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Abstract

Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for
human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing
data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic
rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications
of exome sequencing have been appealing for an effective computational method for identifying causative
nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called
SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given
query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster,
GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-
protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the
statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate
SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose
genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles.
In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative
de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service,
the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.
edu.cn/spring.
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Introduction

Pinpointing genetic variants underlying human inherited

diseases is the primary step towards the understanding of the

pathogenesis of these diseases [1]. With the accelerating advance-

ment of the next generation sequencing technology, it becomes an

efficient strategy to selectively sequence coding regions of a

genome, resulting in the exome sequencing technique [2]. With

the increase of sequencing throughput and the decrease of

sequencing costs, exome sequencing has been widely used in not

only the detection of pathogenic variants for Mendelian diseases

[3–5] but also the discovery of susceptible loci for complex diseases

[6–8].

A majority of genetic variants captured by exome sequencing

studies are nonsynonymous single nucleotide variants (SNVs),

whose occurrences may change structures of encoded proteins,

thereby affecting functions of proteins and further causing diseases

[5]. It has been shown that among the large number (typically

around 8,000–10,000) of nonsynonymous SNVs sequenced in an

exome, a significant fraction occurs with low minor allele

frequency (MAF#1%), belonging to the category of rare genetic

variation [9,10]. Recent studies have also shown that a non-

negligible fraction of disease-causing SNVs occur de novo,

representing the most extreme form of rare variants [11–13].

The existence of such rare or de novo mutations, together with the

fact that the number of affected and normal individuals being

sequenced is typically quite limited, has been obstructing direct

applications of such traditional statistical genetics methods as

family-based linkage analysis and population-based association

studies to the analysis of exome sequencing data [14]. Indeed,

prevalent applications of exome sequencing have been appealing

for an effective computational method for the identification of

pathogenic variants from a large number of sequenced nonsynon-

ymous SNVs [1,5].

To meet the requirement in the analysis of exome sequencing

data, existing methods for predicting functional implications of

nonsynonymous SNVs have been borrowed. These methods, with

examples including SIFT [15], PolyPhen2 [16], LRT [17],
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MutationTaster [18], GERP [19], PhyloP [20], and many others

[21–25], typically predict damaging effects of a nonsynonymous

SNV on the function of its hosting protein based on individual or

combined use of such information as sequence properties [15],

structure characteristics [16] and database annotations [18].

Genome-scale prediction results of these methods have also been

collected in databases such as the dbNSFP [26]. However, for a

specific query disease, the alteration of the function of a gene

hosting a variant does not necessarily mean that the variant is

pathogenic for the query disease. For example, in the UniProtKB/

Swiss-Prot database [27] (release 2012_09), there have been 37

SNVs reported in gene ABCB4 (corresponding to multidrug

resistance protein 3, MDR3_HUMAN). Among these variants, 11

(e.g., p.Arg150Lys) has been reported to be causative for

intrahepatic cholestasis of pregnancy (MIM: 147480) [28,29], 3

(e.g., p.Gly983Ser) causative for progressive familial intrahepatic

cholestasis type 3 (MIM: 602347) [30–32], and 6 (e.g.,

p.Ala934Thr) causative for gallbladder disease type 1 (MIM:

600803) [33,34]. Therefore, in order to access whether a

nonsynonymous SNV is causative for a query disease, it is not

enough to only predict the functionally damaging effects of the

variant — the association information between the disease and the

gene hosting the variant is also important.

With this understanding, we propose in this paper a statistical

method called SPRING (Snv PRioritization via the INtegration of

Genomic data) for the detection of pathogenic nonsynonymous

SNVs for a given query disease in exome sequencing studies.

Given a query disease and a set of candidate nonsynonymous

SNVs, SPRING calculates a q-value for each candidate variant to

indicate the statistical significance that the variant is causative for

the query disease and thus provides a means of prioritizing the

candidate variants. SPRING achieves this goal by using a rigorous

statistical model to integrate six functional effect scores that are

calculated by SIFT, PolyPhen2, LRT, MutationTaster, GERP

and PhyloP to indicate the functional implication of a nonsynon-

ymous SNV and five association scores that are derived from gene

ontology, protein-protein interactions, protein sequences, protein

domain annotations and gene pathway annotations to describe the

potential association between the variant and the query disease.

The integrated p-values are further converted to q-values for

addressing the multiple testing correction problem [35,36]. We

perform a series of comprehensive validation experiments to access

the effectiveness of SPRING. Results show that our method is

valid for diseases whose genetic bases are either partly known or

completely unknown, effective for diseases with a variety of

inheritance styles, and capable of identifying disease-causing SNVs

in whole-exome sequencing studies. We further show the

capability of our method in detecting causative de novo mutations

for autism, epileptic encephalopathies, and intellectual disability.

Results

Principles of the proposed method
The computational assessment of functional implications of

nonsynonymous SNVs has been usually formulated as a task of

predicting functionally damaging effects of such SNVs. To this

end, existing methods predict the potential impact of a nonsynon-

ymous SNV on the function of its host protein based on such

information as sequence properties [15], structure characteristics

[16], and database annotations [18]. The principle behind these

methods is that a functionally damaging SNV usually raises a

significant change on the structure and function of the host

protein, and the sequence at the mutation position is more

conserved, while a neutral SNV typically results in a minor or

negligible change in protein structure and function, and the

sequence of the resulting protein is less conserved.

The computational identification of disease genes has been

typically modeled from the viewpoint of one-class prioritization.

Given a query disease and a list of candidate genes, existing

methods rank candidate genes according to their strength of

association with the query disease. This is usually done according

to the guilt-by-association principle [37], which assumes that genes

related to the same disease are correlated in their functions, and

such correlation can be calculated from such genomic data as gene

sequences [38], gene functional annotations [39], protein-protein

interactions [40], etc [41,42].

However, for a specific query disease, the alteration of the

function of a gene hosting an SNV does not necessarily mean the

association between the gene and the query disease, as we have

analyzed previously that the SNVs occurring in ABCB4 may cause

three diseases intrahepatic cholestasis of pregnancy, progressive

familial intrahepatic cholestasis type 3 and gallbladder disease type

1. On the other hand, the association between a gene and a query

disease does not mean every functional variant in the gene is

causative for the query disease. For example, SCN2A (MIM:

182390) has been validated to be causative for autism (MIM:

209850) [43] and early infantile epileptic encephalopathy-11

(EIEE11, MIM: 613721) [44,45] but benign familial neonatal-

infantile seizures-3 (BFIS3, MIM: 607745) [46,47]. Nevertheless,

based on the dbSNP database, among the 37 SNVs found in

SCN2A, only 7 are detected to be pathogenic, and the other 30

are not reported to be causative for any disease up to now [48].

Therefore, in order to access whether an SNV is causative for a

query disease, one needs to integrate both the functional

implication of the variant and the association information between

the disease and the gene hosting the variant. Based on this

reasoning, we model the identification of causative SNVs for a

query disease from a set of candidate SNVs as a prioritization

problem and propose a computational approach called SPRING

to address this problem.

Specifically, as illustrated in Figure 1, given a query disease and

a set of candidate SNVs, SPRING calculates a q-value for each

candidate variant to indicate the statistical significance that the

variant is causative for the query disease and thus provides a

means of ranking the candidate variants. SPRING achieves this

goal by using a statistical method called Fisher’s combined

probability test with dependence correction to integrate six

Author Summary

The detection of causative nonsynonymous single nucle-
otide variants (SNVs) is essential for the understanding of
the pathogenesis of human inherited diseases. In this
paper, we propose a statistical method called SPRING (Snv
PRioritization via the INtegration of Genomic data) to
combine six functional effect scores calculated by existing
methods and five association scores derived from multiple
genomic data sources to estimate the statistical signifi-
cance that a nonsynonymous SNV is pathogenic for a
query disease. We find that SPRING is effective in
identifying disease-causing SNVs for diseases whose
genetic bases are either partly known or completely
unknown across a variety of inheritance styles. With real
exome sequencing data, we show the qualified potential
of SPRING in not only the detection of causative SNVs in
simulation studies but also the identification of pathogenic
de novo mutations for autism, epileptic encephalopathies
and intellectual disability.
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functional effect p-values that characterize the functional implica-

tion of a variant and five association p-values that describe the

potential association between the variant and the query disease.

The six functional effect p-values are derived from existing

approaches for prediction functional implications of SNVs,

including SIFT [15], PolyPhen2 [16], LRT [17], MutationTaster

[18], GERP [19], and PhyloP [20]. The five association p-values

are derived from genomic data sources, including gene ontology,

protein-protein interactions, protein sequences, domain annota-

tions, and pathway annotations. To address the multiple testing

correction problem, p-values resulting from the Fisher’s method

[49] are further converted to q-values to control the positive false

discovery rate (pFDR) [35,36].

Data sources
We extracted a list of 1,436 diseases from the OMIM database

(accessed in November 2012) [50] and downloaded a total of 1,206

genes associated with these diseases using the tool BioMart [51]

(Table S1).

We downloaded from the UniProtKB/Swiss-Prot database [27]

(release 2012_09) 23,320 disease-causing SNVs annotated as

‘‘Disease’’ and 37,193 neutral SNVs annotated as ‘‘Polymor-

phism.’’ We downloaded functional effect scores for SNVs

(calculated by SIFT, PolyPhen2, LRT, MutationTaster, GERP

and PhyloP) from the dbNSFP database [26] (version 2.0b4),

which included prediction scores for not only missense mutations

but also nonsense mutations. Matching these two data sources, we

obtained 12,610 disease-causing SNVs and 23,403 neutral SNVs

with at least one functional effect score available. We downloaded

exome sequencing data of eight HapMap individuals [52] that

represented three populations (Europe, Asia and Africa) and

derived a set of SNVs for each individual (Text S1).

We downloaded protein-protein interaction data from the

STRING database [53] (Version 9.0). Focusing on high confident

interactions (confidence scores greater than or equal to 0.9), we

extracted 9,966 proteins and 116,648 interactions between the

proteins. We downloaded the gene ontology (GO) and associated

annotations (accessed on November 2, 2012). Focusing on the

biological process domain, we calculated semantic similarity

between 14,283 genes. We downloaded sequences of human

proteins from the UniProt database (release 2012_09) and

calculated their pairwise similarities using SSEARCH [54].

Focusing on e-values less than or equal to 0.001, we obtained

20,281 proteins and 912,018 similarities between them. We

downloaded annotations of protein structural domains from the

Pfam database [55] (version 26.0). Focusing on the manually

curated part (Pfam-A), we collected 1,066 domains that were

contained in at least five human proteins and derived pairwise

similarities between 12,713 proteins that contained at least one of

these domains. We downloaded annotations of 232 pathways from

the KEGG database [56] (release 58.0) and derived pairwise

similarities between 5,951 genes accordingly.

Performance on diseases with partly known genetic
bases

We validated SPRING for diseases whose genetic bases were

partly known (i.e., some genes had been annotated as associated

with the diseases). To simulate this situation, we extracted 113

diseases annotated as associated with two or more genes from the

OMIM database (Table S1). Taking each of these diseases as the

query disease, we collected its causative SNVs from the Swiss-Prot

database [27] to obtain a set of test SNVs, and we ranked each of

them against three sets of control SNVs, including (1) a neutral

control set composed of SNVs annotated as ‘‘Polymorphism’’ in

the Swiss-Prot database, except for those selected for estimating

functional effect p-values, (2) a disease control set consisting of

SNVs annotated as ‘‘Disease’’ in the Swiss-Prot database, except

for those in the test set, and (3) a combined control set obtained as

the union of the neutral and the disease sets. The disease control

set was used to assess the capability of our method in distinguishing

variants causative for the query disease from those causative for

other diseases but irrelevant to the query one. The combined

control set was used to simulate the real situation in which an

individual might carry not only neutral variants but also variants

Figure 1. Workflow of SPRING. Given a query disease and a set of candidate SNVs as inputs, SPRING calculates a q-value for each candidate and
generates a ranking list of the candidates as the output. A q-value is calculated by using Fisher’s method with dependence correction to integrate six
functional effect p-values and five association p-values.
doi:10.1371/journal.pgen.1004237.g001

SNV Prioritization via Integration of Genomic Data

PLOS Genetics | www.plosgenetics.org 3 March 2014 | Volume 10 | Issue 3 | e1004237



responsible for diseases other than the query one. In the

calculation of functional effect p-values, we partitioned SNVs

annotated as ‘‘Polymorphism’’ in the Swiss-Prot database into two

equal parts at random and used one part to estimate the null

distribution and the other part as the neutral control set. In the

calculation of association p-values, we selected seed genes for the

query disease as genes annotated as associated with the disease,

except for the one hosting the test SNV.

We summarized ranks of the test SNVs in Figure 2 (A–C).

There are a total of 1,501 disease SNVs annotated as causative for

the 113 diseases. In the validation against the neutral control set

(11,702 SNVs), SPRING ranks 1,161 test SNVs among top 10 and

1,306 among top 50. In contrast, with a random guess procedure,

one could only expect 1061,501/11,702<1.28 test SNVs

enriched among top 10 and 6.41 among top 50. In the validation

against the disease control set (12,605 SNVs), SPRING ranks 185

test SNVs among top 10 and 653 among top 50, while random

guess can only enrich 1.19 test SNVs among top 10 and 5.95

among top 50. In the validation against the combined control set

(24,307 SNVs), SPRING ranks 164 test SNVs among top 10 and

628 among top 50, while random guess can only enrich 0.62 test

SNVs among top 10 and 3.09 among top 50. These results suggest

the capability of our method in identifying SNVs causative for

diseases whose genetic bases are partly known.

We then derived two criteria to quantify the performance of our

method. Dividing the rank of a test SNV by the total number of

candidates, we obtained the rank ratio of the SNV. Averaging

rank ratios of all test SNVs for a query disease, we obtained the

first criterion called the Mean Rank Ratio (MRR). At a certain

threshold of the rank ratio, we defined the sensitivity as the

fraction of test SNVs ranked above the threshold, and specificity as

the fraction of control SNVs ranked below the threshold. Varying

the threshold, we plotted the rank operating characteristic (ROC)

curve (sensitivity versus 1-specificity) and further calculated the

area under this curve as the second criterion called the AUC score.

As shown in Figure 3 (A and B), the average MRR and AUC for

the 113 diseases are 0.0071 and 0.9930 respectively in the

validation against the neutral control set, 0.0466 and 0.9535

respectively in the validation against the disease control set, and

0.0275 and 0.9725 respectively in the validation against the

combined control set. These results further suggest the effective-

ness of our method, considering that random guess can only yield

an MRR of 0.5 and an AUC of 0.5.

We analyzed the statistical significance of candidate SNVs and

found that q-values of test SNVs were much smaller than those of

control ones. Hence, when ranking a test SNV against control

ones according to their q-values, the test SNV was likely to be

ranked among top positions (Text S1). We further assessed

whether the number of seed genes affected the performance of our

method and found this factor having little influence (Text S1).

Performance on diseases of unknown genetic bases
We validated SPRING for diseases whose genetic bases were

unknown (i.e., no genes had been annotated as associated with the

diseases). To simulate this situation, we extracted a total of 1,436

diseases annotated as associated with at least one gene from the

OMIM database (Table S1). Taking each of these diseases as the

query disease and pretending that the genetic basis of this disease

was unknown, we collected annotated causative SNVs of the

disease to obtain test SNVs, and we ranked each of them against

Figure 2. Rank distributions of the test SNVs. (A–C) Results for diseases with partly known genetic bases when validating against the neutral,
disease, and combined control sets, respectively. (D–F) Results for diseases of unknown genetic bases when validating against the neutral, disease,
and combined control sets, respectively.
doi:10.1371/journal.pgen.1004237.g002
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the three control sets described previously. Different from the

validation for diseases with partly known genetic bases, we

identified 10 diseases that had the highest phenotype similarities

to the query disease according to pre-calculated pairwise

phenotype similarity scores between 5,080 diseases [57] and used

genes known as associated with these disease as seed genes for

calculating association p-values.

We summarized ranks of the test SNVs in Figure 2 (D–F). There

are a total of 12,610 disease SNVs annotated as causative for the

1,436 diseases. In the validation against the neutral control set

(11,702 SNVs), SPRING ranks 5,703 test SNVs among top 10 and

7,635 among top 50, while random guess can only rank 10.78 test

SNVs among top 10 and 53.88 among top 50. In the validation

against the disease control set (12,605 SNVs), SPRING ranks 454

test SNVs among top 10 and 1,785 among top 50, while random

guess can only enrich 10.00 test SNVs among top 10 and 50.02

among top 50. In the validation against the combined control set

(24,307 SNVs), SPRING ranks 435 test SNVs among top 10 and

1,748 among top 50, while random guess can only enrich 5.19 test

SNVs among top 10 and 25.94 among top 50. These results

suggest the capability of our method in identifying SNVs causative

for diseases whose genetic bases are unknown.

We then summarized MRRs and AUCs for individual diseases

in Figure 3 (C and D). The average MRR and AUC for all 1,436

diseases are 0.0440 and 0.9560 respectively in the validation

against the neutral control set, 0.2037 and 0.7964 respectively in

the validation against the disease control set, and 0.1265 and

0.8735 respectively in the validation against the combined control

set. We analyzed the statistical significance of candidate SNVs and

found that the q-values of test SNVs were also much smaller than

those of control ones (Text S1). We further assessed the influence

of the number of neighboring diseases and found that our method

was robust to this parameter (Text S1).

These results demonstrate the effectiveness of SPRING in

dealing with diseases whose genetic bases have not been

deciphered yet and thus have no information about associated

genes. On one hand, since phenotypically similar diseases may

have genetic overlap [58], it could be a feasible way to borrow

genes known as associated with diseases of high phenotype

similarities to a query disease to facilitate the inference of SNVs

causative for the query disease. On the other hand, we also notice

the drop in performance when compared with the results in the

previous section. We suppose the reason is that seed genes selected

here may not be as reliable as those for diseases with partly known

genetic bases.

Prediction power for diseases of different genetic styles
We assessed the prediction power of SPRING for diseases with

different genetic styles. We first classified the 1,436 diseases into a

group of 1,378 Mendelian diseases and a group of 58 complex

diseases according to the Genetic Association database (released in

November, 2012) [59] (Table S1). Results show that SPRING can

recover disease-causing SNVs for both groups (Figure 4). For

example, in the validation against the combined control set, the

average MRR and AUC for Mendelian diseases are 0.1272 and

0.8729 respectively, and those for complex diseases are 0.1115 and

Figure 3. Performance of SPRING in the validation experiments. (A) and (B) MRRs and AUCs for diseases with partly known genetic bases,
respectively. (C) and (D) MRRs and AUCs for diseases of unknown genetic bases, respectively.
doi:10.1371/journal.pgen.1004237.g003
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0.8886 respectively. The two-sided Wilcoxon rank sum test

suggests that the performance of our method on these two

categories of disease is not significantly different (p-value = 0.5118).

We then classified the 1,378 Mendelian diseases into three

categories according to their inheritance patterns, obtaining 396

autosomal dominant diseases (MIM: 1xxxxx), 468 autosomal

recessive diseases (MIM: 2xxxxx), and 109 X-linked diseases

(MIM: 3xxxxx). The rest of 405 diseases (MIM: 6xxxxx) are not

included in the comparison. Results show that SPRING can recover

disease-causing SNVs for all these three classes of diseases (Figure 4).

For example, in the validation against the combined control set, the

average MRR and AUC are 0.09617 and 0.9039 respectively for

autosomal dominant diseases, 0.1457 and 0.8543 respectively for

autosomal recessive diseases, and 0.1545 and 0.8455 respectively for

X-linked diseases. Pairwise two-sided Wilcoxon rank sum tests

suggest that the performance on autosomal dominant diseases is

significantly different from that on both autosomal recessive diseases

(p-value = 3.89761029) and X-linked diseases (p-value =

1.64361023), while the performance on the latter two classes is

not significantly different (p-value = 0.7942).

We further identified 48 immune diseases and 263 neurological

disorders and found that our method was also capable of recovering

disease-causing SNVs for both classes of diseases (Figure 4). For

example, in the validation against the combined control set, the

average MRR and AUC are 0.1822 and 0.8178 respectively for

immune diseases, and 0.1112 and 0.8889 respectively for neuro-

logical disorders. The two-sided Wilcoxon rank sum test suggests

that the performance of our method on these two classes of diseases

is of marginal difference (p-value = 0.0159).

Prediction power for rare SNVs
One of the superiorities of exome sequencing is the capability of

finding disease-causing rare SNVs for a query disease. To

demonstrate the effectiveness of SPRING in identifying causative

rare SNVs, we collected 932 causative rare SNVs with minor allele

frequency (MAF) less than 0.01 from the dbSNP database [48] and

identified a total of 444 diseases annotated as caused by these

variants. For each of these rare SNVs, we pretended that the

genetic basis of the corresponding disease was unknown, and we

ranked the SNV against the three control sets described

previously. Results show that the MRR and AUC are 0.0340

and 0.9660 respectively in the validation against neutral controls,

0.1676 and 0.8324 respectively in the validation against disease

controls, and 0.1029 and 0.8971 respectively in the validation

against combined controls. All these results support the effective-

ness of SPRING in the identification of disease-causing rare SNVs.

We then compared distributions of functional effect scores for

these rare SNVs with those for the same number of SNVs selected

at random from a HapMap individual. Results show that the rare

SNVs are typically assigned more extreme functional effect scores

than SNVs occurring in a normal individual (Text S1). Since the

sequence conservation property has been used in the derivation of

the functional effect scores, we conjecture that the effectiveness of

our method in this validation experiment can be partly attributed

to the rarity of such rare mutations in a random human.

Prediction power of individual data sources
We assessed prediction power of individual data sources by

repeating the validation experiment for diseases of unknown genetic

bases using a single data source. Results, as summarized in Table 1,

show that functional effect data sources are effective in the

discrimination of disease-causing SNVs against neutral controls

but are ineffective in distinguishing such SNVs from disease

controls, and thus these data sources show low effectiveness in

distinguishing causative SNVs from combined controls. For

example, the MRR and AUC for SIFT are 0.1792 and 0.8205

respectively in the validation against neutral controls, 0.5015 and

0.4984 respectively in the validation against disease controls, and

0.3816 and 0.6183 respectively in the validation against combined

controls. ROC curves (Figure 5, dotted lines) also support this

observation. It is not surprising to see the effectiveness of these data

sources in the validation against neutral controls, since the power of

the mechanism used for calculating functional effect scores has been

verified in numerous studies [15–25], and our p-value transforma-

tion strategy does not affect the comparison of such scores. The

ineffectiveness of these data sources in the validation against disease

controls can be attributed to the absence of disease-specific features

to identify which exactly disease a variant is associated with. As a

result, functional effect scores lack the power of discriminating

between variants causing different diseases.

Figure 4. Performance of SPRING for diseases of different inheritance styles. (A) MRRs when validating against the neutral, disease, and
combined control sets, respectively. (B) AUCs when validating against the neutral, disease, and combined control sets, respectively.
doi:10.1371/journal.pgen.1004237.g004
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Table 1 also shows that association data sources exhibit medium

effectiveness in distinguishing disease-causing SNVs from neutral,

disease, and combined controls. For example, the MRR and AUC

for GO are 0.1456 and 0.8544 respectively in the validation

against neutral controls, 0.2258 and 0.7742 respectively in the

validation against disease controls, and 0.1769 and 0.8130

respectively in the validation against combined controls. This

observation is also supported by ROC curves (Figure 5, solid lines)

and can be explained as follows. The association score assigned to

a variant is calculated based on the gene hosting the variant.

Therefore, SNVs, regardless of their functional implications, will

be assigned identical scores as long as they occur in the same gene.

This reasoning, together with the fact that distributions of

association scores for neutral and disease controls are not

significantly different (Text S1), results in the above observation.

When compared with a single data source, the integration of all

11 data sources demonstrates much lower MRRs (0.0440, 0.2037

and 0.1265 in the validation against neutral, disease and combined

controls, respectively) and much higher AUCs (0.9560, 0.7964 and

0.8735 in the validation against neutral, disease and combined

controls, respectively), suggesting the effectiveness of data integra-

tion. This conclusion is also supported by Figure 5 in that the ROC

curves for integrating all data sources (black solid lines) climb much

faster than those for individual data sources towards the top left

corner of the plot. Besides, the coverage of our method also benefits

from data integration. For example, in the validation experiments,

only 88.72% SNVs have PPI information, and the coverage for

pathway data is even as low as 60.24%. With the integration of

multiple data sources, however, the causative effect of a variant for a

query disease can be predicted as long as the variant appears in a

data source, and thus the coverage of our method is extended to the

union of variants included in individual data sources.

Considering that the data sources are correlated, the prediction

power of an individual data source may not reflect its real

Figure 5. ROC curves of individual data sources. (A) Results when validating against the neutral control set. (B) Results when validating against
the disease control set. (C) Results when validating against the combined control set.
doi:10.1371/journal.pgen.1004237.g005

Table 1. Performance of individual data sources.

Data source Neutral MRR (%) Disease MRR (%) Combined MRR (%)
Neutral
AUC (%)

Disease
AUC (%)

Combined
AUC (%) Coverage (%)

SIFT 17.92 50.15 38.16 82.05 49.84 61.83 96.39

PolyPhen2 13.56 49.76 36.29 86.44 50.23 63.70 100.00

LRT 24.04 49.90 40.28 75.94 50.08 59.71 91.62

MutationTaster 20.60 49.44 38.71 79.40 50.55 61.28 91.20

GERP 23.73 48.92 39.55 76.26 51.07 60.44 99.92

PhyloP 23.51 48.18 39.00 76.49 51.81 60.99 100.00

GO 14.56 22.58 17.69 85.44 77.42 81.30 98.68

PPI 14.62 24.78 19.87 85.39 75.22 80.13 88.72

Sequence 31.69 32.91 32.32 68.31 67.09 67.68 99.72

Domains 38.40 38.04 38.21 61.60 61.96 61.79 76.81

Pathways 30.73 41.77 36.43 69.27 58.23 63.57 60.24

All 4.40 20.37 12.65 95.60 79.64 87.35 100.00

The coverage of a data source is defined as the proportion of SNVs having the score calculated from the data source. Note that in the calculation of the criteria, we
pooled validation results for all query diseases instead of considering individual diseases separately.
doi:10.1371/journal.pgen.1004237.t001
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contribution to the final performance of our method. We therefore

evaluated relative contribution of a data source by erasing scores

derived from the data source and repeating the validation

experiment for diseases of unknown genetic bases against the

combined control set. We calculated the proportion of test SNVs

whose rank ratio increased after the removal of a data source to

measure the relative contribution of the data source. Obviously,

the larger the value of this criterion, the higher the relative

contribution of a data source. As shown in Table 2, relative

contributions of different data sources are quite different. For

functional effect data sources, SIFT has the highest contribution,

followed by LRT. For association data sources, GO and PPI both

have high contributions, followed by pathway information. The

results also suggest that diseases in different categories prefer

different data sources. For example, GO, PPI, pathway and SIFT

show much higher contributions for complex diseases than for

Mendelian diseases, while PPI has much lower contribution for

immune diseases than for neurological disorders.

We further adopted a sequential backward selection (SBS)

strategy to select a subset of data sources for each of the 1,436

diseases. Results (Text S1 and Table S2) show that the selection

procedure can improve the performance of SPRING. However,

different diseases show different preferences on the selected data

sources, and such preferences are diverse. We therefore suggest

either seeking for the simplicity to use all data sources without

selection or resorting to a cross-validation experiment to select a

subset of data sources for a query disease when there is no strong

prior knowledge indicating the preference of the disease to the

data sources. In the reset of this paper, we use all data sources

without selection by default.

Estimation of the false positive rate and true positive rate
The q-values calculated by SPRING and can be used in two

ways. First, for a set of candidate SNVs, their q-values can be used

as bases for prioritizing the SNVs. Second, for a single SNV, its q-

value can be used to predict whether the SNV is causative for a

query disease. We therefore assessed whether the false positive rate

(FPR) and true positive rate (TPR) can be controlled at a desired

level at a given q-value threshold.

For a HapMap individual, we calculated q-values for SNVs

reported in the individual for each of the 1,436 diseases and derived

the FPR for a disease as the proportion of SNVs whose q-values are

less than or equal to a threshold. Results show that the TFP can be

well controlled (Figure 6). For example, at the q-value thresholds

0.1, 0.05, 0.01 and 0.005, the average FPRs for all diseases are

7.16%, 4.94%, 2.01% and 1.34%, respectively. We notice these

numbers are greater than those obtained using the neutral control

set (average FPRs at the above q-value thresholds are 4.18%, 2.43%,

0.71% and 0.48%, respectively), and we suppose the reason behind

this phenomenon is that some variants occurring in these HapMap

subjects may actually be related to some diseases [60]. We further

performed a simulation study by embedding different proportions of

disease SNVs into the neutral control set and found that both FPR

and TPR could also be well controlled (Text S1).

Simulation studies for exome sequencing data
We assessed the effectiveness of SPRING in identifying disease-

causing SNVs in real exome sequencing data. For this purpose, we

generated a large number of synthesized exomes by inserting each

SNV causing one of the 1,436 diseases into the exome of a

Hapmap individual, and we applied SPRING to rank the

embedded SNV against the other SNVs in each synthesized

exome. Results, as summarized in Figure 7, demonstrate the

effectiveness of our method in distinguishing disease-causing SNVs

from those occurring in normal individuals. For example,

According to Figure 7 (A), for the eight individuals, 45.18%–

49.19% causative SNVs are ranked among top 10, and 70.89%–

74.15% are ranked among top 50. According to Figure 7 (B and

C), the average MRRs for the eight individuals range from 0.0225

to 0.0237 (the median MRRs range from 0.0025 to 0.0029), and

the average AUCs range from 0.9764 to 0.9775 (the median

AUCs range from 0.9972 to 0.9978). These results suggest that our

method is effective in finding true disease-causing SNVs in exome

sequencing studies.

Detection of causative nonsynonymous de novo
mutations for autism, epileptic encephalopathies and
intellectual disability

De novo mutations are genetic variants that are not inherited

from parents. As the most extreme form of rare genetic variation,

de novo mutations have been subjected to less stringent evolutionary

selection pressure and thus are usually more functionally

damaging than inherited genetic variants [11]. Facilitated by the

Table 2. Relative contributions of individual data sources.

Data source All diseases (%) Mendelian diseases (%) Complex diseases (%) Immune diseases (%) Neurological disorders (%)

SIFT 53.56 52.71 60.86 53.61 52.49

PolyPhen2 35.07 34.94 36.18 35.26 33.47

LRT 49.75 49.15 54.81 53.20 55.28

MutationTaster 35.42 34.96 39.36 38.14 37.11

GERP 26.73 26.73 26.80 23.30 26.67

PhyloP 24.73 25.41 18.93 27.42 24.20

GO 74.46 73.00 86.90 75.88 77.18

PPI 74.22 73.34 81.76 45.77 80.54

Sequence 31.05 32.40 19.45 22.06 27.56

Domains 37.20 37.31 36.26 32.16 38.67

Pathways 61.86 59.36 83.27 68.45 64.42

The contribution of a data source is defined as the proportion of test SNVs whose rank ratios increase after the removal of the data source. Validation experiments are
conducted against the combined control set.
doi:10.1371/journal.pgen.1004237.t002
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whole-exome sequencing technique, recent studies have shown

that individual de novo germline mutations occurring in single genes

could be the major cause of rare Mendalian diseases such as

Schinzel–Giedion syndrome [61], Kabuki syndrome [62] and

Bohring–Opitz syndrome [63]. Moreover, recent studies have also

suggested that the collection of de novo mutations affecting different

genes in different individuals might explain a proportion of

common complex diseases such as schizophrenia [13,64], autism

[65–69], epileptic encephalopathies [70], and intellectual disability

[7,71,72].

To demonstrate the power of our method in diagnosing disease-

causing de novo mutations, we applied SPRING to a whole-exome

sequencing data set of autism (PMID 22495306 [65]). From the

literature [65], we collected 135 and 87 unique candidate

nonsynonymous de novo mutations from the exome sequencing

data of probands and siblings respectively, and 214 of these

mutations can be mapped to the dbNSFP database. With the

criterion that a seed gene should have been reported as associated

with autism (MIM: 209850) by independent studies before the

publication of this data set, we selected from the OMIM database

a total of 34 seed genes and then applied SPRING to prioritize the

candidate mutations (Table S3).

In the literature [65], a gene SCN2A was reported as associated

with autism, and two probands each carried a nonsense de novo

mutation in this gene. SPRING assigned very significant q-values

(1.47610210 and 3.40610210) to these two mutations and ranked

them first and second in a list of 214 candidates. Considering that

the probability of ranking these two mutations at the top by a

random guess procedure is only 1

�
214

2

� �
&4:39|10{5, the

capability of our method in identifying causative de novo mutations

in this application is strongly supported.

Figure 6. Estimated false positive rates under different q-value cut-offs when using neutral SNVs in the Swiss-Prot database and
exomes of the eight HapMap individuals as negative control sets.
doi:10.1371/journal.pgen.1004237.g006
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We noticed that SCN2A had been previously annotated as

causative for autism by an independent study [43] and thus was

included in seed genes in the above analysis. Although this

situation is consistent with the application of SPRING in finding

novel causative variants occurring in known causative genes,

another important application would require the identification of

causative variants occurring in genes not yet studied. To simulate

this scenario, we removed SCN2A from the seed genes and

prioritized the candidate mutations again. We found that the two

mutations were now ranked third and sixth. Considering that the

probability of ranking these two mutations among top 6 by chance

is only
212

4

� ��
214

6

� �
&6:58|10{4, the capability of our

method in detecting novel causative de novo mutations in this

application is also supported.

We further extended applications of SPRING to three other

whole-exome sequencing data sets of autism [67–69], one data set

of epileptic encephalopathies [70] and two data sets of intellectual

disability [71,72]. Detailed analyses were given in Text S1 and

Table S3.

Large scale prediction of causative nonsynonymous SNVs
for 5,080 diseases

We further performed a large scale prediction of causative SNVs

for a total of 5,080 diseases in the phenotype similarity matrix [57].

Focusing on SNVs collected in both the dbSNP and dbNSFP

databases, we extracted a total of 174,394 SNVs that occurred in

genes described by at least one of the five genomic data sources. We

then used SPRING to prioritize all these candidate SNVs and

distinguished suspicious causative ones for each disease. For a query

disease whose genetic basis was partly known, we selected genes

annotated as associated with the disease as seed genes. For a query

disease whose genetic basis was completely unknown, we selected

genes annotated as associated with 10 diseases of the highest

phenotype similarities with the query disease as seed genes.

Prediction results for the 5,080 diseases, together with an online

service and the standalone software of SPRING, are available at

http://bioinfo.au.tsinghua.edu.cn/spring.

Discussion

In this paper, we formulate the identification of causative

nonsynonymous SNVs for a query disease as a prioritization

problem, and we propose a method called SPRING to solve this

problem by integrating multiple genomic data sources. We

demonstrate the superior performance of our method by

conducting a series of validation experiments, showing that our

method is valid for diseases whose genetic bases are either partly

known or completely unknown, effective for diseases with a variety

of inheritance styles, and capable of identifying disease-causing de

novo mutations in whole-exome sequencing studies.

The success of our method can be attributed to a combination

of several aspects. First, we take the advantage of both functional

implications of candidate SNVs and potential associations between

a query disease and genes hosting the SNVs. In contrast, existing

methods for predicting functional effects of SNVs or prioritizing

candidate genes utilize only part of such information and can

hardly achieve the goal of identifying causative variants. Second,

we ground the inference of causative variants on a rigorous

statistical model for integrating multiple data sources, not only

explicitly considering correlations between the data sources, but

also carefully controlling statistical significance of prediction

results. As a result, our method does not rely on a single data

source to make inference and is capable of maintaining a relatively

low false positive rate at a reasonably high true positive rate.

Certainly, our method can be further improved in the following

directions. First, we resort to the phenotype similarity profile to

collect seed genes for diseases of unknown genetic bases, and

hence the quality and coverage of such a profile directly determine

the performance and scope of applications of our method.

Following the direction of data integration, it might be helpful

to incorporate multiple phenotype similarity profiles such as those

calculated based on the human phenotype ontology [73] into our

method. Along this direction, how to utilize these phenotype

similarity profiles in a more sophisticated way will be a question

worth exploring.

Second, our method currently uses five genomic data sources to

infer the association relationship between a query disease and a

Figure 7. Validation results for synthesized exomes. (A) Distributions of ranks for test SNVs. (B) Boxplots of MRRs. (C) Boxplots of AUCs.
doi:10.1371/journal.pgen.1004237.g007
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gene hosting a variant. With the development of high-throughput

experimental techniques, more and more genome-wide functional

genomics data such as transcriptional regulation, microRNA

regulation, DNA methylation and histone modification will be

available. How to include these data sources in our method will be

an important aspect.

Finally, we only focus on SNVs in protein coding regions in this

paper. However, genetic variants occurring in splicing sites,

promoter regions, introns, and other parts of a genome are also

important in the pathogenesis of a disease. How to extend our

method to enable the identification of disease-causing variants in

these genomic regions will be an important direction.

Methods

Calculation of functional effect p-values
We derive six p-values to assess the statistical significance that a

candidate SNV is causative for a query disease from the viewpoint

of whether the SNV has damaging effect on the function of the

gene containing the SNV. For this purpose, we first extract from

the Swiss-Prot database [27] SNVs annotated as ‘‘Polymorphism’’

to obtain a set of neutral SNVs that show no damaging effect on

functions of their host genes. Then, for each of the six

bioinformatics tools for predicting functional implications of SNVs

(SIFT [15], PolyPhen2 [16], LRT [17], MutationTaster [18],

GERP [19], and PhyloP [20]), we collect predictive scores for the

neutral SNVs from the dbNSFP database [26] and estimate the

empirical distribution of the scores. Finally, given a candidate

SNV, we extract its predictive score for each of the six tools and

calculate a p-value as the probability that a neutral SNV is

assigned at least the same extreme score as that of the candidate

SNV.

Specifically, SIFT relies on multiple sequence alignments

generated using PSI-BLAST [74] to calculate predictive scores

for SNVs. The smaller a SIFT score, the stronger the evidence

that an SNV is functionally damaging. Therefore, for SIFT, we

calculate the probability that a neutral SNV is assigned a

predictive score smaller than or equal to that of the candidate

SNV as the functional effect p-value for the candidate. PolyPhen2

integrates sequence, structure and annotation information to build

a classification model that predicts the probability that an SNV is

functionally damaging. The greater a PolyPhen2 probability, the

stronger the evidence that an SNV is functionally damaging.

Therefore, we calculate the probability that a neutral SNV is

assigned a predictive probability larger than or equal to that of the

candidate SNV as its functional effect p-value. Methods for

calculating p-values for LRT is similar to that for SIFT, and the

other three tools (MutationTaster, GERP, and PhyloP) are similar

to that for PolyPhen2.

Calculation of association p-values
We derive five p-values to assess the statistical significance that a

candidate SNV is causative for a query disease from the viewpoint

of whether the gene containing the variant is associated with the

query disease. For this purpose, we first rely on phenotype

similarities between diseases [57] and known associations between

diseases and genes to obtain a set of seed genes for the query

disease. Meanwhile, we calculate five functional similarity scores

between every pair of genes based on a variety of genomic data

sources (gene ontology, protein-protein interactions, protein

sequences, domain annotations, and pathway annotations). Then,

for each functional similarity, we resort to the guilt-by-association

principle [23] to calculate a score, indicating the strength of

association between the gene hosting the candidate SNV (i.e.,

candidate gene) and the query disease. Finally, we convert the

association score to a p-value by estimating the probability that a

non-disease related gene is assigned at least the same extreme

score as that of the candidate gene.

In detail, given a candidate SNV, we obtain the candidate gene

for the SNV by mapping the SNV back onto the genome and

identifying the gene hosting the SNV. Given a query disease, we

obtain seed genes for the disease by two means. First, if the genetic

basis of the query disease has been studied and hence there exist

some genes annotated as associated with the disease, we use these

genes related to the disease as seed genes. Second, if the genetic

basis of the query disease is unknown and thus these is no gene

having been annotated as related to the disease, we sort all diseases

except for the query one according to their similarity scores to the

query disease in non-increasing order and select genes known as

associated with top 10 diseases in the ranking list as seed genes.

Obviously, the later strategy can also be used to complement the

former when the number of genes annotated as a query disease is

limited.

The five pairwise functional similarity scores for genes are

calculated as follows. For the network similarity score, we extract

9,966 proteins and 116,648 high confidence interactions (with

confidence scores greater than or equal to 0.9) between the

proteins from the STRING database [53] (version 9.0) to obtain a

protein-protein interaction network. Then, we calculate the

diffusion kernel of this network as K~exp({c(D{A)), where c
is a free parameter controlling the magnitude of diffusion, D a

diagonal matrix containing node degrees, and A the adjacency

matrix of the network. In our study, we follow the literature [75] to

choose c~0:01. Finally, we define the network similarity between

two genes i and j as the corresponding element kij in the diffusion

kernel.

For the semantic similarity score, we focus on 18,850 terms in

the biological process domain of the gene ontology (GO, released

on November 2, 2012) [76] and 186,080 annotations regarding

14,283 genes to calculate the semantic similarity between every

pair of genes using the method of Resnik [77], as detailed in one of

our previous studies [39].

For the sequence similarity score, we extract 20,281 protein

sequences from the UniProt database (release 2012_09), use the

Smith-Waterman algorithm [78] implemented in SSEARCH [54]

to perform a local sequence alignment for every pair of protein

sequences (with default parameters and the e-value cut-off of to

0.001), and obtain the similarity scores by dividing the negative

logarithmic transformed e-values by the maximum of all

transformed e-values.

For the domain similarity score, we extract from the Pfam

database (version 26.0) [55] 13,672 protein families. Focusing on

domains with at least 5 human proteins annotated, we obtain

1,066 domains. Then, we denote a human protein as a 1,066

dimensional binary vector, with a dimension representing the

presence or absence of a domain in the protein. Finally, we

calculate the similarity measure of two proteins as the cosine of the

angle of the corresponding vectors.

For the pathway similarity score, we extract from the KEGG

database (release 58.0) [56] 16,662 annotations of 5,951 proteins

and 232 pathways. Then, we denote a protein as a 232

dimensional binary vector, with a dimension representing the

presence or absence of the protein in a pathway. Finally, we

calculate the similarity measure of two proteins as the cosine of the

angle of the corresponding vectors.

Given a candidate gene, a set of seed genes and a type of gene

functional similarity, we calculate the association score for the

candidate gene according to the guilt-by-association principle by
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summing over similarities between the candidate gene and the

seed genes. Furthermore, we convert the association score to a p-

value by estimating the probability that a non-disease related gene

is assigned at least the same extreme score as that of the candidate

gene. Performing these steps for each of the five gene similarities,

we obtain five p-values to indicate degrees that the candidate

gene containing the candidate SNV is associated with the query

disease.

Integration of multiple p-values by Fisher’s method with
dependence correction

We adopt Fisher’s combined probability test [79] to combine

the p-values derived above and obtain a single p-value that

indicates the statistical significance that a candidate SNV is

causative for the query disease. Given k p-values to be combined,

denoted as p1 . . . pk, we calculate a Fisher’s combination test

statistic T as

T~{2
Xk

i~1

log pi:

It is evident that T has an asymptotic chi-squared distribution with

2k degrees of freedom when all null hypotheses are true. The final

combined p-value can then be calculated accordingly.

However, the above Fisher’s method assumes independence of

all p-values to be combined, which is obviously not true in our

problem. Therefore, we further apply a dependence correction

strategy [49] to adjust the combined p-value. Briefly, Yang et al.

assumes that the null distribution of the Fisher’s combination test

statistic T follows a scaled chi-squared distribution with v degrees

of freedom (rx2
v ) when the p-values to be combined are not

independent and suggests to estimate the parameters r and v using

the method of moments [49]. In detail, with definitions

Vi~{2 log pi and T~
Pk

i~1 Vi, the population mean and the

variance of the T statistic are derived as

mT~rv and s2
T~2r2v,

respectively, and the corresponding sample mean and variance are

calculated as

m̂mT~2k and ŝs2
T~4kz2

X
ivj

Cov(Vi,Vj),

respectively. The covariance Cov(Vi,Vj) can be calculated

approximately as,

Cov(Vi,Vj)&a1~rrijza2~rr2
ijza3~rr3

ij{(a4=n)(1{~rr2
ij)

2,

with a1~3:263119, a2~0:709866, a3~0:026589, a4~0:709866,

~rrij an unbiased estimator of the correlation coefficient between the

two test statistics used to derive p-values pi and pj , and n the

sample size in the calculation of ~rrij . Furthermore, ~rrij can be

calculated approximately as

~rrij~r̂rij 1z
1{r̂r2

ij

2n{1

 !
,

with r̂rij being the sample correlation coefficient between the test

statistics [49]. It has been shown that the maximum difference

between r̂rij and the unbiased estimator is less than 0.001 when

n§36, and the maximum error between Cov(Vi,Vj) and its

approximation given above is no more than 0.00019 [49].

Matching the mean and variance of the population and the

sample, r and v can be estimated as

r̂r~1z
1

2k

X
ivj

Cov(Vi,Vj) and v̂v~2k=r̂r:

The adjusted p-value can then be calculated according to the

scaled chi-squared distribution (̂rrx2
v̂v ) [49]. In our studies, we use

a set of SNVs annotated as ‘‘Polymorphism’’ in the Swiss-

Prot database to estimate the sample correlation coefficients

(r̂rij ).

It is possible that some data sources are absent for a candidate

SNV. To deal with this missing data problem, we ignore the

missing data source in the calculation of the Fisher’s test statistic

and the adjusted p-value. The total number of p-values to be

combined will then decrease accordingly.

We further perform multiple testing corrections on the adjusted

p-values by calculating q-values for candidate SNVs. Briefly,

Storey et al. [35,36] proposed to control the positive false

discovery rate (pFDR, the expected proportion of false positives

among all significant hypotheses, given at least one hypothesis

having been rejected) in a multiple testing problem and put

forward a method to calculate q-values from p-values. Numerical

studies have shown the significant improvement of the test

power by controlling pFDR using the this method [35,36]

instead of controlling the false discovery rate (FDR) using the

traditional step-up procedure of Benjamini–Hochberg [80].

Therefore, in our study, we adopt q-values to measure the

statistical significance that an SNV is causative for a query

disease.
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