et al., 2013) and computed the mean time series of voxels in each region for each 

participant. Connectivity matrices were estimated by computing the correlation between 

average signals of all region pairs. Two versions of the correlation matrices were estimated, 

positive weighted connectivity and positive binary connectivity keeping all positive edges 

regardless of strength. Five network topology measures that cover the main categories of 

systemic network properties from the positive connectivity matrix were extracted. Fig. 3 

illustrates the data preparation steps.

5.3. Multitask mixed modeling framework

We used the two-step mixed modeling framework for multi-task data to analyze functional 

brain networks during working memory compared to the resting state (Simpson et al., 

2019; Simpson and Laurienti, 2015). This model assesses both probabilities of a connection 

Khodaei et al. Page 6

Neuroimage Rep. Author manuscript; available in PMC 2023 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(present/absence) and the strength of a connection based on the covariate of interest, 

network systemic characteristics (topological network measures), subjects’ biological 

variables (e.g., age, sex, handedness), the tasks and the interactions. Unlike the common 

methods that perform a univariate comparison of metrics across tasks, this model considers 

the association between population network differences and individuals’ variability in 

network differences across tasks and covariate of interests such as cognitive scores and 

health outcomes. Two equations govern the multi-task mixed modeling framework:

logit pijkl\ βrl; brli = Xijkl
′ βrl + Zijkl

′ brli (1)

FTZ Sijkl βsl; bsli = Xijkl
′ βsl + Zijkl

′ bsli + eijkl (2)

The first equation models the probability of the existence of connections (pijkl) using a 

logistic mixed model, and the second equation models the Fisher’s Z-transform of the 

strength of the connections (Sijkl). βrl and βsl denote vectors related to population parameters 

(fixed effects). These betas relate the probability and strength of the connection between 

node j and node k for subject i using a set of covariates (Xijkl) for the lth task. brli and bsli

are vectors of the subject (i) and node-specific parameters (random effects). These b values 

estimate the extent to which the subject and node (Zijkl
′ ) vary about the population average 

(βrl, βsl) for the lth task. See Simpson et al. (Simpson et al., 2019; Simpson and Laurienti, 

2015) for further description regarding the mixed modeling framework for multi-task data; 

Fig. 4 shows a schematic of the used mixed model framework.

We included five measures of brain network topology, including average global efficiency, 

average leverage centrality (Joyce et al., 2010), average clustering coefficient, degree 

difference, and modularity (using Newman’s spectral community detection method) to cover 

the main categories of systemic network properties. The rational for using the average, 

and in the case of degree, the difference, of topological measures is that the designed 

mixed modeling framework models the edge strength and probability based on topological 

network characteristics that are node specific. To expand the node specific characteristic 

to edges, the average (in the case of degree the difference) of the two nodes topological 

characteristic for each edge is computed. In addition, we added Euclidean spatial distance 

between brain regions to the model. Fig. 5 illustrates the mixed modeling framework (top) 

and edge topological network measures (bottom) for a hypothetical brain network. We 

used the WFU_MMNET toolbox (Bahrami et al., 2019) for the estimation of Pearson’s 

correlation networks, topological network measures, and spatial distances.

The covariate of interest in this study was the IQ groups (high and low intelligence 

score) based on each of three composite cognitive scores (fluid, crystallized, and general 

intelligence). We incorporated a working memory task regressor as a task identifier (resting 

state vs. working memory) in the model. Gender (categorical), age (continuous), handedness 

(continuous, − 100 ≤ x ≤ 100), BMI (continuous), total household income with eight levels 

(continuous), education level (categorical with three levels, level 1 (≤11 years of education 

completed), level 2 (12–16), and level 3 (≥17)), race (categorical with six categories – type 1 
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(Am. Indian/Alaskan Nat.), type 2 (Asian/Nat.Hawaiian/Other Pacific Is.), type 3 (Black or 

African Am.), type 4 (White), type 5 (More than one), type 6 (Unknown or Not Reported)), 

ethnicity (categorical with three categories – type 1 (Hispanic/Latino), type 2 (Not Hispanic/

Latino), type 3 (Unknown or Not Reported)), DSM4 alcohol abuse, demonstrates whether 

participant met DSM4 criteria for alcohol abuse (categorical), DSM4 alcohol dependence, 

indicates whether participant met DSM4 criteria for alcohol dependence (categorical), and 

smoking status (categorical) were included as biological regressors (Xi). The five topological 

edge features, covariate of interest, task identifier, biological demographic information, 

and interactions were all incorporated into the mixed modeling framework. Mixed model 

analyses were run using SAS code from our previous work (Simpson et al., 2019).

6. Results

We removed subjects with low image quality, high motion during imaging, missing data, and 

family relations through our quality control check. This yielded 379 subjects. The sample’s 

demographic information and NIH toolbox cognitive scores are listed in Table 1.

7. Mixed model framework results

The parameter estimates show the association between topological network measures and 

network connections during the working memory task (compared to resting state) for the 

high scoring group compared to the low scoring group based on their intelligence. Fig. 6 

illustrates the breakdown of the parameter of interest.

We performed separate analyses for fluid, crystallized, and general intelligence. The 

summary of results is presented in Tables 2–4, with the significant results in bold format. 

The βs, W M × IQ × Eglob_avg, βs, W M × IQ × lev_avg and, βs, W M × IQ × deg_diff show the parameter estimates for 

average global efficiency, leverage centrality, and degree difference, respectively. The 

strength model analysis demonstrated higher increase in association between network 

topological measures and strength of the connections for the high general intelligence group 

(Table 2). In summary, our results showed that compared to the resting state, during the 

working memory task the high intelligence group had:

• Stronger positive association between global efficiency and the strength of 

the network’s connections (β = 0.2325, FDR = 0.0236). More specifically, in 

the individuals with higher intelligence scores, with an increase in the global 

efficiency of nodes, the connected edges become stronger.

• Stronger negative association between connectivity strength and the two network 

centrality measures, including degree difference (β = 0.2325, FDR = 0.0267) and 

leverage centrality (β = − 0.00771, FDR = 0.0328). As these measures increase 

for an edge, the individuals with higher intelligence form weaker connections for 

those edges.

Fig. 7 illustrates the significant effects of intelligence on the relationships between 

connection strength and network features, including global efficiency, degree difference, 

and leverage centrality during working memory task compared to the resting state for high 

and low scoring general intelligence groups. The increase in the positive slope demonstrates 
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that when higher intelligence individuals switch from resting state to working memory, 

the association between global efficiency and connection strength of their brain network 

increases more as compared to the lower intelligence group (Fig. 7a). More specifically, 

edges with higher average global efficiency will have higher strength connections. In 

contrast, there is a decrease in the negative slope between connection strength and degree 

difference and leverage centrality for those in the higher intelligence group (Fig. 7b and Fig. 

7c). Therefore, an edge with a high degree difference and high average leverage centrality 

will have weaker connections.

The analysis of the binary model for general intelligence did not yield any significant 

results; there was no evidence that general intelligence changes the relationship between 

the probability of a connection existing and network measures during working memory 

as compared to resting state (Table 2). We further investigated the effect of fluid and 

crystalized cognitive scores on topological network measures. While not as significant as 

general intelligence, fluid intelligence marginally affects the degree difference (FDR = 

0.057) relationship with network strength during working memory tasks relative to resting 

state. Our findings also demonstrate a positive influence of crystalized intelligence on the 

relationship between global efficiency and the strength of the connections (FDR = 0.0269). 

The binary model analysis again did not show significant differences between high and 

low intelligence scoring groups. Tables 3 and 4 exhibit the modeling results for fluid and 

crystallized intelligence, respectively. The full table of the parameter estimates for the 

two-part mixed model analysis for each measure of intelligence can be found in Tables 1–6 

of the Supplementary Material.

We conducted two additional analyses to explore the data. In the first analysis, we attempted 

to run the model with intelligence as a continuous variable, but it failed to converge. In the 

second analysis, we trimmed the resting state time series to match the length of the working 

memory data. This adjustment accounts for the bias resulting from the working memory and 

resting state time series having different lengths, but it comes with the cost of introducing 

more noise into the resting state time series. In line with our previous findings, we observed 

a significant association between global efficiency and crystallized intelligence. However, 

while the other parameter estimates showed the same sign and comparable magnitude as 

in the previous analysis, the estimates were not significant due to inflated error terms. The 

results of this analysis are presented in Table 7 of the Supplementary Material.

8. Discussion

8.1. Summary

The present study sought to identify the changes in brain topological network properties 

associated with intelligence when the brain switches from a resting state to a working 

memory task. This goal was achieved using the recently developed mixed modeling 

framework for analyzing multi-task brain networks. Similar to activation-based analysis 

in which brain activation during a task is compared to the resting state, this framework 

enables studying brain network changes during a task compared to the resting state. More 

specifically, here, we investigated the changes in the relationship between topological 

network features and connection characteristics (strength and probability of existence) 
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related to a biological outcome (intelligence) during brain working memory as compared 

to resting state. To our knowledge, this is the first study investigating intelligence association 

with topological network features during working memory compared to the resting state. 

Here we report global efficiency, degree difference, and leverage centrality as the main 

network features related to intelligence during brain working memory tasks as compared to 

the resting state.

8.2. Intelligence test

One of the main issues with neuroimaging studies of intelligence is the diversity among 

the intelligence tests used, which makes cross study comparisons complicated. In the 

neuroimaging literature, fluid intelligence has been assessed by single measures such as 

the Raven Progressive Matrix Test (Langer et al., 2012; Kruschwitz et al., 2018; Waiter et 

al., 2009; Finn et al., 2015; Cole et al., 2012; Basten et al., 2013; Cohen and D’Esposito, 

2016; Dizaji et al., 2019) and Kaufman Brief Intelligence Test (Assem et al., 2020). It has 

also been estimated using composite measures such as NIH composite fluid intelligence 

score (Kruschwitz et al., 2018; Finn et al., 2015) and different versions of the Wechsler 

performance IQ test (van den Heuvel et al., 2009; Pamplona et al., 2015; Hilger et al., 

2017b; Tang et al., 2010). NIH composite score (Kruschwitz et al., 2018; Finn et al., 2015) 

and the Wechsler full scale IQ (van den Heuvel et al., 2009; Pamplona et al., 2015; Hilger 

et al., 2017a; Hilger et al., 2017b; Hilger et al., 2020; Tang et al., 2010; Fischer et al., 

2014) were also the main tests used for crystalized and general intelligence. Even though 

correlations among different intelligence tests have been reported, the inconsistency among 

the intelligence tests used makes the comparison of results challenging. Our study used the 

NIH toolbox scores with all three available intelligence measures (fluid, crystallized, and 

general intelligence).

8.3. Global efficiency

In recent years, there has been growing debate over whether or not global efficiency is 

related to intelligence. Global efficiency refers to the inverse average of the shortest path 

length. By intuition, it comes to mind that there is a shorter path length between brain 

regions in more efficient brains, which helps with the faster and easier flow of information 

between different brain regions. Van Den Heuvel et al. were among the first studies to report 

the positive correlation between global efficiency and intelligence (van den Heuvel et al., 

2009). Two other functional studies also emphasized this association (Pamplona et al., 2015; 

Langer et al., 2012). Furthermore, DTI studies of structural connectivity of intelligence have 

also confirmed this association (Li et al., 2009; Zalesky et al., 2011; Yeo et al., 2016).

Here we used a different approach for studying the global efficiency association with 

intelligence. We investigated how intelligence changes the relationship between connection 

strength and global efficiency during working memory compared to the resting state. 

Our results demonstrated that the group with higher intelligence scores has a stronger 

positive relation between global efficiency and connection strength during working memory 

compared to resting state. The positive relationship implies that edges with higher global 

efficiency have stronger connections. These strong connections, connecting two nodes with 

short paths to all other nodes, might act as superhighways for the global flow of information 
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during working memory tasks. Although indirectly, our result aligns with the previous 

report on the association between intelligence and global efficiency. In contrast, two recent 

functional network studies, including a study on HCP data, did not yield any association 

between intelligence and functional connectivity during resting state (Kruschwitz et al., 

2018; Hilger et al., 2017a). We used the same database (HCP) as in the Kruschwitz et al., 

2018 study (Kruschwitz et al., 2018); however, we used a different approach. Moreover, 

our study focused on changes between resting state and working memory, which makes 

comparing our results with theirs challenging. Our separate analysis of crystallized and fluid 

intelligence also demonstrated an association between crystallized intelligence and global 

efficiency, which was previously observed in the Longer et al. EEG study (Langer et al., 

2012).

8.4. Degree difference and leverage centrality

We used degree difference and leverage centrality measures to investigate the association 

of intelligence with assortativity of the brain network. Assortativity refers to the tendency 

of the network nodes to attach to others with a similar characteristic. This characteristic 

in functional brain network studies is typically degree. Assortativity has been related to 

the network’s resilience against damage to its nodes (Newman, 2002). In disassortative 

networks, the highly connected nodes (hubs) are connected to low degree nodes. This 

network topology makes these networks highly dependent on highly connected nodes, as any 

dysfunction of these hubs interrupts the information flow. We observed a higher increase 

in the negative relationship between degree difference and network strength for the high 

intelligence group. This association indicates that nodes with a high degree difference 

(low assortativity) have lower connection strength during working memory relative to the 

resting state in the high intelligence group compared to the low intelligence group. The 

weaker connections between high degree nodes (hubs) and low degree nodes might lead 

to more circuit-specific information flow during working memory which helps with a 

more segregated flow of information in higher intelligent individuals. This circuit-specific 

information flow is not related to the spatially local flow of information; they indicate local 

information flow among neighbor nodes in the network.

Leverage centrality characterizes the connectivity of a node relative to its neighbors. 

More specifically, it investigates the node degree relative to its neighbors’ degrees. Unlike 

global efficiency, leverage centrality does not quantify information flow along the shortest 

path; instead, it investigates the disparity of node degrees in a small neighborhood that 

characterize local information flow (Joyce et al., 2010). Our results showed a larger negative 

association between leverage centrality and connection strength for those with higher 

intelligence scores when their working memory network was compared to the resting state 

network. More specifically, nodes with higher leverage centrality had weaker connections 

when the high intelligence group switched from resting state to working memory. The 

weaker connections of high leverage centrality edges make the network more locally 

assortative. This also leads to a more circuit-specific flow of information.

Taken together, these results highlight links between intelligence and the relationship 

between connection strength and assortativity. Specifically, in the group with higher 
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intelligence scores, we observed that nodes with higher assortativity had stronger 

connections during working memory compared to the resting state. Assortativity has been 

related to resilience (Newman, 2002) and the local information flow of the network (Joyce 

et al., 2010). In line with our findings, Santarnecchi et al. reported that brighter individuals 

have a more resilient network against systemic insults during the resting state (Santarnecchi 

et al., 2015). Furthermore, local information flow measures, like the clustering coefficient 

(van den Heuvel et al., 2009; Pamplona et al., 2015), have been related to intelligence, 

however, to our knowledge, our study is the first that investigates local information flow in 

the context of assortativity.

8.5. Modularity and clustering coefficient

Our results showed no effect of intelligence on the relationship between modularity or 

clustering coefficient of the brain with existence and strength of the connections when the 

brain shifts from the resting state to the working memory task. Both measures are associated 

with information segregation. Modularity captures the level of segregation of subnetworks 

whereas clustering coefficient captures the interconnectivity of a nodes neighbors. Several 

studies have focused on the relationship between modularity and intelligence, with diverse 

findings for global and region-specific modularity (Hilger et al., 2017a, 2020; Santarnecchi 

et al., 2017). Here we found no modular network changes related to intelligence during brain 

change from resting state to working memory.

9. Conclusion

In summary, this network based study sheds light on the complex relationship between 

intelligence and brain functional network during working memory as compared to resting 

state. More specifically, we explored how intelligence is associated with the relationship 

between connection strength and topological network features. Our study is among the 

first studies of intelligence investigating the brain network topological features during a 

working memory task. Furthermore, it is the first intelligence study investigating brain 

network assortativity characteristics. Finally, we have implemented a recently developed 

mixed modeling framework for multitask studies, which considers the variability among 

node-specific topological characteristics instead of using the mean value of the topological 

network features. Our findings lend support to the idea that intelligence is associated with 

global efficiency, which helps with a more efficient flow of information between brain 

regions. Our results showed a higher positive association between global efficiency and 

connection strength for the higher intelligent group during the working memory task relative 

to the resting state. The stronger connection between the nodes with high global efficiency 

might act as superhighways for a more efficient flow of information. We also observed an 

increase in the negative association between assortativity measures and intelligence. The 

assortativity is associated with local information flow and the network’s resilience. The 

decrease in the strength of connections of the nodes with less assortativity might lead to 

higher local information flow, which helps individuals with higher intelligence scores have 

a more circuit-specific information flow during working memory compared to the resting 

state. Taken together, we hypothesize that compared to the resting state, the brain’s working 

memory network forms a network that, for higher performance, requires higher global 

Khodaei et al. Page 12

Neuroimage Rep. Author manuscript; available in PMC 2023 July 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information flow through its superhighways with higher specific circuit information flow. 

Although the exact neurobiological implications of our results are speculative at this point, 

our results provide evidence for the significant association of intelligence with hallmark 

properties of brain networks during working memory. One limitation of our study was the 

short length of the working memory time series. We performed a separate analysis with the 

resting state being trimmed the same way as working memory data. Although the findings 

were qualitatively the same, there was not complete overlap between the results. The main 

concern would be that for the WM data we may have elevated false negative results. Thus, 

extra caution should be used when interpreting the analyses that did not find a significant 

association. Future studies can investigate the consistency of our findings using a different 

database with long working memory scans. Furthermore, future studies might focus on 

studying the subnetworks of the brain during a working memory task. Finally, these network 

properties might change over time, which static network analysis cannot capture. Future 

studies may focus on dynamic brain connectivity during working memory task as compared 

to resting state.
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Fig. 1. 
The NIH toolbox cognitive tests and their corresponding cognitive assessment. The first and 

the second row of the diagram show the composite scores. The third and fourth rows show 

the assessed cognitive abilities and the tests used respectively.
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Fig. 2. 
Extraction and concatenation of 2-back working memory task signal. Top: the whole n-back 

task signal and paradigm which includes 2 back, 0 back and resting state. Bottom: 2 back 

task paradigm and time series.
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Fig. 3. 
The processing pipeline of the fMRI resting state and working memory data, 

including preprocessing, brain parcellation and time-series extraction, connectivity matrices 

estimation, and extraction of the five systemic network properties.
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Fig. 4. 
Two-part mixed modeling framework for strength and binary networks setup for 

investigation of intelligence during a working memory task and resting state. Top: Strength 

model, bottom: binary model. Each model includes five network measures, two distance 

measures (d), an intelligence group regressor as the covariate of interest (IQ), the task data 

indicator (WM), biological regressors (Xi), and the interactions of interest (IQ * WM * Net).
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Fig. 5. 
Top. Hypothetical example of elements of each row of the mixed model framework. 

On the left of the equations, strength (or existence) of edge and on the right of the 

equation, degree difference (deg), average global efficiency (e), average leverage centrality 

(L), average clustering coefficient (C), modularity (Q), nodes distance (d), task identifier 

(Task), covariate of interest (COI), biological confounds (CON) and interactions (INT) exist. 

Bottom. A schematic of how each edge measure will be computed for the mixed model 

framework. First, the topological network feature of nodes i and j is extracted separately 

using the presented formulas. Next, the average (in the case of degree, the difference) of 

the two nodes of each edge is computed. For modularity, the whole network modularity 

is used for all edges. Finally, node distances were estimated by calculating the Euclidean 

distance between each pair. The last column shows estimation of the edge features for the 

example cartoon brain. (k: node degree, e:global efficiency, N: number of nodes, d: shortest 
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distance, L:leverage centrality, C:clustering coefficient, n: number of connected neighbors, 

Q: modularity, m: number of edges, A: adjacency matrix).
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Fig. 6. 
The breakdown of the parameters of interest in the multi-task mixed modeling framework. 

The main parameter of interest is the difference in the association of edge topological 

network features and connection strength (or connection probability) between the two 

groups (high and low intelligence scores) when their working memory is compared to the 

resting state.
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Fig. 7. 
The association between connection strength and topological network features for high and 

low general intelligence groups during working memory task when it is compared to resting 

state. a. Intelligence has increased the association between connection strength and global 

efficiency. b, c. Intelligence increased the negative association between connection strength 

and centrality measures, including leverage centrality and degree difference.
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Table 1

Demographic information and cognitive score of the sample of HCP data used in this study.

Variable Mean ± standard deviation count

Number of subjects 379

Gender (male/female) 174/205

Age 28.71 ± 3.70

Handedness (− 100 < x < 100) 65.98 ± 43.29

BMI 26.19 ± 5.01

Income (1/2/3/4/5/6/7/8) 5.03 ± 2.20

Education level (1/2/3) 61/260/58

Race (1/2/3/4/5/6) 1/32/46/282/
11/7

Ethnicity 39/332/8

DSM4 alcohol abuse (0/1) 314/65

DSM4 alcohol dependence (0/1) 355/24

Smoke Status (0/1) 320/59

Dimensional change card sort 115.22 ± 9.86

List sorting 111.28 ± 11.19

Pattern completion processing speed 116.21 ± 15.14

Flanker task 111.56 ± 9.82

Picture sequence memory 113.06 ± 13.62

Picture vocabulary 117.21 ± 9.26

Oral reading recognition 117.16 ± 10.62

Fluid cognition composite score 115.94 ± 11.02

Crystalized cognition composite score 118.12 ± 9.65

Total cognition composite score (general intelligence) 122.94 ± 14.24
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Table 2

Results of running the two-part mixed modeling framework on HCP data with high and low scoring general 

intelligence groups as the covariate of interest. The strength model shows a significant effect of the general 

intelligence composite score on describing the difference (from resting state) in the relationship between 

network measures and connectivity strength during a working memory task. More specifically, general 

intelligence affects the relationship between global efficiency, degree difference, and leverage centrality and 

the strength of connections. No significant relationship was observed for the binary model.

Model used Parameter Estimate t-value P-value Adaptive FDR

Strength model βs, W M × IQ × Eglob_avg 0.2325 2.43 0.0153 0.0236

βs, W M × IQ × deg_diff −0.00043 −2.36 0.018 0.0267

βs, W M × IQ × lev_avg −0.00771 −2.26 0.0241 0.0328

βs, W M × IQ × mod 0.2287 0.93 0.3533 0.3533

βs, W M × IQ × clust−avg −0.103 −1.66 0.0976 0.108

Binary model βr, W M × IQ × Eglob_avg − 0.1355 −0.11 0.914 0.914

βr, W M × IQ × deg−diff −0.00053 −0.29 0.7748 0.795

βr, W M × IQ × lev−avg −0.01272 −0.28 0.7788 0.795

βr, W M × IQ × mod −1.1772 −1.22 0.2215 0.4309

βr, W M × IQ × clust−avg 0.768 0.71 0.48 0.5881
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Table 3

Results of running the two-part mixed modeling framework on HCP data with high and low scoring fluid 

intelligence groups as the covariate of interest. The strength model shows a significant effect of the fluid 

intelligence composite score on describing the relationship between degree difference and connectivity 

strength during a working memory task as compared to resting state. No significant relationship was observed 

for the binary model.

Model used Parameter Estimate t-value P-value Adaptive FDR

Strength model βs, W M × IQ × Eglob_avg 0.07276 0.76 0.4502 0.4502

βs, W M × IQ × deg_diff −0.00038 −2.12 0.0339 0.057

βs, W M × IQ × lev−avg −0.00419 −1.22 0.2215 0.2562

βs, W M × IQ × mod −0.02579 −0.1 0.9169 0.9169

βs, W M × IQ × clust−avg −0.06816 −1.09 0.2739 0.2896

Binary model βr, W M × IQ × Eglob_avg 0.2286 0.18 0.8553 0.8553

βr, W M × IQ × deg−diff −0.00201 −1.1 0.2728 0.4364

βr, W M × IQ × lev−avg −0.01071 −0.24 0.8128 0.8128

βr, W M × IQ × mod 0.1945 0.2 0.8405 0.8405

βr, W M × IQ × clust−avg 0.3272 0.3 0.7634 0.7634
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Table 4

Results of running the two-part mixed modeling framework on HCP data with high and low scoring 

crystallized intelligence groups as the covariate of interest. The strength model shows a significant effect of 

the crystallized intelligence composite score on describing the relationship between global efficiency and 

connectivity strength during a working memory task as compared to resting state. No significant relationship 

was observed for the binary model.

Model used Parameter Estimate t-value P-value Adaptive FDR

Strength model βs, W M × IQ × Eglob_avg 0.2377 2.48 0.013 0.0269

βs, W M × IQ × deg−diff −0.00021 −1.14 0.2532 0.2686

βs, W M × IQ × lev−avg −0.00643 −1.88 0.0603 0.0879

βs, W M × IQ × mod −0.2605 −1.05 0.2915 0.2939

βs, W M × IQ × clust−avg −0.02121 −0.34 0.734 0.734

Binary model βr, W M × IQ × Eglob_avg −0.621 −0.5 0.62 0.6561

βr, W M × IQ × deg−diff 0.002085 1.14 0.2555 0.4054

βr, W M × IQ × lev−avg 0.03097 0.69 0.4931 0.5447

βr, W M × IQ × mod −0.4125 −0.43 0.6704 0.6704

βr, W M × IQ × clust−avg −0.285 −0.26 0.7934 0.7934
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