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Abstract

Motivation: Predicting the regulatory function of non-coding DNA using only the DNA sequence continues

to be a major challenge in genomics. With the advent of improved optimization algorithms, faster GPU

speeds, and more intricate machine learning libraries, hybrid convolutional and recurrent neural network

architectures can be constructed and applied to extract crucial information from non-coding DNA.

Results: Using a comparative analysis of the performance of thousands of Deep Learning (DL) architectures,

we developed ChromDL, a neural network architecture combining bidirectional gated recurrent units

(BiGRU), convolutional neural networks (CNNs), and bidirectional long short-term memory units (BiLSTM),

which significantly improves upon a range of prediction metrics compared to its predecessors in transcription

factor binding site (TFBS), histone modification (HM), and DNase-I hypersensitive site (DHS) detection.

Combined with a secondary model, it can be utilized for accurate classification of gene regulatory elements.

The model can also detect weak transcription factor (TF) binding with higher accuracy as compared to

previously developed methods and has the potential to accurately delineate TF binding motif specificities.

Availability: The ChromDL source code can be found at https://github.com/chrishil1/ChromDL.

Introduction

The availability of large genome sequencing datasets has led to

the development of numerous computational algorithms for the

prediction of chromatin features and gene regulatory elements

(referred to as regulatory features here) in the human genome

in the past two decades (1; 2; 3; 4; 5; 6; 7) In particular, the

advent of DL algorithms has been shown to be effective in the

prediction of DHSs, HMs and TFBSs (8; 9; 10; 11) The neural

network architectures commonly take genomic sequences as input

and apply a series of non-linear transformations before computing

probability scores for a series of target labels, each corresponding

to a specific regulatory feature. These prediction efforts have

become increasingly feasible to create algorithms for with the

improvement of machine learning libraries, increased GPU speeds,

and sophisticated optimization algorithms, all of which yield

convergence to a high-performing solution in a fraction of time

compared to earlier generations of neural networks.

One of the first-generation regulatory feature prediction models

was DeepSEA (12), which was constructed using three CNNs (Fig

S1). DeepSEA paved the way for next generation neural networks

in attempting to improve prediction accuracy of TF binding, open

chromatin, and HMs (919 regulatory features in total) and allowed

the prioritization of expression quantitative trait loci (eQTLs) and

disease associated variants (12).

Subsequent models investigated the effectiveness of recurrent

neural networks (RNNs) in addition to CNNs (8; 9; 10; 11).

These RNN layers share parameters between their units as CNNs

do, but also contain internal memory components that allow

them to “remember” previous passes over the input. RNNs are

generally considered to be more powerful when dealing with

sequential data processing, whereas CNNs are typically used to

capture recurring patterns and motifs within the whole input data.

Since the sequences fed into these models are represented as one-

hot encoded matrices, two RNN classes can be combined in a

larger architecture to improve performance when processing the

inputs: Long Short-Term Memory (LSTM) and Gated Recurrent

Units (GRUs) that act in a similar fashion and often improve

performance as compared to traditional RNNs (9; 13; 14; 15).

While both RNNs and LSTMs contain feedback loops that

help them “remember” the previous iteration, LSTMs contain an

additional memory unit, which gives them more control about

when information is remembered, when it is utilized, and when it

is forgotten, making them more flexible than a traditional RNN

(14; 15). GRUs conversely contain an update and a reset gate
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that control what information is retained but lack an output

gate, instead feeding the input and the reset gate back into the

update gate. Both layers attempt to combat the vanishing gradient

problem, a well-documented issue that prevents weights from

changing when gradients become increasingly smaller with each

epoch of training in traditional RNNs (16).

Another feature of these RNN classes is their ability to be

bidirectional, where two identical hidden layers read the input in

a forward and reverse direction simultaneously to give the model

context of the past, present, and future input (14; 15; 17). Two

models introduced by Quang et al. (18), denoted as DanQ and

DanQ-JASPAR, found success with these bidirectional RNNs as

well as initializing their model with motifs from the JASPAR

database (19). The DanQ neural network was constructed with

one convolutional layer that mirrored DeepSEA’s input processing,

followed by a BiLSTM layer, before using DeepSEA’s exact

dense and output layer architecture, subsequently improving

performance metrics (Fig S2). DanQ-JASPAR increased the

number of filters in the convolutional layer and number of units in

the BiLSTM, and together with the initialized motifs observed

improved performance. In this way, the authors proved that

BiLSTMs could be used in regulatory feature prediction contexts

using only DNA sequences as input, and opened up the possibility

of combining CNNs and RNNs in further intricate architectures to

improve performance metrics.

Here, we propose ChromDL, a neural network architecture that

improves on previously developed models using a combination of

CNNs and RNNs. ChromDL combines BiGRU layers, BiLSTM

layers, and CNN layers in an architecture that differs quite

substantially from both DeepSEA and DanQ. ChromDL surpasses

these methods in accuracy of regulatory feature prediction. The

model also detects a significantly higher proportion of weak

TFBS ChIP-seq peaks and demonstrates the potential to more

accurately predict TF binding affinities. We also show that the

TREDNet DL second-phase enhancer classifier (20) built on top

of ChromDL is capable of detecting regulatory variants according

to validation using reporter assay quantitative trait loci (raQTLs).

We believe ChromDL will allow accurate predictions of gene

regulatory mechanisms, modeling gene regulatory networks, and

detection of disease-causative non-coding variants with utmost

precision.

Methods

Model Architecture and Training

ChromDL is a DL neural network containing two internal CNNs

and three bidirectional RNNs. The neural network in its entirety

extracts sequence features using weight matrices in sequential

layers to minimize errors in prediction of the outputs, in this case

being the 919 regulatory feature labels.

This model contains eleven layers, with ten of these being

distinct (Fig 1). The 1kbp input sequence, encoded in one-hot

representation (1000 x 4), was fed into a 128 unit BiGRU layer,

which was then fed into a separable convolutional layer with 750

filters and a kernel size of 16, followed by a standard convolutional

layer with 360 filters and a kernel size of 8. Both CNN layers

had L1/L2 regularization of 1E-08 and 5E-07, respectively, and

rectified linear unit (ReLU) activation before being maximally

pooled with a 1x4 window. Next, the data was fed into a

128 unit BiLSTM layer with 20% dropout and applied batch

normalization, before an average pooling layer with a 1x8 window.

Finally, a second 128 unit BiLSTM layer was applied before

the data was flattened and fed into the 919 length dense layer

with sigmoid activation that produced the scores for all of the

labels included in the dataset. In total, the model contained

10,414,957 parameters, with 512 non-trainable parameters. The

exact technical specifications of these layers can be found in the

Supplemental Materials (see ChromDL Layer Specifications).

This model utilized the same dataset and target feature labels

described in DeepSEA in it’s training, testing, and validation (12)

(Table S9). Briefly, the human GRCh37 reference genome was

split into 200-bp bins, and each TF-bound bin was labeled with

919 regulatory features. These labels include 690 TFBS, 125 DHS,

and 104 HM regions. Each 200-bp bin included in the dataset

was extended to 1kbp to include the flanking regions before being

fed to the models in one-hot representation. 4,000 regions from

chromosome 7 were used as the validation set, the entirety of

chromosomes 8 and 9 as the test set, and the rest of the autosomal

chromosomes as the training set. All available training/validation

regions were included in training this model, and all available

testing regions were utilized for analyzing performance. The

models were evaluated using auROC and auPRC metrics. The

average of the model outputs for forward and reverse strand

sequences of the input regions were used as probabilities and

compared to the true labels.

To train this model, we minimized the binary cross-entropy loss

function between the true labels and the predicted labels after the

sequences were processed by the model. This loss function can be

expressed as:

λ =
−1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi)

where N is the output size (the 919 predicted labels), ŷi is the

ith scalar value in the model’s output, and yi is the corresponding

target value.

The Adaptive Moment Estimation (Adam) optimizer was

ultimately chosen in the training of the model due to it’s properties

of both the Adagrad and RMSprop optimizers, and it’s relatively

rapid convergence to solutions (21; 22) (Table S1). The optimizer

utilizes a stochastic gradient descent method that is based on the

adaptive estimation of first and second order moments. We trained

our models using the Adam optimizer with a learning rate of 1E-

03 and the parameters β1 = 0.9, β2 = 0.999, ϵ = 1E-08 (23; 24).

A minibatch of size 500 was utilized in each training step.

The models were trained for 100 epochs or until stagnation of

validation loss values. ChromDL models stagnated within the first

20 epochs. Each epoch took approximately 16 hours on a single

core NVIDIA Tesla K80 GPU processor with 24 GB RAM. All our

models were implemented in Tensorflow v2.4.0 with built-in Keras

libraries (24).

TF ChIP-seq signal intensity analysis

For this analysis, we collected signal values from the ChIP-seq

peak files of the TFBS 690 datasets to compare correlations

between these values and ChIP-seq predictions for four models:

ChromDL, DeepSEA, DanQ, and DanQ-JASPAR. We limited our

investigation to chromosomes 8 and 9, as the model had been

trained and validated using the TFBS ChIP-seq peak data from

all other autosomes. Ten equal percentile bins were created from

the signal values of the individual peaks for each cell line. For every
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Fig. 1: Schematic representation of ChromDL’s deep learning architecture.

peak in the dataset, the center of the peak was taken and flanked

with 500bp windows on either side to obtain a 1kbp sequence which

was then fed through the respective model. The prediction value

for each peak was isolated from the 919-output label vector and

paired with the signal values from the published data. The 3%,

5%, and 10% false positive rate (FPR) thresholds were calculated

for each model using the original DeepSEA testing dataset and

used to determine whether a given peak was correctly predicted

for the corresponding TFBS label. These proportions predicted

correctly were pooled for all 690 cell lines for each of the ten bins

and plotted for each of the four models. To measure the significance

of the pooled data, three separate one sided independent t-tests

were conducted in each percentile bin using the SciPy stats library

to calculate the p-value of ChromDL having a higher average

proportion than each of the three other models of interest (25).

P-values < 1E-05 were denoted as significant.

Motif/Co-Factor performance

We utilized two separate tools for the discovery of motifs in the

transcription factor binding site ChIP-seq peak files: the HOMER

Motif Analysis tool and the MEME-ChIP Motif Analysis of Large

Nucleotide Datasets (26; 27; 28). Before these tools were used, the

peak regions that were predicted correctly in the previous analysis

were extracted for each of the four models (ChromDL, DeepSEA,

DanQ, DanQ-JASPAR). The two motif tools were then run on the

set of predicted positive peaks using a 3% FPR in motifs where

Protein Binding Microarray (PBM) data was available as found

in their ChIP-seq files (not extended to 1kbp). For MEME-ChIP,

the peaks were converted to fasta format, and the command line

interface was used to detect the top 20 motifs, as any motifs outside

the top 20 were generally found to be noisy and insignificant.

The script utilized an external control file as the background

that was assembled by merging all the TF ChIP-seq narrow peak

regions from ENCODE of HepG2, K562, and H1 cell-lines, with an

assumption that these are empirically observed TF-binding regions

(1; 2). For each trial, any overlaps in the control file with the target

regions were removed from the background.

The HOMER and MEME-ChIP de novo generated motifs were

compared to published PBM motif logos and position weight

matrices (PWMs) through each tool’s suggested motif matches

and visual analysis. The TOMTOM Motif Comparison Tool was

used to generate p-values in attempting to map the de novo motif

PWMs to the PBM published PWMs (29).

This motif analysis was run for the following cell lines with

available PBM data: BCL11A, c-Fos, c-Jun, and TBP (30; 31; 32).

The resulting motif logos for the two BCL11A cell lines and five

TBP cell lines in the DeepSEA dataset were inconclusive and could

not be mapped to published PBM PWMs. All motif PWMs and

logos were pulled from the Harvard Universal PBM Resource for

Oligonucleotide Binding Evaluation (UniProbe) Database, which

consolidated the data from various studies that looked at these

cell lines individually (33).

Enhancer Scoring Validation

For our enhancer validation, we utilized the CNN architecture from

the TREDNet DL second-phase enhancer classifier and attached

it to our regulatory feature model (20). This classifier took the 919

output labels from our feature prediction model and produced a

single output enhancer prediction score. This model’s architecture

contained three CNN layers of increasing filter size with ReLU

activation, a 180-unit dense layer, a batch normalization layer,

two max pooling and dropout layers, and a LeakyReLU activation

function before the single neuron dense output layer (Fig S3).

The mutagenesis for the enhancer validation was conducted

using the binding sites of EP300 (optimal IDR peaks of the

ENCODE ChIP-seq were used, 5,526 peaks in total) and inputting

4,000 regions for each individual enhancer. Each region was in

silico mutated by looking at one bp of the 1kbp in the sequence

and generating the four alternate alleles that could be recognized

by the model (A, C, G, T, and N), with the rest of the sequence

remaining unchanged. The one-hot encoded representations of

these 4,000 sequences were run through ChromDL and this

secondary enhancer model, and the scores were then compared

with the wildtype enhancer score.
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We then established eight enhancer definitions for the training

of this model: 1) ChromHMM Strong Enhancer States, 2)

ChromHMM Weak Enhancer States, 3) H3K27ac peaks, 4)

H3K4me1 peaks, 5) Overlapping regions between H3K27ac

and H3K4me1 peaks, 6) Overlapping regions between H3K27ac

and H3K4me1 with any H3K4me3 peaks removed, 7) EP300

ENCODE Project IDR conservative ChIP-seq peaks, and 8)

EP300 ENCODE Project IDR optimal ChIP-seq peaks. For each

definition, the following steps were taken to create positive and

negative samples for the model training. For positive labels, each

individual cell line DNase-I hyper-sensitive site (DHS) regions

were taken and intersected with its respective definition peak

file using the BEDTools command line tool (34). Any regions

overlapping with promoter regions spanning 1.5 kbp upstream and

0.5 kbp downstream from each alternative transcription start site

were removed (as defined in knownGene table of UCSC Genome

browser, Table S16). The remaining regions were centered on the

peak of the intersecting DHS sequence and extended to 1kbp, and

assigned a one in the target label vector. DHS regions from all

cell lines established the control set, and any overlaps with any

of the defined enhancer regions were removed. Chromosomes 8

and 9 were used exclusively for testing and removed from training

and validation. Chromosome 7 was used for validation, and all

other autosomes were used in the training dataset. ChromHMM

Strong Enhancer States and ChromHMM Weak Enhancer States

were extracted from the NIH Roadmap Epigenomics project (6)

(Table S10). The DHS, H3K27ac, H3K4me1, and H3K4me3

peak regions were obtained from the UCSC ENCODE database

(1; 2; 3; 4; 5; 7) (Table S11, S13, S14, S15). The EP300

IDR optimal and conservative ChIP-seq peak call sets came

from the ENCODE portal (Table S12) (Cherry et al. 2016,

2017, 2020) (https://www.encodeproject.org/) with the following

identifiers: ENCFF087TMV, ENCFF843SYD, ENCFF583XDA,

ENCFF784YVX, ENCFF054JWD, ENCFF259JWD,

ENCFF821GNB, ENCFF549TYR, ENCFF476RII,

ENCFF222XPQ, and ENCFF227EUK.

Experimental raQTL Validation

RaQTL experimental data was pulled from the Open Science

Framework (OSF) raQTL list (Table S17), where 14,183 single

nucleotide polymorphisms (SNPs) from the HepG2 cell line and

19,237 SNPs from the K562 cell line were identified as significantly

impacting the activity of regulatory regions in MPRA assays. The

eight enhancer definitions and corresponding control sets were

created with the same previously outlined methodology used in

Enhancer Scoring Validation for these two cell lines.

We performed in silico mutagenesis on the position of raQTL

(for both reference and alternative alleles), by calculating the

change of enhancer score on a 1kbp DNA segment centered at the

raQTL. These two sequences were scored by the enhancer model,

and the expression:

log2(
ref score

alt score
)

was taken to yield the delta score for each individual raQTL in

the two datasets. The entire dataset of raQTLs was then separated

into five equal bins based on the percentile of delta scores for each

cell line (20% each). Next, the raQTL density in enhancer regions

was calculated by taking the number of raQTLs in each percentile

bin that overlapped with the defined enhancers divided by the total

number of enhancers. For the control group, 1,000 random samples

DeepSEA DanQ DanQ-JASPAR

All (919) 875 (0.9521) 812 (0.8835) 790 (0.8596)

TFBS (690) 677 (0.9812) 640 (0.9275) 636 (0.9217)

DHS (125) 125 (1.0) 122 (0.976) 120 (0.96)

HM (104) 73 (0.7019) 50 (0.4808) 34 (0.3269)

Table 1. The number and proportion of labels for each of the four

categories of labels (All, TFBS, DHS, and HM) that ChromDL has a

higher area under the receiver operating characteristic curve (auROC) in

a label-by-label comparison with each model individually.

ChromDL DeepSEA DanQ DanQ-JASPAR

All (919) 0.961 0.944 0.951 0.953

TFBS (690) 0.97 0.958 0.963 0.965

DHS (125) 0.936 0.924 0.928 0.932

HM (104) 0.864 0.856 0.864 0.868

Table 2. Median area under the receiver operating characteristic curve

(auROC) for the four studied models for All 919 DeepSEA dataset labels,

690 TFBS labels, 125 DHS labels, and 104 HM labels.

ChromDL DeepSEA DanQ DanQ-JASPAR

All (919) 0.402 0.344 0.372 0.383

TFBS (690) 0.372 0.303 0.334 0.343

DHS (125) 0.498 0.448 0.465 0.477

HM (104) 0.359 0.338 0.356 0.359

Table 3. Median area under the precision recall curve (auPRC) for the four

studied models for All 919 DeepSEA dataset labels, 690 TFBS labels, 125

DHS labels, and 104 HM labels.

were taken where 20% of the raQTLs and a random selection

of DHS regions equal to the number of enhancer regions and of

equal length were taken, and this same calculation was performed.

This one fifth of raQTLs was meant to standardize for the raQTL

binning distribution.

These calculations were done for all delta scores and positive

delta scores (SNPs that decreased enhancer score) for each of the

eight enhancer definitions. This control measurement was used to

calculate the fold change for each of the experimental group bins,

defined as the density of raQTL SNPs in the defined enhancer

regions for that given bin divided by the density of raQTL SNPs

in the control set. An extensive collection of these plots can be

found in Fig S4, S5, S6.

Results

ChromDL Architecture Discovery

Identification of this model architecture involved investigating

numerous different combinations of convolutional and recurrent

neural network layers, as well as pooling, normalization, and

regularization alterations using random sampling and semi-

supervised architecture design. The first approximately 1,100

models generated were constructed similar to DeepSEA and

traditional CNN architectures like AlexNet (35) with variable

convolutional filter sizes, layers of max pooling, and batch

normalization. We found that these models trained with the
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Fig. 2: ChromDL ROC curves for TFBS, DHSs, and HMs for each available chromatin feature file across the three categories. The red

line in each plot represents the average of the ROC curves across every dataset available in the trials, with each gray line representing

one dataset.

Adam optimizer yielded prediction auROCs of about 0.918 on

average, so we explored alternative methods beyond that of

the original DeepSEA architecture. We then investigated if

improvements could be achieved by implementing hybrid neural

networks, incorporating GRUs, LSTMs, and simple RNN layers

into our CNN model (about 6,000 models). With implementation,

we saw an improvement in classification metrics yielding best

case auROCs of approximately 0.92-0.925, and next moved to

including several of these layers either of the same or different

type in a single model. We found that the inclusion of multiple

of these layers in the final iterations of the models as well as

introducing bidirectionality within the RNN layers (about 705

models) generated the best output metrics (average auROC scores

in the high 0.93 range when run for 20 epochs), with ChromDL

emerging as the clear best model in terms of both median auROC

(0.961) and area under the precision recall curve (auPRC; 0.402).

ChromDL exhibited an accuracy of 0.970, 0.936 and 0.864 in

median auROC for ChIP-seq TFBS, DHS, and HM, respectively

(Fig 2). We also observed that ChromDL outperforms DeepSEA

in 95% of the 919 labels, DanQ – in 88%, and DanQ-JASPAR –

in 85% (auROC; Table 1, S2; Fig S7, S8, S9) and outperforms

these DL models across all categories with the single exception

of DanQ-JASPAR in HM labels (Table 2, 3). We attribute the

superior accuracy of ChromDL predictions to the presence of

the BiGRU input layer and two BiLSTM layers, as the other

network architecture elements are similar between ChromDL and

the previously published models.

To evaluate the contribution of each layer of ChromDL, we

performed nine separate trials and removed one individual layer

in each trial from the final architecture and evaluated the change

in performance. It is important to note that while these individual

layers are crucial for the model to achieve the performance metrics

it does, the entire model and each layer’s variables work together

to yield its final predictions. As a result, it is difficult to value one

layer over another because of numerous hyperparameters that are

involved and the intricacies of the individual layers. Even so, we

show that the input BiGRU layer yields higher overall prediction

accuracy (auROC/auPRC) as compared to a conventional CNN

layer used as the input for this model (Table S3).

Accurate Prediction of TF binding

Next, we investigated the correlation between the prediction

accuracy of TF bound regions and TF ChIP-seq signal intensity.

The TF ChIP-seq signal intensity reflects the propensity of TF

binding, so we were interested in addressing how our model would

detect the regions that had a lower binding affinity as compared

to the previously developed models. We observed that ChromDL

predicts a statistically significantly higher proportion of TFBS

correctly in the lowest ChIP-seq signal strength bin compared

to DeepSEA, DanQ, and DanQ-JASPAR (p-value < 1E-05; one-

tailed t-test). This statistically significant improvement remains

present for all incremental bins of signal strength (ranging from

0-10% to 90-100%) and across 3%, 5%, and 10% false positive rate

thresholds (FPR) except for the highest two scoring bins in the

10% FPR calculations, asserting our model’s superior ability to

predict TFBS at low signal strengths (Fig 3, S10, S11, Table S4,

S5, S6).

Some of the weak signal TF ChIP-seq peaks represent

sequencing errors and transient TF binding. As a result, their

detection can often be difficult using predictive models due to noise

associated with the corresponding signal levels as compared to the

strong signal TF ChIP-seq peaks. It is therefore significant that

our model can detect and predict these weak signal TFBS regions

with higher accuracy as compared to previously developed models.

This higher sensitivity could allow detection of sequencing and

mapping errors in existing datasets, as well as open the possibility

of detecting transiently bound regions with improved accuracy.

To address ChromDL’s ability of predicting TF binding motifs,

we utilized Protein Binding Microarray (PBM) profiling of in

vitro DNA-binding of transcription factors (36). A total of sixteen

motifs that were found in both the DeepSEA TFBS dataset and

the PBM published database were examined in this investigation.

For these motifs, the average number of peaks was 1,276.5, and the

average percentage of these peaks predicted correctly was 81% for

ChromDL, 75% for DeepSEA, 75% for DanQ, and 77% for DanQ-

JASPAR. Eight of the 16 motifs were not visually discernible

with the PBM PWMs and resulted in insignificant TOMTOM

alignment mapping scores, so they were discarded. The other

eight motifs, all c-Fos/c-Jun, were detected as a prominent motif

in each of the four comparison models (ChromDL, DeepSEA,

DanQ, DanQ-JASPAR). For seven of the eight motifs, all four

models predicted the PBM motif as the most significant motif,
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Fig. 3: The proportion of TFBS ChIP-seq peaks in chromosomes 8 and 9 predicted correctly based on the ChIP-seq signal strength. The

3% false positive rate thresholds were calculated from the DeepSEA dataset and used to generate the plots for each of the 690 available

ChIP-seq peak files.

and one motif, HepG2 c-Jun, was the second most significant in

all four models. This motif was then extracted for each model

and compared with the target PBM motif to calculate alignment

scores. In these two investigations, ChromDL had the most

significant alignment score (lowest p-value) in four out of the

eight motifs from HOMER generated motifs (Table S7), and the

most significant alignment score in four out of eight motifs from

MEME-ChIP generated motifs (Table S8). We found through

this investigation that ChromDL not only has the ability to

map specific base pairs correctly, but also is able to maintain

high sensitivity to the weight of the correct individual base pair

in TFBS PWM description more in-line with PBM data. This

sensitivity can be visualized in Fig 4.

ChromDL-based Enhancer Predictor

Next, we used the TREDNet DL second-phase classifier CNN

architecture with the output of the ChromDL model serving as

input to compute an enhancer score of an arbitrary input DNA

region. The two-stage model yielded respectable performance, with

an average auROC of 0.89 across eight enhancer definitions (Fig

S12, Table S18). We took a particular interest in the HepG2

and K562 cell lines for subsequent analysis and obtained high

auROC (average 0.967 and 0.949) and auPRC metrics (average

0.313 and 0.352) in the EP300 enhancer trials as compared to

other definitions (Fig S13, S14).

When we examine the trends across all available cell lines and

the eight enhancer definitions, we notice several key differences.

We find that the lowest scoring auPRC enhancer group are the

regions centered on overlapping H3K27ac and H3K4me1 peaks

without H3K4me3 peak overlaps, with an average auPRC of

0.28. Closely behind it is the ChromHMM Strong Enhancer State

definition with an average auPRC of 0.33. We attribute this poor

relationship between the precision and recall to the enhancer

definitions, as these two groups in particular have sequence

features as compared to the other groups which lead them to

be previously termed “stronger” enhancers. On the other hand,

the “weaker” enhancer groups, which have been demonstrated to

lead to elevated enhancer activity (37), resulted in more accurate

ChromDL classification according to the auPRC metric. It has also

been experimentally demonstrated that weaker regions with fewer

H3K27ac peaks and more H3K4me1 peaks lead to an increased

enhancer activity, and we would thus expect it to lead to a better

auPRC metric. Indeed, we find this to be true in our overlapping

H3K27ac and H3K4me1 peak enhancers with an average auPRC of

0.40, and our H3K4me1 peak enhancers with an average auPRC of

0.55. These results are encouraging, since the high auROC (>0.84

average across all definitions) suggest that ChromDL is able to

provide enough contextual information to this enhancer model

across multiple cell lines.

Reporter assay QTL validation of ChromDL Regulatory Variant

predictions

After including the TREDNet second-phase enhancer classifier for

the prediction of enhancer sequences using the output context from

ChromDL as input, we decided to address if the enhancer scores

are sensitive to point mutations in the input enhancer regions.

We found that indeed, this two-stage model can be directly

used to quantify the impact of DNA sequence mutations on

enhancer activity by computing the difference in enhancer scores

corresponding to two different alleles of the mutated nucleotide.

We performed an in silico mutagenesis of every nucleotide

of HepG2 EP300 enhancers (optimal IDR) using the ChromDL

enhancer model and observed that 52.8% of enhancer mutations

show a detrimental impact on enhancer activity with 2.2%

of enhancer mutations being capable of enhancer deactivation

(defined as at least a 2-fold enhancer score decrease), which is

in line with previously reported results of deleterious enhancer

mutations (38; 39; 40; 41). Additionally, 47.2% of enhancer

mutations are strengthening enhancer activity and 0.65% of

mutations increase the ChromDL enhancer score over 2-fold. These

results extend the scope of the previously reported enhancer gain

mutations for a single ZRS enhancer to the whole-genome scale and
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Fig. 4: Motif analysis of Jun/Fos gene using PBM and MEME

Suite. (a) primary motif logo in c-Jun/c-Fos protein in Homo

Sapiens reported by the UniProbe PBM study (30; 33). The other

logos correspond to the HepG2 c-Jun TFBS ChIP-seq PWMs

mapped for (b) ChromDL, (c) DeepSEA, (d) DanQ, and (e)

DanQ-JASPAR. Highlighted is the base pair at position 8 in the

ChromDL PWM, illustrating the higher sensitivity at this position

leading to a closer match with the PBM PWM.

identify a small set of key mutations with the most pronounced

impact on enhancer activity (42).

To validate the accuracy of ChromDL regulatory variant

predictions, we used the results of experimental characterization

regulatory effects at Single Nucleotide Polymorphism (SNP)

positions in the human genome using the raQTL technique (43),

which mapped 14,183 and 19,237 regulatory SNP mutations in

HepG2 and K562 cell lines, respectively.

For each raQTL, two sequences were created and fed into

the pre-trained enhancer model attached to ChromDL, a 1kbp

sequence centered at the wild type allele and a 1kbp sequence

centered at the same allele with the mutant base pair in its place.

Those raQTLs with the greatest delta scores (corresponding to

Fig. 5: raQTL enrichment binned by DL delta score.

the greatest predicted impact on enhancer activity) were found

to be the most enriched in enhancer regions (Fig 5). These

results indicate that the ChromDL enhancer classifier can be

applied for the accurate prediction of regulatory mutations and

the degree of enhancer modulation by these mutations. Our

model has been experimentally validated through 1) The trend of

increasing magnitude raQTL score correlating with higher density

in enhancer sequences and 2) the proportion of enhancers that

were deactivated (2-fold score decrease) in the mutagenesis trials

aligning with previously published results.

Discussion

By testing thousands of various DL architectures, we have built an

accurate DL predictor of regulatory activity in the human genome

named ChromDL. ChromDL improves the accuracy of prediction

of regulatory features as compared to DeepSEA, DanQ, and DanQ-

JASPAR. The optimal ChromDL model highlights the benefits of

RNN layers for prediction of genomic features as compared to the

traditional CNN architecture. We also attribute the presence of the

two BiLSTM layers and a BiGRU layer to the improved predictive

ability of the developed classifier.

ChromDL demonstrates an improved prediction accuracy

in detecting low-affinity TF binding and TF binding motif

identification when compared to DeepSEA and DanQ. This was

demonstrated through PBMs, which are used to measure the

protein-DNA binding affinity in several orders of magnitude,

meaning that they are a very powerful tool in the comparison of

DNA-binding specificity. It is significant as a result that ChromDL

has the potential to predict these key base pairs with more

accuracy as compared to DeepSEA and DanQ models.

In addition, we find that ChromDL can be utilized with an

enhancer model such as the TREDNet second-phase classifier

for the prediction of enhancer sequences that are sensitive to

regulatory region mutations as validated through experimental

raQTL point mutations. This illustrates the possibility of very

effective enhancer classifiers using ChromDL’s output context

and deep learning neural networks for the accurate prediction of

regulatory mutations and to quantify the enhancer modulation of

these mutations.

Further updates to this model could investigate lowering

the training speed to analyze model iterations more quickly,

initializing the model with motifs before training to see if

scores improve, and training the model on outside datasets as
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they become available to make the model more versatile for

the prediction of regulatory features. We expect to see further

hybrid architectures of varying size, speed, and composition

as effective in exploring human regulatory DNA using similar

exploration techniques with the availability of faster GPUs and

more sophisticated layer implementations.

We have built what we believe to be the most accurate

regulatory classifier to date in ChromDL, with the ability to

predict TFBSs and DHSs with performance metrics beyond that

of all studied predecessors. We believe ChromDL’s sensitivity to

low affinity TF binding, it’s flexibility with secondary classifiers

while retaining strong performance metrics, and it’s basepair

sensitivity to point mutations make it a powerful tool to aid in

the development of new technologies and assist in further novel

discoveries in the field of epigenetics.
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