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Previous studies have indicated that the airway epithelia of lung cancer-associated injury
can extend to the nose and it was associated with abnormal gene expression. The aim of
this study was to find the possible lung cancer-related genes from the nasal epithelium as
bio-markers for lung cancer detection. WGCNA was performed to calculate the
module–trait correlations of lung cancer based on the public microarray dataset, and
their data were processed by statistics of RMA and t-test. Four specific modules
associated with clinical features of lung cancer were constructed, including blue,
brown, yellow, and light blue. Of which blue or brown module showed strong
connection to genetic connectivity. From the brown module, it was found that HCK,
NCF1, TLR8, EMR3, CSF2RB, and DYSF are the hub genes, and from the blue module, it
was found that SPEF2, ANKFN1, HYDIN, DNAH5, C12orf55, and CCDC113 are the
pivotal genes corresponding to the grade. These genes can be taken as the bio-markers to
develop a noninvasive method of diagnosing early lung cancer.
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INTRODUCTION

In recent 50 years, the morbidity and mortality of lung cancer have significantly increased, and the 5-
year mortality rate is up to 80%. The main cause is lack of effective diagnostic tools to detect early
lung cancer (Pisani et al., 1999). Although high-resolution CT (HRCT) and bronchoscopy increases
the diagnostic sensitivity, the screening is not feasible because of high cost or complex operation
(Gupta et al., 2009; Cannioto et al., 2018; Asaad Zebari and Emin Tenekeci, 2022). Despite low
complications, bronchoscopy cannot identify the extent of cancer or the size and location of small or
peripheral lung cancers (Khan et al., 2016). Previous studies have shown that some gene expression
of epithelial cells in the entire bronchial airway is significantly different between normal people and
smokers with lung cancer and proved that the existence of some pivotal genes in the nasal epithelium
was closely related to lung cancer. These genes have been applied as biomarkers and classifiers to
identify the lung cancers from benign diseases (Khan et al., 2016; Team, 2017). It was suggested that
this analysis is an additional noninvasive and convenient detection approach for lung cancer.

The latest progress in gene interaction network methodology is to study the potential internal
relationship between functional gene clusters and clinical features (Sun et al., 2017; Timmins and
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Ashlock, 2017). Identifying important modules related to clinical
features is helpful to infer the tumor mechanism and establish
new targets for diagnosis or therapy. Weighted gene co-
expression network analysis (WGCNA) is an effective
approach based on “guilt-by-association”. It is used for
identifying gene modules as candidates for biomarkers.
WGCNA creates in terms of large-scale gene expression
reports and the identification of centrally sited genes or hub
genes, which drive key cellular signaling pathways. The
systematical biology method has been used to identify the hub
genes in high-grade osteosarcoma and small cell lung cancer
(SCLC) and to find potential therapeutic targets (Ning et al., 2016;
Shakeel et al., 2020). This study was planned to make
improvements in biology methods, which might increase the
diagnostic efficiency of lung cancer at early stages, with low price
and non-trauma.

MATERIALS AND METHODS

Data Filtering
The expressional profile of GSE80796 was installed from the Gene
Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/
). The data and clinical traits were reserved to analyze the
difference in gene expression between the nasal epithelia of
patients with less than 3 cm of early lung cancer and benign
pulmonary nodule in different genders (6). Finally, there were a
total of 197 samples, including 100 samples of benign pulmonary
nodule (62 cases with tuberculoma, 23 with inflammatory
pseudotumor, 9 with sclerosing hemangioma, and 6 with
hamartoma) and 97 cases of early lung cancer (81 NSCLC and
16 SCLC).

Data Preprocessing and Identification of
Genes
At first, chip data were downloaded, including the background
correction, normalization preprocess, and calculation of gene
expression values. Robust multi-array average (RMA) and R
language (McCall et al., 2010) were applied in the affy
package, and the ComBat method was used in adjustment for
batch effects. Subsequently, differentially expressed genes (DEGs)
of nasal epithelia between early lung cancer and benign
pulmonary nodule were identified using t-test in the linear
models for microarray data, and the top 3,600 DEGs in the
order of |logFC| were chosen for the construction of WGCNA
(Langfelder and Horvath, 2008).

Construction of a Clustering Tree for
WGCNA
The WGCNA package in R language was used to construct the
gene co-expression network analysis of nasal epithelia gene
expression for both male and female and then continually to
compare and screen the consensus modules of nasal epithelia
gene expression in different genders.

Brief Process
The process contained the following steps: 1) created a
correlation matrix of the pairs of genes from all samples. 2)
Chose the proper soft threshold. 3) With the proper power
value, performed the automatic network construction and
module detection with the major parameters: max BlockSize
of 5,000, min ModuleSize of 40, deep Split of 4, and merge
CutHeight of 0.25. 4) Built a hierarchical clustering
dendrogram of gene expression data for each dataset and
identified the shared functional modules.

Calculation of the Correlation andHubGene
Identification
In order to determine the correlation between gene expression
modules and clinical traits, the age and smoking history (smoking
time, pack/years) of patients with lung cancer were chosen and
analyzed. As for the hub genes, Cytoscape software was used for
constructing the scale-free WGCNA for selected modules
(Shannon et al., 2003). The cytoHubba package from
Cytoscape was performed to extract the top 20 hub genes
selected by 12 different algorithms, and mutual hub genes
were then chosen by comparison of the top 20 hub genes. In
order to select gene modules, the pathway functional enrichment
analyses, including the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG), were
performed by the Database for Annotation, Visualization and
Integrated Discovery (DAVID). These gene functions were
analyzed at the molecular level.

RESULTS

Screening of DEGs
Top 3,600 DEGs in the order of |logFC| were identified in the
samples of early lung cancer by comparing with those of benign
pulmonary nodule; there were 1,745 upregulated genes, and
1,855 downregulated genes.

Construction of Co-Expression Module of
Lung Cancer
Cluster analysis of DEGs is clearly shown in Figure 1A. Those
samples were cut whose expression level was higher than 50
(Figure 1B). The soft threshold is the most important
parameter. First, the soft threshold was selected
(Figure 2A). When the power value was equal to 9, the
degree of independence was up to 0.9, and the average
connectivity was high. Five different gene co-expression
modules were identified and displayed in different colors
(Figure 2B). The gray module contained all the modules
that could not be allocated to other modules, and the
interaction of the co-expression modules showed that the
thermograph depicted the topological overlap matrix of all
genes. By constructing the TOM, these genes in the blue
module had the highest correlation (Figures 3A,B).
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Analysis of WGCNA Network
Consensus relationships of consensus module eigengenes and
clinical traits were presented as weak mutual correlations (p >
0.05), while the consensus module eigengenes and clinical traits
showed significant correlations (p < 0.05) in the male and female
data, respectively, which verified the conclusion of heterogeneity
related with gender. There were scatter plots of GS and MM of
blue and brown module genes, which had the highest correlation
in the blue module (Figure 4A). The module feature relationship
is displayed in Figure 4B. Their clinical features included age,
smoking years, tumor size, and lung cancer status. Cluster
analysis showed that the blue module was significantly
correlated with the clinical characteristics of lung cancer.

Gene Co-Expression and Hub Genes
In these genes, four specificmodules of lung cancer were constructed
as blue, brown, yellow, and light blue modules, and the blue and
brown modules were strongly linked to genetic connectivity. Twelve
algorithms of the cytoHubba package were used to calculate the hub
genes and their connectivity in Cytoscape software. In the brown
module, the hub genes identified were TLR8, HCK, NCF1, EMR3,
CSF2RB, and DYSF; in the blue module, the pivotal genes identified
were HYDIN, SPEF2, ANKFN1, DNAH5, C12orf55, and CCDC113
(Tables 1, 2). In every network, the color depth is directly
proportional to its connectivity. Four specific modules associated

with clinical features of lung cancer were constructed, including blue,
brown, yellow, and light blue, of which blue or brown module
showed strong connection to genetic connectivity (Figures 5A,B).
TLR8, HCK, NCF1, EMR3, CSF2RB, and DYSF were the hub genes
identified from the brown module, and HYDIN, SPEF2, ANKFN1,
DNAH5, C12orf55, and CCDC113 were the pivotal genes identified
from the blue module.

DISCUSSION

Main Goal for This Study
The aim of this study was to find the candidate genes by
WGCNA. It could provide insights into the biology of early
lung cancer and find the diagnostic biomarker by detecting
the gene expression of nasal epithelia, which could make up
for the shortage in postoperative pathological diagnosis and guide
the clinical therapy. WGCNA has been used to not only construct
gene networks and detect modules but also identify hub genes and
select significant genes as biomarkers based on gene correlations.
Module detection in WGCNA is used as a knowledge-
independent process. However, empirical judgment and
functional annotation would be more accurate, followed by the
selection of a threshold for culling the network (Letovsky, 1987;
Liu et al., 2015). WGCNA is considered a better prediction for

FIGURE 1 | lustering all the samples in the input sets (A). Height of data >55 cannot be well clustered with other data. Therefore, as outliers, data with
height >55 were removed. Dendrogram of residual samples was constructed as shown (B).
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hub genes when it comes to the biological process than the
regression statical methods. Therefore, the construction of
mutants will also help to detect the hub genes for prediction
of lung cancer and to understand the role of specific genes in
pathogenesis, which was overlooked in early lung cancer
(Subudhi et al., 2015).

Technology and Method of WGCNA
WGCNA was applied to investigate 3,600 genes downloaded
from a dataset at NCBI. First, the data were performed to
obtain the gene expression consensus modules of nasal
epithelia, module eigengenes, clinical traits, and their
relationships. Second, we constructed the status-specific
modules of lung cancer. Third, we identified the hub genes
in brown and blue modules through cytoHubba in Cytoscape
and detected the related genes in 12 algorithms. Lastly, we
performed the gene enrichment analysis on GO and pathway
terms.

New Results
WGCNAwas used to investigate 3,600 genes downloaded from
a dataset at NCBI. We obtained evidence about the changes of

the hub gene expression in the feature gene module. The
expressions of EMR3, NCF1, CSF2RB, DYSF, TLR8, and
HCK in the lung cancer group were significantly different
from those of the control group. The most significant
difference in gene expression is EMR3, followed by NCF1,
CSF2RB, DYSF, TLR8, and HCK.

About EMR3
EMR3 is one of the members of the epidermal growth factor
7 transmembrane protein family (EGF-TM7), which includes
CD97, EMR1, EMR2, and EMR4 and is expressed in the
immune system cells. Until now, its functions are unclear
yet, as well as the ligand and downstream signal (Stacey
et al., 2001). Some research studies found that EMR3 is
mainly expressed in mature granulocytes, and other
members from the EGF-TM7 family may mediate the cell
migration and leukocyte migration (Matmati et al., 2007; Yona
et al., 2008a; Yona et al., 2008b). Ari and Kane found that
EMR3 is expressed in glioblastoma cells and can mediate cell
migration and invasion. It has the highest level of neutrophils,
monocytes, and macrophages in the peripheral blood of
Crohn’s patients (Kane et al., 2010).

FIGURE 2 | Analysis of network topology for various soft-thresholding powers (A). Summary network indices (y-axes) as functions of the soft-thresholding power
(x-axes). Numbers in the plots indicate the corresponding soft-thresholding powers. The plots indicate that approximate scale-free topology is attained around the soft-
thresholding power of 9 for the sets. Because the summary connectivity measures decline steeply with increasing soft-thresholding power, it is advantageous to choose
the lowest power that satisfies the approximate scale-free topology criterion. Cluster dendrogram and co-expression network modules for differentially expressed
genes in the nasal epithelium of lung cancer and benign pulmonary nodule (B). Gene dendrogram obtained by clustering the dissimilarity based on consensus
topological overlap with the corresponding module colors indicated by the color row.
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FIGURE 3 | Comparisons between four modules. Genes in the blue module have the highest correlation (A). Average linkage hierarchical clustering with the
topological overlap dissimilarity measure was used to identify gene co-expression modules. The gene network was visualized using a heatmap plot. Light color
represents low overlap, while the progressively darker red color represents higher overlap. Blocks of darker colors along the diagonal are themodules. Gene dendrogram
and module assignment are also shown along the left side and at the top (B).

FIGURE 4 | Scatterplot of gene significance (GS) for lung cancer status vs. module membership (MM) in the blue module (A). There is a highly significant correlation
between GS and MM in the blue module. Correlation of gene co-expression modules with clinical traits in the training cohort (n = 196). Blue module is strongly correlated
with early lung cancer, so the blue module was chosen to be further analyzed (B).
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About NCF1
NCF1 is a major component of the nicotinamide adenine
dinucleotide oxidase system; it can regulate the production of
reactive oxygen species (ROS). NCF1 deficiency will lead to the
reduction of ROS, which is associated with immune disorders
(Bastos et al., 1995). NCF1-knock-out mice have increased

leukocyte infiltration and morphological changes in the
colonic mucosa, indicating that the absence of the
NCF1 gene could aggravate colitis (El Naschie, 2004). In
contrast, the upregulation of NCF1 gene expression might
cause diminished or deficient ROS production that is
detrimental to human health.

TABLE 1 | Top 25 hub genes of the blue module through dataset 1.

P2 MCC3 DMNC4 MNC5 Degree EPC6 BottleNeck

1 C12orf55 IL36G — — — DNAH6
2 ZNF487 KRT13 DNAH6 DNAH6 DNAH6 —

3 SPEF2 ACSS3 HYDIN HYDIN HYDIN MAP3K19
4 EFCAB2 HSPB8 DNAH12 DNAH12 DNAH12 DNAH7
5 DNAH7 SPRR1B C12orf55 C12orf55 C12orf55 APOBEC4
6 ANKFN1 CYP2G2P LOC100652824 LOC100652824 LOC100652824 CCDC113
7 NEK5 ABCB11 DYNC2H1 DYNC2H1 ULK4 WDR49
8 MDH1B RNU6-646P ULK4 ULK4 DYNC2H1 HYDIN
9 LOC100652824 CEACAM6 SPEF2 SPEF2 NEK5 RUVBL1
10 ROPN1L DCAKD DNAH7 EFCAB1 EFCAB1 C7orf63
11 ADGB SYTL5 ADGB NEK5 SPEF2 SNORD116-1
12 ALS2CR12 HTR3A WDR49 DNAH7 AK9 SNORD116-29
13 TMEM107 RNU2-50P NEK5 WDR49 ATXN7L1 IFT88
14 CHDC2 CPA4 EFCAB1 ADGB MNS1 C12orf55
15 DUSP5 RNU6-490P WDR96 WDR96 RSPH4A SNORD116-24
16 MNS1 DSG3 IQUB MNS1 CC2D2A TMEM231
17 TMEM232 KCNJ16 STK33 CASC1 MAP3K19 ARMC2
18 EFHB PDLIM2 CCDC30 WDR65 TCTEX1D1 SNORA20
19 LRRIQ1 CCDC34 WDR65 CCDC30 WDR96 SNORAD116-15
20 STOML3 FABP5 CASC1 IQUB IQUB SNORAD115-32
21 ARMC2 SOX2 MNS1 ANKFN1 WDR65 IQCK
22 PCDP1 RNU6-955P SPAG17 ATXN7L1 ANKFN1 DNAH2
23 AGBL2 CNTNAP3B ANKFN1 EFCAB2 NEK10 NEK5
24 MUC15 — CCDC113 WDR63 DNAH7 TCTEX1D1
25 IQUB KRT6B NEK10 CCDC39 WDR49 NME5

P EcCentricity Closeness Radiality Node_name Stress CC7

1 SNORD116-29 — — — — IL36G
2 SCARNA7 DNAH6 DNAH6 DNAH6 DNAH6 KRT13
3 SNORA20 HYDIN HYDIN HYDIN HYDIN ACSS3
4 SNORD116-15 DNAH12 DNAH12 DNAH12 DNAH12 DSG3
5 SNORD116-24 C12orf55 C12orf55 SNORD116-24 C12orf55 HSPB8
6 SNORD116-5 LOC100652824 LOC100652824 CCDC113 CCDC113 CEACAM6
7 SNORD116-25 DYNC2H1 DYNC2H1 DYNC2H1 ARMC2 SPRR1B
8 SNORD116-1 ULK4 ULK4 C12orf55 DYNC2H1 SYTL5
9 SNORD116-26 SPEF2 SPEF2 ARMC2 RPGRIP1L RNU6-646P
10 RUVBL1 DNAH7 DNAH7 LOC100652824 LOC100652824 ABCB11
11 DNAH7 ADGB WDR49 SNORD116-29 SNORD116-24 CYP2G2P
12 C14orf142 WDR49 NEK5 SNORA20 TCTEX1D1 HTR3A
13 CCDC113 NEK5 ADGB SCARNA7 WDR65 SNORA28
14 NUCB2 WDR96 WDR96 WDR65 SNORA20 DCAKD
15 TCTEX1D1 EFCAB1 STK33 RPGRIP1L SNORD116-29 RNU6-490P
16 ZMAT1 STK33 IQUB ULK4 ZBBX HPX
17 DTHD1 IQUB EFCAB1 TCTEX1D1 SPATA18 KRT6B
18 FANK1 WDR65 WDR65 MAATS1 SCARNA7 SOX2
19 CCDC60 CCDC30 CCDC113 TMEM232 MAATS1 AZGP1
20 PACRG CASC1 CASC1 ZBBX ULK4 KCNJ16
21 SPEF2 MNS1 CCDC30 C9orf116 SNORD116-14 RCBTB1
22 VWA3A SPAG17 DTHD1 DTHD1 C9orf116 KRT24
23 KIAA1377 ANKFN1 ANKFN1 SNORD116-5 SNORD116-1 ADIRF
24 ARMC2 CCDC113 ARMC2 ADGB SNORD116-15 SNORD116-29
25 KIAA1841 DTHD1 MNS1 SPATA18 ADGB LOC100131860

Notes: The hub gene was calculated by cytoHubba 1; parameters 2; maximal clique centrality 3; density of maximum neighborhood component 4; maximum neighborhood component 5;
edge percolated component 6; clustering coefficient 7.
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About CSF2RB and Others
CSF2RB is the common beta chain of the high-affinity receptor
complexes for ligands of IL-3, IL-5E, and CSF. Research studies
found that mutation of CSF2RA or CSF2RB can cause
hereditary pulmonary alveolar proteinosis (PAP) (Takaki
et al., 2016), and CSF2RB is a risk factor for schizophrenia

and depression in the Han population of Chinese and a potential
oncogene that can be targeted by several miRNAs for
undergoing cell apoptosis (Chen et al., 2011). The DYSF gene
is a 220-kD protein, which plays a major role in the regulation of
plasma membrane repair. Fusion of DYSF with the ALK gene
has been found to be associated with advanced lung cancer. As a

TABLE 2 | Top 25 hub genes of the brown module through dataset 1.

P2 MCC3 DMNC4 MNC5 Degree EPC6 BottleNeck

1 HCK TPD52L2 — — — —

2 NCF1 FCGR3A HCK FCGR3A FCGR3A DYSF
3 PLEK NCF2 NCF1 NCF1 HCK LILRB2
4 TLR8 — FCGR3A HCK NCF1 SLED1
5 ITGAX MIR23A CSF2RB GLT1D1 CSF2RB PREX1
6 APBB1IP NFIL3 GLT1D1 CSF2RB PLEK TAGAP
7 EMR2 CD14 EMR2 EMR2 FCGR1A LOC254896
8 CSF2RB FCGR1A FPR1 FCGR1A FPR1 EMR3
9 MNDA MIR223 TAGAP TAGAP GLT1D1 SH2D3C
10 CXCR4 ITGAX EMR3 EMR3 MNDA —

11 THEMIS2 PLEK MNDA FPR1 TAGAP FOSB
12 CD53 NFE2 GPR97 GPR97 LCP2 ZFP36
13 SPI1 SIRPB1 CSF3R MNDA EMR3 NFAM1
14 SLA LINC00921 DYSF LCP2 THEMIS2 PPP1R18
15 TYROBP THEMIS2 TLR8 PLEK ITGAX PTPRC
16 FFAR2 P2RY13 APBB1IP CSF3R DYSF CD14
17 EMR3 EVI2B LCP2 DYSF EMR2 TRIB1
18 FCGR1A ARRB2 PLEK BCL2A1 BCL2A1 IL1B
19 GPR97 TREM1 SLA ITGAX CSF3R MNDA
20 FMNL1 TNFAIP6 FCGR1A SLA FCGR2A FMNL1
21 RASSF2 PLXNC1 ITGAX TLR8 SLA RGS2
22 LILRB3 CHST11 LILRB3 FCGR2A TLR8 LPCAT1
23 HCAR3 SELPLG BCL2A1 APBB1IP TREM1 FYB
24 SLC11A1 NABP1 RASSF2 LILRB3 LILRB3 FFAR2
25 AQP9 SELL FCGR2A RASSF2 RASSF2 CHSY1

P EcCentricity Closeness Radiality Node_name Stress CC7

1 CSRNP1 — — — — TPD52L2
2 HRH2 HCK HCK HCK HCK GZMB
3 OSM NCF1 NCF1 SH2D3C SH2D3C HEY2
4 CLEC4E FCGR2A FCGR2A NCF1 NCF1 MIR23A
5 ARID5A CSF2RB CSF2RB CSF2RB EMR2 LINC00921
6 CASS4 GLT1D1 EMR2 EMR2 EMR3 CD14
7 PLEKH02 EMR2 GLT1D1 EMR3 FCGR3A NFIL3
8 LILRB3 FPR1 EMR3 LILRB2 CSF2RB ARRB2
9 — EMR3 FPR1 DYSF ADAM8 RAB24
10 TLR8 MNDA MNDA GLT1D1 DYSF NFE2
11 — TAGAP DYSF ADAM8 GLT1D1 NCF2
12 SH2D3C GPR97 TAGAP CSF3R CSF3R RN7SKP78
13 PHOSPHO1 CSF3R LCP2 TLR8 TLR8 GMIP
14 — DYSF CSF3R TAGAP LCP2 MIR223
15 CEBPD LCP2 ITGAX LCP2 SLA EDN1
16 TPD52L2 TLR8 LILRB3 APBB1IP LILRB2 CHST11
17 RAB24 ITGAX GPR97 FCGR3A WAS P2RY13
18 RN7SKP78 PLEK TLR8 WAS TAGAP NABP1
19 EGR2 FCGR1A PLEK SLA ITGAX SIRPB1
20 CNN2 SLA FCGR1A FPR1 — ZC3H12A
21 FOSB LILRB3 SLA GPR97 FPR1 TNFAIP6
22 RCSD1 APBB1IP APBB1IP LILRB3 CYTH4 AOAH
23 TNFAIP6 BCL2A1 PROK2 DGAT2 APBB1IP EVI2B
24 DYSF PROK2 RASSF2 ALOX5 MOB3A PRKCB
25 LILRB2 RASSF2 FCGR2A PTPRE LCP1 ZFP36

Notes: The hub gene was calculated by cytoHubba 1; parameters 2; maximal clique centrality 3; density of maximum neighborhood component 4; maximum neighborhood component 5;
edge percolated component 6; clustering coefficient 7.
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single-stranded RNA sensor, the activation of TLR8 can also
promote the survival and chemoresistance of lung cancer cells.
The HCK gene belongs to the Src family of tyrosine kinase,
which is mainly involved in the regulation of
polymorphonuclear leukocytes. A recent study showed that
in the Bai nationality of China, the polymorphism of the
introns of the HCK gene is associated with lung function and
airway abnormality (Espinoza-Fonseca, 2016).

Experimental Verification
Studies have proved that the existence of injury in the bronchial
airway results in gene expression alterations in patients with lung
cancer, and the airway epithelial injury associated with lung cancer
extends to the nasal epithelium (Shannon et al., 2003). In the previous
study, the downregulated genes CASP10 and CD177 and the
upregulated genes BAK1, ST14, CD82, and MUC4 were detected
as biomarkers for lung cancer by the joint sparse regression model
(Loxham and Davies, 2017). Our study has detected some hub genes
from gene expression of the nasal epithelium of early lung cancer by
WGCNA. The most significant difference in gene expression was
shown by EMR3, followed by NCF1, CSF2RB, DYSF, and so on. The
results of qRT-PCR are in accordance with those of microarray
analysis (Qureshi, 2018).

Clinical Application
This study may provide an additional proof for detecting early
lung cancer by observing gene expression of the nasal epithelium,
which indicates a great potential for clinical application (Lobato

and O’Sullivan, 2018). The biomarker of nasal epithelium would
be used as a reference for patients with small nodules at low risk of
malignancy, which can be managed by CT screening (Petty, 2001;
Cottin and Cordier, 2016). However, this study still has some
limitations. It lacks further studies on the relationship between
gene expression and pathological typing of lung cancer (Tang
et al., 2018), so large-scale samples must be collected to have a
better analysis in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Materials; further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

We sincerely thank for the support of personal research fund
from Zhongshan Hospital of Xiamen University and the technical
support from Xiamen JiKe Biotechnology Company Limited.

REFERENCES

Asaad Zebari, N., and Emin Tenekeci, M. (2022). Support System Based Computer-
Aided Detection for Skin Cancer: A Review. Fusion Pract. Appl. 7 (1), 30–40. doi:10.
54216/FPA.070103

Bastos, J., Steyaert, M., Roovers, R., Kinget, P., Sansen, W., Graindourze, B., et al
(1995). Mismatch Characterization of Small Size MOS Transistors. Proc.
ICMTS 8, 271–276.

Cannioto, R., Etter, J. L., LaMonte, M. J., Ray, A. D., Joseph, J. M., Qassim, E. A., et al
(2018). Lifetime Physical Inactivity is Associated with Lung Cancer Risk and
Mortality. Cancer Treat. Res. Commun. 14, 37–45. doi:10.1016/j.ctarc.2018.01.001

FIGURE 5 | Top 25 hub genes calculated by MCC algorithms have strong correlations with early lung cancer. Progressively darker red color represents higher
relationship in the blue module. C12orf55, ZNF487, EFCAB2, and ANKFN1 are the most closely related hub genes (A). The hub genes were identified by MCC in the
brown module. NCF1, PLEK, TLR8, and HCK are the most closely related hub genes in the brown module (B).

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9428648

Qureshi et al. Genes Related to Lung Cancer

https://doi.org/10.54216/FPA.070103
https://doi.org/10.54216/FPA.070103
https://doi.org/10.1016/j.ctarc.2018.01.001
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen, P., Huang, K., Zhou, G., Zeng, Z., Wang, T., Li, B., et al (2011). Common
SNPs in CSF2RB are Associated with Major Depression and Schizophrenia in
the Chinese Han Population.World J. Biol. Psychiatry 12, 233–238. doi:10.3109/
15622975.2010.544328

Cottin, V., and Cordier, J-F. (2016). Eosinophilic Lungs Disease. Murray and Nadel’s
Textbook of Respiratory Medicine. 6th Edition. Philadelphia: Elsevier Saunders.

El Naschie, M. S. (2004). Small World Network, Topology and the Mass Spectrum
of High Energy Particles Physics. Chaos Solit. Fractals 19, 689–697. doi:10.1016/
s0960-0779(03)00337-0

Espinoza-Fonseca, L. M. (2016). Pathogenic Mutation R959W Alters Recognition
Dynamics of Dysferlin Inner DysF Domain. Mol. BioSyst. 12, 973–981. doi:10.
1039/c5mb00772k

Gupta, S., Siddiqui, S., Haldar, P., Raj, J. V., Entwisle, J. J., Wardlaw, A. J., et al
(2009). Qualitative Analysis of High-Resolution CT Scans in Severe Asthma.
Chest 136, 1521–1528. doi:10.1378/chest.09-0174

Kane, A. J., Sughrue, M. E., Rutkowski, M. J., Phillips, J. J., and Parsa, A. T. (2010).
EMR-3: A PotentialMediator of Invasive Phenotypic Variation in Glioblastoma and
Novel Therapeutic Target. Neuroreport 21, 1018–1022. doi:10.1097/wnr.
0b013e32833f19f2

Khan, K. A., Nardelli, P., Jaeger, A., O’Shea, C., Cantillon-Murphy, P., and
Kennedy, M. P. (2016). Navigational Bronchoscopy for Early Lung Cancer:
A Road to Therapy. Adv. Ther. 33, 580–596. doi:10.1007/s12325-016-0319-4

Langfelder, P., and Horvath, S. (2008). WGCNA: An R Package for Weighted
Correlation Network Analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-
2105-9-559

Letovsky, S. (1987). Cognitive Processes in Program Comprehension. J. Syst. Softw.
7, 325–339. doi:10.1016/0164-1212(87)90032-x

Liu, R., Cheng, Y., Yu, J., Lv, Q.-L., and Zhou, H.-H. (2015). Identification and
Validation of Gene Module Associated with Lung Cancer through
Coexpression Network Analysis. Gene 563, 56–62. doi:10.1016/j.gene.2015.
03.008

Lobato, I. M., and O’Sullivan, C. K. (2018). Recombinase Polymerase
Amplification: Basics, Applications and Recent Advances. TrAC Trends
Anal. Chem. 98, 19–35. doi:10.1016/j.trac.2017.10.015

Loxham, M., and Davies, D. E. (2017). Phenotypic and Genetic Aspects of
Epithelial Barrier Function in Asthmatic Patients. J. Allergy Clin. Immunol.
139, 1736–1751. doi:10.1016/j.jaci.2017.04.005

Matmati, M., Pouwels, W., van Bruggen, R., Jansen, M., Hoek, R. M., Verhoeven, A.
J., et al (2007). The Human EGF-TM7 Receptor EMR3 is a Marker for Mature
Granulocytes. J. Leukoc. Biol. 81, 440–448. doi:10.1189/jlb.0406276

McCall, M. N., Bolstad, B. M., and Irizarry, R. A. (2010). Frozen Robust Multiarray
Analysis (fRMA). Biostatistics 11, 242–253. doi:10.1093/biostatistics/kxp059

Ning, B., Xu, D. L., Gao, J. H., Wang, L. L., Yan, S. Y., and Cheng, S. (2016).
Identification of Pathway-RelatedModules in High-Grade Osteosarcoma Based
on Topological Centrality of Network Strategy. Eur. Rev. Med. Pharmacol. Sci.
20, 2209–2220.

Petty, T. L. (2001). The Early Diagnosis of Lung Cancer. Dis. Mon. 47, 204–264.
doi:10.1067/mcd.2001.116285

Pisani, P., Parkin, D. M., Bray, F., and Ferlay, J. (1999). Estimates of theWorldwide
Mortality from 25 Cancers in 1990. Int. J. Cancer 83, 18–29. doi:10.1002/(sici)
1097-0215(19990924)83:1<18::aid-ijc5>3.0.co;2-m

Qureshi, N. (2018). Identification of Significantly Different Modules between
Gene Expression in Nasal Epithelial Cell and Lung Cancer by WGCNA
Study and Experimental Verification (D). Xiamen CHINA: Xiamen
University.

Shakeel, P. M., Tolba, A., Al-Makhadmeh, Z., and Jaber, M. M. (2020). Automatic
Detection of Lung Cancer from Biomedical Data Set Using Discrete AdaBoost

Optimized Ensemble Learning Generalized Neural Networks. Neural Comput.
Applic. 32, 777–790. doi:10.1007/s00521-018-03972-2

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al
(2003). Cytoscape: A Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Res. 13, 2498–2504. doi:10.
1101/gr.1239303

Stacey, M., Lin, H.-H., Hilyard, K. L., Gordon, S., and McKnight, A. J. (2001).
Human Epidermal Growth Factor (EGF) Module-Containing Mucin-Like
Hormone Receptor 3 is a New Member of the EGF-TM7 Family that
Recognizes a Ligand on Human Macrophages and Activated Neutrophils.
J. Biol. Chem. 276, 18863–18870. doi:10.1074/jbc.m101147200

Subudhi, A. K., Boopathi, P. A., Pandey, I., Kaur, R., Middha, S., Acharya, J., et al
(2015). Disease Specific Modules and Hub Genes for Intervention Strategies:
A Co-Expression Network Based Approach for Plasmodium Falciparum
Clinical Isolates. Infect. Genet. Evol. 35, 96–108. doi:10.1016/j.meegid.
2015.08.007

Sun, Q., Zhao, H., Zhang, C., Hu, T., Wu, J., Lin, X., et al (2017). Gene Co-
Expression Network Reveals Shared Modules Predictive of Stage and Grade in
Serous Ovarian Cancers. Oncotarget 8, 42983–42996. doi:10.18632/oncotarget.
17785

Takaki, M., Tanaka, T., Komohara, Y., Tsuchihashi, Y., Mori, D., Hayashi, K., et al
(2016). Recurrence of Pulmonary Alveolar Proteinosis after Bilateral Lung
Transplantation in a Patient with a Nonsense Mutation in CSF2RB. Respir.
Med. Case Rep. 19, 89–93. doi:10.1016/j.rmcr.2016.06.011

Tang, Q., Zhang, H., Kong, M., Mao, X., and Cao, X. (2018). Hub Genes and Key
Pathways of Non-Small Lung Cancer Identified Using Bioinformatics. Oncol.
Lett. 16, 2344–2354. doi:10.3892/ol.2018.8882

Team, A. S. (2017). Shared Gene Expression Alterations in Nasal and Bronchial
Epithelium for Lung Cancer Detection. J. Natl. Cancer Inst. 109, djw327. doi:10.
1093/jnci/djw327

Timmins, M., and Ashlock, D. (2017). Network Induction for Epidemic Profiles
with a Novel Representation. Biosystems 162, 205–214. doi:10.1016/j.
biosystems.2017.10.013

Yona, S., Lin, H.-H., Siu, W. O., Gordon, S., and Stacey, M. (2008). Adhesion-
GPCRs: Emerging Roles for Novel Receptors. Trends Biochem. Sci. 33, 491–500.
doi:10.1016/j.tibs.2008.07.005

Yona, S., Lin, H. H., Dri, P., Davies, J. Q., Hayhoe, R. P. G., Lewis, S. M., et al (2008).
Ligation of the adhesion-GPCR EMR2 Regulates Human Neutrophil Function.
FASEB J. 22, 741–751. doi:10.1096/fj.07-9435com

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Qureshi, Chi, Qian, Huang and Duan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9428649

Qureshi et al. Genes Related to Lung Cancer

https://doi.org/10.3109/15622975.2010.544328
https://doi.org/10.3109/15622975.2010.544328
https://doi.org/10.1016/s0960-0779(03)00337-0
https://doi.org/10.1016/s0960-0779(03)00337-0
https://doi.org/10.1039/c5mb00772k
https://doi.org/10.1039/c5mb00772k
https://doi.org/10.1378/chest.09-0174
https://doi.org/10.1097/wnr.0b013e32833f19f2
https://doi.org/10.1097/wnr.0b013e32833f19f2
https://doi.org/10.1007/s12325-016-0319-4
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1016/0164-1212(87)90032-x
https://doi.org/10.1016/j.gene.2015.03.008
https://doi.org/10.1016/j.gene.2015.03.008
https://doi.org/10.1016/j.trac.2017.10.015
https://doi.org/10.1016/j.jaci.2017.04.005
https://doi.org/10.1189/jlb.0406276
https://doi.org/10.1093/biostatistics/kxp059
https://doi.org/10.1067/mcd.2001.116285
https://doi.org/10.1002/(sici)1097-0215(19990924)83:1<18::aid-ijc5>3.0.co;2-m
https://doi.org/10.1002/(sici)1097-0215(19990924)83:1<18::aid-ijc5>3.0.co;2-m
https://doi.org/10.1007/s00521-018-03972-2
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1074/jbc.m101147200
https://doi.org/10.1016/j.meegid.2015.08.007
https://doi.org/10.1016/j.meegid.2015.08.007
https://doi.org/10.18632/oncotarget.17785
https://doi.org/10.18632/oncotarget.17785
https://doi.org/10.1016/j.rmcr.2016.06.011
https://doi.org/10.3892/ol.2018.8882
https://doi.org/10.1093/jnci/djw327
https://doi.org/10.1093/jnci/djw327
https://doi.org/10.1016/j.biosystems.2017.10.013
https://doi.org/10.1016/j.biosystems.2017.10.013
https://doi.org/10.1016/j.tibs.2008.07.005
https://doi.org/10.1096/fj.07-9435com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Looking for the Genes Related to Lung Cancer From Nasal Epithelial Cells by Network and Pathway Analysis
	Introduction
	Materials and Methods
	Data Filtering
	Data Preprocessing and Identification of Genes
	Construction of a Clustering Tree for WGCNA
	Brief Process
	Calculation of the Correlation and Hub Gene Identification

	Results
	Screening of DEGs
	Construction of Co-Expression Module of Lung Cancer
	Analysis of WGCNA Network
	Gene Co-Expression and Hub Genes

	Discussion
	Main Goal for This Study
	Technology and Method of WGCNA
	New Results
	About EMR3
	About NCF1
	About CSF2RB and Others
	Experimental Verification
	Clinical Application

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


