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Abstract

High-count monoclonal B-cell lymphocytosis (MBL) is an asymptomatic expansion of clonal B-

cells in the peripheral blood without other manifestations of chronic lymphocytic leukemia (CLL). 

Yearly, 1% of MBLs evolve to CLL requiring therapy; thus being critical to understand the 

biologic events that determine which MBLs progress to intermediate/advanced CLL. In this study, 

we performed targeted deep-sequencing on 48 high-count MBLs, 47 of them with 2-4 sequential 

samples analyzed, exploring the mutation status of 21 driver genes and evaluating clonal evolution. 

We found somatic non-synonymous mutations in 25 MBLs(52%) at the initial time-point 

analyzed, including 13(27%) with >1 mutated gene. In cases that subsequently progressed to CLL, 

mutations were detected 41 months (median) prior to progression. Excepting NOTCH1, TP53 and 

XPO1, which showed a lower incidence in MBL, genes were mutated with a similar prevalence to 

CLL, indicating the early origin of most driver mutations in the MBL/CLL continuum. MBLs with 

mutations at the initial time-point analyzed were associated with shorter time-to-treatment (TTT). 

Furthermore, MBLs showing subclonal expansion of driver mutations on sequential evaluation had 

shorter progression time to CLL and shorter TTT. These findings support that clonal evolution 

have prognostic implications already at the pre-malignant MBL stage, anticipating which 

individuals will progress earlier to CLL.
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Introduction

Chronic Lymphocytic Leukemia (CLL) has a heterogeneous clinical course, ranging from an 

indolent to a very aggressive disease requiring therapy shortly after diagnosis.(1, 2) The 

discovery of the CLL genetic landscape has significantly improved our understanding of 

which patients are more likely to experience an aggressive disease. In addition to the well-

established role of TP53 in clinical outcome, mutations in NOTCH1, SF3B1, and BIRC3 
have been recently associated with differential prognosis and subsequently incorporated in 

the risk stratification.(3-7) Other studies have identified additional genes recurrently mutated 

in CLL, suggesting their association with disease pathogenesis.(8-13) Moreover, the clonal 

architecture of CLL before and after therapy have been analyzed by several groups, and 

these studies demonstrate that the presence of subclonal mutations in driver genes adversely 

impacts clinical outcome.(8, 14) In addition, the use of chemo-immunotherapy in 

progressive CLL can be associated with the expansion of previously minor, and potentially 

highly fit, subclones.(8, 15-17)

CLL is preceded by a pre-malignant state known as high-count monoclonal B-cell 

lymphocytosis (MBL).(18, 19) MBL is an asymptomatic expansion of clonal B-cells with 

less than 5×109/L B-cells in the peripheral blood and without other manifestations of CLL.

(20) In contrast to CLL, our knowledge regarding the genetics landscape of MBL is still 

limited. Initial cross-sectional studies involving 63 individuals have evaluated NOTCH1, 
SF3B1 and TP53 mutation status in high-count MBL cohorts, detecting a mutation 

frequency between 1% (SF3B1 and TP53) and 3% (NOTCH1).(21, 22) We performed the 

first comprehensive, whole exome sequencing (WES) study sequentially evaluating eight 

high-count MBLs at two time points.(23) The study detected mutations in putative CLL 

driver genes in half of the cases and confirmed the existence of clonal heterogeneity at a 

median of 5 years before progression to CLL.(23) Another recent study employed whole 

genome sequencing identified a similar overall mutation burden between MBL and CLL, but 

with a significantly lower number of affected driver genes in MBL.(12) The first studies 

showing the impact of NOTCH1, TP53 and SF3B1 mutations in the MBL progression have 

been recently published.(24, 25)

Approximately 1-2% of high-count MBLs evolve to CLL requiring treatment per year.(20) 

(26) Thus, identifying the biologic and genetic events that determine which MBLs will have 

a more aggressive clinical phenotype (i.e. progression to CLL and need for therapy) is 

critical to understanding the mechanisms of disease progression. In this study we performed 

a longitudinal sequencing analysis on a cohort of 48 high-count MBL, evaluating the 

mutation status of 21 genes at 2-4 time points in 47 out of 48 cases, and assessed the clonal 

heterogeneity and clonal dynamics over time. Furthermore, we evaluated the role of driver 

mutations and clonal evolution with progression to intermediate/advanced stage CLL (Rai 
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stage I-IV) and time to treatment (TTT). Overall, we found driver mutations in 52% of MBL 

cases, on average 41 months before progression to intermediate/advanced stage CLL. 

Furthermore, the identification of driver mutations and subclonal expansion at MBL stage 

was associated with shorter TTT.

Material and Methods

Patient samples

We analyzed 48 high-count MBL individuals (17 female, 31 male), including 47 with 

longitudinal blood samples available. The study included results from eight cases previously 

published by us(23). All individuals provided written informed consent for the collection 

and use of samples for research purposes according to the Declaration of Helsinki. Clinical 

and prognostic information regarding age at MBL diagnosis, gender, B-cell count, absolute 

lymphocyte count (ALC), Rai stage, CD38, CD49d, ZAP70, IGHV mutation status and 

FISH status, date of CLL diagnosis and date of first-line treatment were acquired from 

clinical records and/or research studies. All clinical characteristics were assessed at the time 

of MBL diagnosis. Clinical information and the time-points analyzed for this cohort are 

summarized in Table 1, Supplementary Table S1 and Supplementary Figure S1.

Sample preparation

The CD5+/CD19+ B lymphocyte population was enriched from peripheral blood 

mononuclear cells (PBMC) using anti-human CD5 APC and anti-human CD19 PE (e-

bioscience, San Diego, CA). Flow cytometry sorting was performed using FACS Aria II 

SORP (BD Biosciences) and data analyzed using Cell Quest software. After enrichment, an 

average of 95% of CD19+/CD5+ cells was obtained. We used the values of the CD19+/

CD5+ fraction to calculate the leukemic B-cell fraction and reduce any significant 

contamination of non-clonal B-cells in each biopsy. The variant reads (VR) frequency was 

corrected using the following formula: corrected VR = initial VR × (100 ÷ percentage of the 

CD19+/CD5+ fraction). The negative fraction was also collected and used as germ line 

controls in the sequencing analysis. DNA was extracted using the Gentra Puregene Cell Kit 

(Qiagen).

Targeted deep sequencing

We analyzed 152 samples from 48 cases (104 tumor B-cell samples and 48 germ line 

controls) using semiconductor-sequencing technology (IonTorrent PGM) as per 

manufacturer's protocol.(27) Twenty-four genes, previously found to be significantly 

mutated in CLL and indicated as putative CLL driver genes,(8, 9, 11, 28) were selected for 

targeted deep sequencing (TDS; Supplementary Table S2). Three genes (NOTCH2, NRAS 
and RB1) showed significant dips in coverage, not reaching sufficient probe depth and 

precluding the analysis of the entire coding regions. For that reason, we eliminated them 

from the subsequent analyses. All coding regions were amplified in 200bp amplicons by 

multiplex PCR using customized oligos (Ion Ampliseq designer). Libraries were templated 

and enriched using IonOneTouch2 and IonOneTouch ES automated systems, respectively. 

Samples were sequenced using the 318TM chip (ThermoFisher). Raw data was aligned and 

indexed in BAM and BAI files using the IonTorrent suite. Variants were called using 
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IonTorrent Somatic VariantCaller version 4.6.0.7 and low stringency settings 

(ThermoFisher). VCF files were annotated using a standalone application developed by the 

Mayo Clinic Bioinformatics Program called BioR (Biological Annotation Data Repository)

(29). BioR includes gene annotation from NCBI/Ensembl and UCSC, Gene annotated 

pathways (KEGG), tissue specificity, GeneCards and Gene Ontology (GO), dbSNP, GWAS 

catalog, HapMap, and 1000 Genomes. Furthermore, it provides annotation from the 

Catalogue of Somatic Mutations in Cancer (COSMIC, Wellcome Trust Sanger Institute), 

SIFT, and PolyPhen-2. Pair-wise analyses were performed comparing each tumor sample 

with paired germ line sample, and all variants found in the germ line samples were filtered 

out. Additionally, somatic variants with a Mapping Quality <20 or read depth <10X were 

removed. Finally, variants of significant interest were visually inspected using Integrative 

Genomics Viewer (IGV)(30) (Supplementary Table S3).

Significant changes in VR between paired samples (i.e. subclonal expansion) was defined 

using a similar approach to a previously published criteria,(8) based on changes in the 

cancer cell fraction (CCF) greater than or equal to 20% between time points. The lack of 

copy number and loss of heterozygosity data has impeded us to precisely calculate the CCF 

of each mutation. Instead, we defined a threshold of 10% change in VRs between time 

points, which is equivalent to 20% of CCF for heterozygous mutations in a diploid 

karyotype.

Statistical Analysis

We employed univariable Cox proportional hazards regression models and Kaplan Meier 

survival analysis to test statistical associations between the genetic findings and two survival 

outcomes: TTT and progression free survival (PFS). TTT is defined as time from MBL 

diagnosis to date of first-line treatment for CLL. PFS was defined as time from MBL 

diagnosis to progression to intermediate (Rai I/II) or advanced (Rai III/IV) CLL. Three 

individuals with MBLs who progressed to CLL and participated in early intervention trials 

before meeting the NCI/IWCLL criteria(31) to initiate therapy were excluded from the TTT 

statistical analyses. First, we compared the TTT and PFS between those MBLs harboring 

mutations in any of the 21 genes at the time of MBL diagnosis to those without any 

mutations. Next, we refined the analysis by dividing the cohort into three groups: a) MBLs 

harboring mutations in NOTCH1, BIRC3, or SF3B1 (genes previously associated with poor 

outcome in CLL; N=12); b) MBLs with mutations in one or more of the remaining 18 genes 

in the panel (N=11); and c) MBLs without mutations in any gene (N=22). We further 

evaluated whether subclonal expansion was associated with TTT and PFS. Subclonal 

expansion was defined as a time dependent covariate in the Cox proportional hazards 

regression analysis. Statistical calculations were performed using SPSS 17.0 (SPSS Inc, 

Chicago). P values ≤ 0.05 were considered significant.

Results

Characterization of the mutation profile of driver genes in MBL

We studied a total of 48 individuals with high-count MBL, 47 of who had two or more 

longitudinal blood samples available. The median age at MBL diagnosis was 66.5 years 
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(range: 44-80). The median time between the first and last analyzed samples in these 

individuals was 55 months (range: 10-119 months). At the time the last sample was 

collected, 30 cases (64%) remained as MBL or Rai 0 CLL, whereas 17 (36%) progressed to 

intermediate/advanced stage CLL (Rai stage I-IV), including five individuals (10%) who 

required treatment. Individuals were also followed clinically for a median of 19 months after 

the last sample (range: 0-85 months), providing a total median follow-up of 82 months 

(range: 33-137). At the last follow-up, 22 MBLs (46%) progressed to intermediate/advanced 

stage CLL, 10 (21%) required treatment, and three (6%) died with disease progression.

The samples were sequenced with an average coverage depth of 727x. At the initial time 

point analyzed, we identified somatic non-synonymous mutations in 25 of 48 MBL 

individuals (52%). Recurrent mutations were found in SF3B1 (5 cases, 10%), BIRC3, 
DDX3X, CHD2 (4 cases each, 8%), NOTCH1 (3 cases, 6%), and ATM, BRAF, EGR2, 
FBXW7, KRAS, MED12, MYD88, and ZMYM3 (2 cases each, 4%). Furthermore, BCOR, 

ITPKB, POT1, RIPK1 and SAMHD1 were each mutated in one case. No mutations were 

found in HIST1H1E, TP53 and XPO1 (Figure 1A-B and Supplementary Table S1). 
Collectively, 27% of MBLs had more than one gene mutated (range 2-7), and 8% showed 

multiple mutations in the same gene (Figure 1A). By comparing the mutation profile of 

MBLs to a similar sized cohort of CLL patients (N=48) analyzed with the same gene panel 

and with similar coverage depth,(13) we found that the mutation frequency was comparable 

for most genes; with the exception that individuals with MBL had an increased mutation rate 

in CHD2, a decreased rate in NOTCH1, and a lack of mutations in TP53 and XPO1 (Figure 
1B). Although the difference on TP53 and XPO1 mutation rate between MBL and CLL 

showed marginal statistical significance (p=0.12 and p=0.06, respectively), the small number 

of cases precluded reaching definitive conclusions about these differences.

Association between driver mutations and time to first treatment

Due to the low mutation incidence for each gene analyzed individually, we first pooled all 

MBLs harboring any mutations and compared their TTT to that of individuals without 

mutations in any of the 21 genes. MBL individuals with any mutation showed a shorter TTT 

(median: 99 months vs. not reached [NR]; p=0.04) (Figure 2A). Next, we explored the 

clinical significance of specific mutations by dividing the cohort into three groups: a) MBLs 

harboring mutations in NOTCH1, BIRC3, or SF3B1 (genes previously associated with poor 

outcome in CLL,(3-7) N=12); b) MBLs with mutations in one or more of the remaining 

genes in the panel (N=11); and c) MBLs without mutations in any gene (N=22). The 

subgroup with NOTCH1, BIRC3 or SF3B1 mutations had the shortest median TTT among 

these subgroups (mutation in driver genes: 84 months; mutation in other genes: NR; no 

mutation: NR; p=0.02) (Figure 2B). Finally, we analyzed the association between individual 

genes that were mutated in at least four cases (SF3B1, DDX3X, BIRC3 and CHD2) and 

TTT. Statistically significant correlation with shorter TTT was found for individuals with 

MBL who had mutations in BIRC3 (p<0.001) and DDX3X (p=0.001)(Supplementary 
Figure S2). These associations, although obtained from a small number of cases, are 

promising and should be explored in larger cohorts.
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Clonal dynamics in the MBL-CLL continuum

The high coverage depth achieved with the targeted sequencing approach we employed, 

allowed us to evaluate for small subclones with markedly higher sensitivity than obtained 

using WES. A total of 13 cases (29%) with small subclonal mutations (defined as VR lower 

than 5%) were identified. Mutations found in VR <5%, were confirmed on an independent 

sequencing run. Notably, in four MBL cases, we detected two or more mutations in the same 

genes. In most of these cases, one or more mutations were identified at the initial time point, 

and additional mutations were identified at subsequent time points (Figure 3 and 
Supplementary Figures S3 and S4). Thus, one individual (MBL08) was characterized by 

the presence of two distinct SAMHD1 mutations, one detected at both time points (p.I136S) 

and the other found only at the second time point (p.Q105*). Case MBL10 had two 

mutations in DDX3X (p.D164G and p.I415V) as well as two mutations in SF3B1 (p.Y623C; 

p.K700E) at the initial time point, and acquired a third mutation in SF3B1 (p.K666Q) at the 

second time point. MBL38 initially had three distinct mutations in BRAF mutations 

(p.D594G; p.G466E; and p.G469V) in small subclones (2-18% VR) and acquired a fourth 

BRAF activating mutation (p.K601E) at the second time point (Figure 3B). Finally, MBL51 

showed an exceptionally complex pattern, initially with mutations in KRAS (p.G12D), 

DDX3X (p.I522Nfs1*), BIRC3 (p.E553Efs14*), and subsequently acquired distinct 

additional mutations in all three genes at the second time point (KRAS p.K117N; DDX3X 
p.Y163fs*; and BIRC3 p.Q547Nfs21*) (Figure 3D). This patient was analyzed at two 

additional time points, confirming the co-existence of all mutations with slight changes in 

mutation predominance between the sequential time points. The complete list of mutations 

and VR for each time point is shown in Supplementary Table S3.

Subclonal expansion as a predictive marker of earlier need of therapy

We then analyzed whether the detection of subclonal expansion over time could predict 

which patients would require earlier treatment. To investigate the clinical implications of 

clonal dynamics over time, we divided the individuals in three groups based on whether or 

not longitudinal changes in the observed mutation profile were identified: a) 22 cases with 

no mutations at any of the time points analyzed; b) 12 cases with stable mutations that did 

not show changes in VR between time points (Figure 3A-B and Supplementary Figures 
S3), and c) 11 cases with mutations that showed an increase of >10% on VR between 

analyzed time points (Figure 3C-D and Supplementary Figure S4).

Subclonal expansion of mutated drivers was found in 6 out of 10 (60%) cases who 

progressed to require treatment, compared with only 5 of 35 (14%) non-treated cases. Of the 

four treated cases who did not undergo subclone expansion, two had a constant VR between 

samples, and two had no mutations in the tested genes. Subclonal expansion was found, on 

average, 24 months (range 3-42 months) before initiation of first-line treatment (Figure 4). 

Finally, we evaluated whether subclonal expansion was associated with TTT and/or PFS. 

Individuals with clonal expansion had both significantly shorter PFS (HR: 5.3 95% CI: 

1.3-20.9; p=0.02), as well as significantly shorter TTT (HR: 6.4 95% CI: 1.8-23.2; p=0.005).
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Discussion

Little is known regarding the molecular, biologic, and genetic events that cause high-count 

MBLs to progress to CLL. Here, we performed a longitudinal analysis, evaluating mutation 

status and clonal dynamics of 21 putative CLL driver genes in high-count MBLs. We have 

confirmed the existence of mutations in CLL driver genes in over 50% of cases at the 

premalignant MBL stage and in 60% of MBLs that ultimately progressed to intermediate/

advanced Rai stage. Among cases that progressed, mutations were detected 41 months prior 

to progression indicating their early origin in the MBL/CLL continuum. Furthermore, we 

also showed that most of these genes are mutated in MBL at a similar prevalence to CLL.

The current observations regarding MBL should be considered in the context of prior studies 

characterizing the mutation profile, clonal heterogeneity and evolution in patients with CLL.

(8, 10, 15-17, 32, 33) Despite the limited size of our cohort, we found strong evidence that 

the tumor mutation profile is present in the pre-malignant MBL stage and predicts 

progression to clinically significant CLL. This observation suggests that genetic 

characteristics can be used to identify MBL cases who will progress to advanced stage CLL 

and require treatment. In longitudinal analysis of our cohort, 60% of MBL cases that 

progressed to require treatment for CLL exhibited subclonal expansion compared with only 

14% of untreated cases suggesting its potential use as a biomarker predicting the likelihood 

of earlier disease progression.

The results obtained in this study are based on a TDS approach including an array of 

potential CLL driver genes. By obtaining a sequencing mean coverage depth of ~750x, we 

found a large reservoir of small subclonal mutations in driver genes, including several cases 

with multiple mutations in the same genes.

Some limitations of our study should be noted. First, although this study is the largest 

longitudinal genomic analysis of MBL reported to date, our sample size still remains 

limited. Second, although our TDS approach evaluated the most relevant recurrent mutations 

reported in CLL patients, this strategy would miss mutations in genes not included in the 

panel. That is evident in the study of cases such as MBL29, where a subclone harboring a 

NOTCH1 mutation is replaced by another having a MED12 mutation, either implying that 

the subclone with the not so well characterized MED12 mutation has a selective advantage 

and/or the rising subclone has additional, high-fitness, mutations not included in the 

sequencing panel. Further studies are needed to better dissect the effect of each mutation, as 

was previously done with TP53.(34) On the other hand, this limitation is in part offset by the 

fact that the deep coverage of the TDS strategy provides more detailed analysis of clonal 

evolution and sub-clone dynamics, which was one of the primary goals of the analysis. 

Although longer follow-up of this cohort will continue to provide new insights, the current 

84-month median follow-up is long enough to reach sound conclusions. This long follow-up 

also allowed us to use a high threshold for determining clinically significant progression 

defined as requiring treatment or progression to intermediate/advanced Rai stage rather than 

simply a higher lymphocyte count which has been used in many studies as an expedient 

parameter but which does not have clear clinical relevance.
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In summary, mutations in driver genes are an early event in the MBL-CLL continuum and 

sequential genetic evaluation of individuals with MBL provides insights that add to our 

understanding of the events that contribute to progression from MBL to CLL and have 

potentially profound clinical implications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MBL has a mutation profile similar to CLL years before disease progression
A) Heatmap of mutation distributions in the MBL cohort. Rows and columns represent 

genes and individuals, respectively. Black boxes indicate mutations (white numbers inside 

the black boxes indicate the number of mutations found in cases with more than one 

mutation per gene). IGHV mutation status and FISH data are shown below the mutation 

profiles. B) Mutation prevalence comparison between 48 MBL and 48 CLL with progressive 

disease analyzed using the same gene platform and similar sequencing depth coverage (CLL 

data published by Ojha et al. (13)).
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Figure 2. Time to Treatment and presence of mutations
A) Comparison of TTT in cases with mutations in any of the 21 genes versus cases without 

mutations. B) Comparison of TTT between cases with mutations in BIRC3, NOTCH1 or 

SF3B1 vs. other mutations vs. no mutations.
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Figure 3. Examples of different clonal dynamics in paired MBL samples
X-axis shows the variant reads (VRs) of each mutation at the first time point analyzed, 

whereas the y-axis shows the VRs at the last time point. A) Example harboring a near clonal 

(DDX3X) and 2 subclonal mutations (SF3B1 and NOTCH1) that remain stable between 

time points analyzed. B) Example of an individual showing 4 independent subclonal 

mutations affecting BRAF. C) Example of clonal tides, where an initial clone with a 

NOTCH1 mutation is replaced with a second clone harboring a MED12 mutation. D) 
Example of a MBL individual showing more than one mutation in multiple genes. The 

individual shows a single mutation in KRAS, DDX3X and BIRC3 at the initial time point, 

with the subsequent identification of a second mutation in all 3 genes and a mutation in 

BCOR at the last time point analyzed.
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Figure 4. Subclonal expansion was found in most MBLs that required treatment, years before 
the beginning of therapy
Timeline analysis of MBL individuals that subsequently received treatment. In each case we 

plot time (months) before treatment (X axis) and Variant Reads (VR) frequency of the 

different mutations detected in each time point (Y axis). Genes with mutations below 5% are 

listed but there is no graph associated. Left boxes: Clinical and biological parameters. Prog: 

Progression to CLL Rai> 0. Grey: Mutations without subclonal expansion; Black: Mutations 

with subclonal expansion; Arrows: Time (months) from detection of subclonal expansion to 

initial treatment.
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Table 1

Descriptive demographics of the MBL cohort.

Clinical Variables at diagnosis Cases, n=48 (%)

Gender
Male 31 (65)

Female 17 (35)

Age Median (range) 66.5 (44-80)

ZAP70
Positive 12 (25)

Negative 36 (75)

CD49
*

Positive 13 (28)

Negative 35 (72)

CD38
Positive 15 (31)

Negative 33 (69)

IGHV
*

Unmutated 16 (35)

Mutated 32 (65)

FISH
*
 17p or 11q-

Present 5 (11)

Absent 42 (89)

*
It was not possible to obtain diagnosis information for CD49 status in 2 cases, IGHV status in 2 cases and FISH in one case, respectively.
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