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Abstract

Molecular chaperones play a significant role in preventing protein misfolding and aggregation. Indeed, some protein
conformational disorders have been linked to changes in the chaperone network. Curiously, in yeast, chaperones also play a
role in promoting prion maintenance and propagation. While many amyloidogenic proteins are associated with disease in
mammals, yeast prion proteins, and their ability to undergo conformational conversion into a prion state, are proposed to
play a functional role in yeast biology. The chaperone Hsp104, a AAA+ ATPase, is essential for yeast prion propagation.
Hsp104 fragments large prion aggregates to generate a population of smaller oligomers that can more readily convert
soluble monomer and be transmitted to daughter cells. Here, we show that the middle (M) domain of Hsp104, and its
mobility, plays an integral part in prion propagation. We generated and characterized mutations in the M-domain of Hsp104
that are predicted to stabilize either a repressed or de-repressed conformation of the M-domain (by analogy to ClpB in
bacteria). We show that the predicted stabilization of the repressed conformation inhibits general chaperone activity.
Mutation to the de-repressed conformation, however, has differential effects on ATP hydrolysis and disaggregation,
suggesting that the M-domain is involved in coupling these two activities. Interestingly, we show that changes in the M-
domain differentially affect the propagation of different variants of the [PSI+] and [RNQ+] prions, which indicates that some
prion variants are more sensitive to changes in the M-domain mobility than others. Thus, we provide evidence that
regulation of the M-domain of Hsp104 is critical for efficient prion propagation. This shows the importance of elucidating
the function of the M-domain in order to understand the role of Hsp104 in the propagation of different prions and prion
variants.
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Introduction

Protein aggregates pose a considerable challenge to cellular

homeostasis and contribute to the pathogenesis of numerous

neurodegenerative diseases. As such, protein misfolding and

aggregation are guarded against by molecular chaperones, which

act as the cell’s first line of defense by maintaining proteostasis. In

bacteria, fungi, and plants, the Hsp100 chaperones, together with

Hsp70 and Hsp40 co-chaperones, are responsible for disaggregat-

ing protein aggregates and promoting cell survival and recovery

from cell stress [1,2]. The AAA+ ATPase Hsp104 is the primary

disaggregase in the budding yeast Saccharomyces cerevisiae [3,4]. Like

its bacterial homolog, ClpB, the hexameric Hsp104 chaperone

unwinds aggregates and threads protein substrates through a

central channel to be refolded by Hsp70 chaperones [5,6]. This

function of Hsp104 is essential for cell survival post-heat stress

(thermotolerance) as well as recovery from various other stresses

[4,7].

In addition to its role in protein disaggregation, Hsp104 is

required for yeast prion propagation [8,9]. Prions in yeast are self-

replicating, cytoplasmically inherited protein aggregates that are

proposed to have a functional role in the cell [10,11,12,13,14].

Prions are amyloid-like, consisting of cross-b sheet structures that

are highly stable and resistant to high temperature and detergents

[15]. Prion propagation and maintenance in yeast requires

efficient fragmentation to generate prion-competent oligomers,

or propagons, which can be transmitted to daughter cells. Hsp104

is proposed to remodel large prion aggregates to produce

propagons, thereby generating more ‘‘free ends’’ that are required

for additional monomer templating [16,17,18,19]. Furthermore,

Hsp104 has been implicated in the selection of prion variants,

which are conformationally distinct aggregates of the same protein

sequence that are akin to mammalian prion strains [20].

Alterations in the stability of different prion variant structures

are proposed to govern such selection by influencing the

interaction and fragmentation of prion aggregates by Hsp104

[20,21,22].

One of the best-characterized yeast prions is formed from the

reversible aggregation of the translation termination factor, Sup35

[23,24,25]. This prion, called [PSI+], has been proposed to play a

role in creating genetic diversity by promoting translation of

normally silent regions of the genome [11,26]. Interestingly, the de

novo formation of [PSI+] is regulated by another yeast prion,

[RNQ+], resulting from the aggregation of the Rnq1 protein

[27,28,29,30,31]. The formation of [PSI+] has been shown to
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increase cell viability under various stresses, but can be detrimental

in others, suggesting that the formation and propagation of [PSI+]

is an important biological process that must be strictly regulated, in

part by Hsp104 [11,32,33,34,35].

Hsp104 can be divided into five functionally distinct, yet

cooperative, domains. The N-terminal domain is not required for

either prion propagation or thermotolerance, but has been

proposed to be a site for substrate binding, as well as an

interaction site for the Hsp70 and Hsp40 co-chaperones [36,37].

Two nucleotide-binding domains, NBD1 and NBD2, bind and

hydrolyze ATP to stabilize hexamer formation and catalyze the

disaggregation of substrates [38]. The role of the C-terminal

domain is still not well understood, as it is unnecessary for prion

propagation and thermotolerance, yet both activities are affected

by mutations in this domain [36,39,40,41]. Finally, the linker

region, or middle domain (M-domain), is proposed to regulate

both ATP hydrolysis and substrate disaggregation by coordinating

the actions of NBD1 and NBD2 [36,42,43].

The M-domain is a coiled-coil insertion between NBD1 and

NBD2 and is characteristic of Hsp100 chaperones that function as

disaggregases, including the bacterial homolog, ClpB [44,45]. In

both Hsp104 and ClpB, the M-domain regulates ATP hydrolysis

[46,47,48], is essential for substrate disaggregation [49,50,51], and

mediates the interaction with Hsp70 chaperones [49,52,53,54].

Biochemical, genetic, and structural studies with both Hsp104 and

ClpB suggest that the M-domain projects from the body of the

hexamer and makes contact with the NBD1 of neighboring

subunits [43,46,48,55,56]. Recent data suggest that the M-domain

of ClpB can occupy two distinct functional states, repressed and

de-repressed [48]. In the repressed state, the M-domain is nestled

against the body of the hexamer, maintaining contact with a

neighboring NBD1. Interaction with Hsp70 is proposed to

promote a shift of the M-domain away from NBD1 to the de-

repressed conformation, thereby increasing the ATPase activity

and, in turn, promoting substrate disaggregation [43,48]. ClpB

mutations that stabilize the M-domain in the repressed state

prevent substrate-stimulated ATPase activity and decrease sub-

strate disaggregation [48]. On the other hand, mutations in ClpB

that stabilize a de-repressed state of the M-domain result in

hyperactivity and cause toxicity in vivo [43,48]. Thus, the mobility

of the M-domain plays a significant role in regulating the activity

of ClpB. As such, elucidating the function of the M-domain in

regulating Hsp104 activity is critical to understanding how

Hsp104 is able to disaggregate a broad range of substrates.

In the present study, we generated mutations in the M-domain

of Hsp104 analogous to the previously characterized repressed and

de-repressed mutations in ClpB [48,54] and investigated their

effect on Hsp104 activity and yeast prion propagation. We found

that an M-domain mutation predicted to repress the mobility of

the M-domain prevented thermotolerance and prion propagation.

Strikingly, mutations that we hypothesized would de-repress

Hsp104 M-domain function also resulted in prion elimination,

but in a prion variant-specific manner. Our data show that the

mobility of the M-domain regulates Hsp104 disaggregase activity

and suggest that changes in this mobility have significant

consequences for processing different substrates.

Materials and Methods

Strain and Plasmid Construction
All S. cerevisiae strains were derivatives of 74-D694 and were

grown using standard culture techniques. Strains were grown in

YPD (1% yeast extract, 2% peptone, 2% glucose) or synthetic

defined media (0.67% yeast nitrogen base, 2% glucose) lacking

amino acids that correlated with plasmid auxotrophic markers.

For expression of the Hsp104 mutants in vivo, point mutations

in HSP104 were generated by bridge PCR using as the template,

pRS313-phs-HSP104 [5] (kindly provided by B. Bukau), which

expresses HSP104 from the HSP104 promoter (phs). Bridge PCR

products and pRS313-phs-HSP104 were digested with EcoRI and

Bsu36I, which are endogenous restriction sites in the HSP104

open-reading frame, and ligated together. Hsp104 mutants were

also cloned into pProEx-HTb-HSP104 [40] (kindly provided by J.

Glover) by the same digestion and ligation. The pRS313-phs-

hsp104-V426I plasmid was generated by PCR amplifying genomic

DNA from the EMS mutagenized strain, then digesting and

ligating as described.

The strong and weak variants of [PSI+] in 74-D694 were

previously characterized and kindly provided by Y. Chernoff and

S. Liebman [8,57]. To generate strains propagating each of the

[PSI+] variants and harboring the Hsp104 mutants, cells

propagating each variant were mated to an hsp104D (hsp104::leu2)

strain and diploids were selected. The mutant pRS313-phs-

HSP104 plasmids were transformed into the heterozygous diploids,

the diploids were sporulated, and haploids were selected on media

lacking histidine and leucine. Colonies were verified as haploids by

mating-type testing.

The [RNQ+] variant yeast strains [58] were kindly provided by

the Liebman lab. To create strains carrying both the mutant

Hsp104 plasmids and the [RNQ+] variants, we created HSP104

plasmid shuffle strains. First, pRS316-phs-HSP104 [36] (kindly

provided by J. Weissman) was first transformed into cells

propagating each of the [RNQ+] variants. HSP104 on the

chromosome was deleted by transforming the hphMX4 cassette

amplified from pAG32 using oligonucleotides 59GAAAAAAG-

AAATCAACTACACGTACCATAAAATATACAGAATATCAG-

CTGAAGCTTCGTACGC and 59GATTCTTGTTCGAAAG-

TTTTTAAAAATCACACTATATTAAAGCATAGGCCACTAG-

TGGATCTG, containing flanking homology to the HSP104

promoter and terminator. Deletion of HSP104 was confirmed by

PCR in Ura+ HygBR colonies. These strains were then

transformed with each of the mutant pRS313-phs-hsp104

plasmids, selected on media lacking histidine and uracil, grown

overnight in liquid media lacking just histidine, and then plated

on media lacking histidine and containing 5-fluoroorotic acid

(US Biologicals) to select for cells that had lost the pRS316-phs-

HSP104 plasmid. Colonies that were His+ ura2 were used for

further analysis.

EMS mutagenesis screen
The strong [PSI+] yeast strain was subjected to EMS

mutagenesis as previously described [59]. Two cultures with

viabilities of about 17% were plated to determine changes in color.

Candidates were selected based on color phenotype and were

initially identified as mutations in HSP104 by back-crossing to an

hsp104D strain and analyzing the progeny for segregation of the

prion-dependent nonsense suppression phenotype. Genomic DNA

was PCR amplified and sequenced to identify the point mutations

in HSP104.

Fluorescence Microscopy
Cells expressing pRS316CUP1-SUP35NM-GFP [60] (kindly

provided by S. Liebman) were grown in media containing

50 mM CuSO4 for four hours to induce expression of

SUP35NM-GFP. Cells expressing Sup35NM-GFP were imaged

in water at room temperature on an Olympus Bmax-60F

microscope containing a 1.35NA 100X UPlanApo objective lens,
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spinning disc Confocal Scanner Unit (CSU10). Images were

captured using a Stanford Photonics XR-Mega10 ICCD camera

with QED software and analyzed by ImageJ.

SDD-AGE Analysis
Cells were lysed by disruption of the membranes with glass

beads in Sup35 PEB buffer (25 mM Tris-HCl pH 7.5, 50 mM

KCl, 10 mM MgCl2, 1 mM EDTA, 10% Glycerol, mini EDTA-

free protease inhibitors (Roche), Aprotinen (Sigma) and PMSF

(Sigma)) or Rnq1 PEB buffer (25 mM Tris-HCl pH 7.5, 100 mM

NaCl, 1 mM EDTA, mini EDTA-free protease inhibitors,

0.5 mM DTT, 3 mM PMSF, 5 mg/mL pepstatin, and 40 mM

NEM). Samples were incubated in sample buffer at room

temperature for seven minutes, then separated on a 1.5% agarose

gel. The protein distribution was analyzed by western blot with

anti-Sup35 or anti-Rnq1 antibodies.

Hsp104 Purification
Recombinant Hsp104 was expressed and purified from E. coli

cells as previously described [61]. After purification, the pool of

recombinant Hsp104 was separated on an S-300 gel filtration

column to isolate Hsp104 monomers. Purified, monomeric

Hsp104 was concentrated and frozen at -80uC in storage buffer

(20 mM Tris pH 8.0, 100 mM NaCl, 10 mM MgCl2, 2 mM

EDTA, 10% glycerol).

ATP Hydrolysis Assays
The Malachite green assay was used to measure the rates of

ATP hydrolysis [38]. Purified protein (2 mg) was incubated with

5 mM ATP in buffer (40 mM Tris-HCl pH 7.5, 175 mM NaCl,

5 mM MgCl2, 0.02% Triton X-100) at 37uC. At each minute over

a time course of 12 minutes, Malachite green dye was added to the

sample and the reaction stopped by the addition of 34% citric

acid. The absorbance was measured at 650 nm and the

concentration of free phosphate was calculated based on a

standard of KH2PO4 and normalized to the sample containing

no Hsp104.

Glycerol Gradients
Purified Hsp104 (50 mg) was incubated with 5 mM ATP in

buffer (40 mM Tris-HCl pH 7.5, 175 mM NaCl, 5 mM MgCl2,

0.02% Triton X-100), then centrifuged at 34 k rpm for 18 hours

through a 4 mL linear (10–35%) glycerol gradient containing

5 mM ATP. The gradients were fractionated and equal volumes

of each fraction were analyzed by SDS-PAGE and western blot

using an anti-Hsp104 antibody. Individual bands from each

fraction were quantified using ImageJ and reported as a percent of

total Hsp104.

Thermotolerance
An equal number of hsp104D cells maintaining plasmids that

expressed HSP104, hsp104-V426I, hsp104-V426C, hsp104-K480C,

hsp104-Y507D, hsp104-D434A, or an empty vector control, were

treated at 37uC in equal volumes for 30 minutes to induce HSP104

expression, then heat-shocked at 50uC. At 10, 15, 20, 25, and 30

minutes during heat shock, samples were taken and spotted on

media lacking histidine in a five-fold dilution.

Luciferase Refolding
An hsp104D strain containing plasmids expressing HSP104,

hsp104-V426I, hsp104-V426C, hsp104-K480C, hsp104-Y507D,

hsp104-D434A, or an empty vector control, were transformed

with pRS316-GPD-luciferase [5] (kindly provided by B.Bukau).

Cells were grown at 37uC for one hour, then heat-shocked at 44uC
for one hour. Fifty minutes into the heat shock, cycloheximide

(Sigma) was added to the culture to block protein synthesis. At

various times during recovery at 30uC, 100 ml samples were taken

and 50 ml of 1 mM beetle luciferin (Promega) was added.

Luminescence was measured on a Sirius luminometer. The

resolubilization of luciferase was calculated by dividing the

measured luminescence at each time point by the measured

luminescence prior to heat shock and normalized to the

luminescence measured immediately after heat shock.

Results

Hsp104 M-domain mutant, hsp104-V426I, causes
sectoring [PSI+] phenotype

We performed a genetic screen to identify factors important for

aggregation of the translation termination factor Sup35 and the

resulting propagation of the [PSI+] prion. To identify candidates,

we used a color-based phenotypic assay established to follow

[PSI+] propagation. In this assay, a premature termination codon

is present in the ADE1 gene, in the ade1-14 allele, which prevents

completion of the adenine biosynthesis pathway. Disruption of

adenine biosynthesis at this point in the pathway causes the

accumulation of a red-pigmented intermediate and prevents cells

from growing on media lacking adenine. Translational read

through of the premature termination codon in ade1-14 leads to

completion of the pathway, resulting in cells that are phenotyp-

ically light pink or white when grown on rich media (YPD) and are

able to grow on media lacking adenine. When Sup35 is not

aggregated and maintains its normal function (in non-prion-

containing [psi2] cells), translation termination is efficient, and the

ade1-14 colonies appear red in color and do not grow on media

lacking adenine. Conversely, when Sup35 is in a prion state, it is

aggregated and less functional, and the [PSI+] colonies are Ade+
(light pink in color on YPD and able to grow on media lacking

adenine). From our screen, we identified a candidate that caused

the [PSI+] cells to change from a light pink phenotype to a

sectoring colony color phenotype (Figure 1A). This indicates that a

fraction of the cells in a colony did not inherit [PSI+] propagons,

causing those cells to become [psi2] and phenotypically red. All of

the progeny from those [psi2] cells will also be [psi2] and this

results in a sectoring colony color phenotype. Moreover, this

candidate caused a corresponding increase in the mitotic loss of

the [PSI+] prion (all red [psi2] colonies) as compared to wild type

HSP104 cells in which loss of [PSI+] is rarely observed (Figure 1B

and data not shown). By genetic testing, we discovered that this

phenotype resulted from a point mutation in Hsp104. We

sequenced hsp104 in this strain and identified the mutation as

hsp104-V426I. To confirm that the [PSI+] inheritance defect

resulted from this mutation, we made the hsp104-V426I mutation

in an unmutagenized [PSI+] strain and used this strain for all

further analyses.

To determine whether this Hsp104 mutant was affecting the

aggregation of Sup35 in [PSI+] cells, we transformed the hsp104-

V426I mutant strain with a plasmid expressing SUP35NM-GFP

and analyzed the Sup35 aggregation pattern by fluorescence

imaging. In hsp104-V426I samples, we observed cells that

contained fluorescent foci indicative of Sup35 aggregates, as well

as cells that displayed diffuse fluorescence similar to [psi2] cells

(Figure 1C). Interestingly, the hsp104-V426I cells with fluorescent

foci contained a single or a few large fluorescent foci, unlike the

wild type [PSI+] cells, which contained multiple, small fluorescent

foci (Figure 1C). Thus, we conclude that the mutant hsp104-V426I
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affects the aggregated state of the prion determinant Sup35,

thereby altering the [PSI+] phenotype.

Hsp104-V426 is located in the coiled-coil M-domain
To determine how this mutation may be affecting Hsp104

function, we examined the structural models of Hsp104 to identify

where this residue is located [55,56]. We discovered that V426

appears to be located in the first helix of motif 1 of the M-domain

and is analogous to the L424 residue in ClpB. Recently, functional

analysis of the M-domain of ClpB suggested that the L424 residue

helps mediate the mobility and position of the coiled-coil M-

domain by contributing to the interaction between the M-domain

and the NBD1 of the neighboring subunit [48]. Another residue in

the M-domain of ClpB, Y503, was also shown to regulate M-

domain mobility through an interaction with NBD1 [48]. The

ClpB-Y503D mutation led to a pronounced decrease in KJE-

dependent (DnaK-DnaJ-GrpE) ClpB disaggregation activity [47].

More recently, ClpB-Y503D was shown to increase the rate of

substrate-stimulated ATP hydrolysis and cause toxicity when

expressed in bacteria grown at high temperatures [48]. The

Y503D mutation in ClpB was proposed to stabilize a de-repressed

conformation of the M-domain, in which there is a constitutive loss

of contact of the M-domain with NBD1, thereby causing ClpB

hyperactivity. We hypothesized that the Hsp104-V426I mutation

that we identified in our screen might disrupt the mobility of the

Hsp104 M-domain to alter prion propagation.

We set out to further assess the role that mobility of the M-

domain has on the function of Hsp104 as compared to Hsp104-

V426I. Mutations in the ClpB M-domain have been classified as

repressed or de-repressed, which have contrasting effects on the

function of ClpB [48,54]. A recent study analyzed how these two

classes of mutants modulated ClpB ATPase activity, disaggrega-

tion activity, and cell growth [48]. We created analogous

mutations in the M-domain of Hsp104 to determine if the effects

of these mutants on disaggregase function are conserved between

the chaperones. This included the putative repressed Hsp104-

D434A mutation (homologous to ClpB-E432A), along with

Hsp104-K480C and Hsp104-Y507D, which are homologous to

the de-repressed mutations of ClpB-K476C and ClpB-Y503D,

respectively. We also generated Hsp104-V426C that is analogous

to the ClpB-L424C mutation that was used to characterize the

interaction of the M-domain with NBD1 [48]. We first analyzed

the biochemical properties and disaggregation activities of the

Hsp104 mutants to determine if they display similar functional

effects as their counterparts in ClpB. Then, we analyzed the effect

of these mutants on the propagation of two yeast prions - [PSI+]

and [RNQ+].

M-domain mutants display varying levels of ATPase
activity and hexamer formation

The M-domain regulates ATPase activity by interacting with

the NBD1 of the neighboring subunit in the hexamer and

coordinating ATP binding and hydrolysis between NBD1 and

NBD2 [46,47,62]. Both the repressed and de-repressed ClpB

mutants showed basal levels of ATP hydrolysis similar to wild type

ClpB [48]. However, the de-repressed ClpB mutants had

significantly higher substrate-stimulated ATPase activity [48]. To

determine if the analogous M-domain mutants in Hsp104 had a

similar impact on ATPase activity, we purified recombinant wild

type Hsp104 and the M-domain mutants and measured both the

basal and substrate-stimulated ATP hydrolysis rates by the

Malachite Green assay [38]. Interestingly, Hsp104-V426I, the

mutant identified in our screen that altered [PSI+] propagation,

maintained wild type rates of both basal and substrate-stimulated

ATP hydrolysis (Figure 2). By contrast, Hsp104-D434A and

Hsp104-V426C exhibited decreased basal levels of ATPase

activity as compared to wild type, while Hsp104-K480C and

Hsp104-Y507D displayed higher rates of basal ATPase activity

(Figure 2). Additionally, wild type Hsp104, Hsp104-V426I,

Hsp104-K480C, and Hsp104-Y507D all exhibited increased rates

Figure 1. A point mutation in Hsp104 destabilizes [PSI+]. (A–B)
Cells containing hsp104-V426I or HSP104 were plated onto solid rich
medium (YPD) to illustrate the destabilizing effect that this mutation
has on the [PSI+] phenotype. (A) In the presence of hsp104-V426I, [PSI+]
is lost in a fraction of the buds, generating sectors of [psi2] cells
(phenotypically red) in the [PSI+] colony. (B) Cells expressing hsp104-
V426I lose the [PSI+] prion more frequently than HSP104 cells. (C) The
copper-inducible fluorescent protein, Sup35NM-GFP, was ectopically
expressed in hsp104-V426I [PSI+] cells along with wild type [PSI+] and
[psi2] cells. Fluorescence imaging was performed on an Olympus
confocal microscope and representative images are shown.
doi:10.1371/journal.pone.0087521.g001
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of ATP hydrolysis in the presence of substrate (Figure 2). However,

addition of substrate did not increase the ATP hydrolysis rate

above the basal level for Hsp104-D434A or Hsp104-V426C.

The ATPase activity of Hsp104 depends on the hexameric state

of the chaperone. Hsp104 mutants that inhibit hexamer formation

also inhibit ATP hydrolysis [38]. In addition to regulating ATPase

activity, the M-domain has also been implicated in hexamer

formation and stability [46]. We reasoned that the decreased rates

of ATP hydrolysis that we observed for a subset of the M-domain

mutants might correlate with inefficient hexamer formation or a

change in stability of the hexameric state. To test this, we

incubated the purified Hsp104 M-domain mutants with ATP and

then subjected the samples to ultracentrifugation on a linear

glycerol gradient. Hsp104-V426I, Hsp104-K480C, and Hsp104-

Y507D all formed hexamers and separated on the gradient like

wild type Hsp104 (Figure 3A). Alternatively, Hsp104-D434A and

Hsp104-V426C, which displayed decreased rates of ATP hydro-

lysis, also displayed a decrease in stable hexamer formation

(Figure 3B). Thus, the apparent lack of efficient hexamer

formation of Hsp104-D434A and Hsp104-V426C likely contrib-

utes to the observed decrease in their ATPase activity. This

suggests that the Hsp104-D434A and Hsp104-V426C mutations

decrease the ability of the M-domain to regulate ATPase activity

and hexamer formation, presumably by stabilizing a repressed

conformation. On the other hand, Hsp104-K480C and Hsp104-

Y507D appear to cause hyperactivity, resulting in increased basal

ATPase activity and an apparent de-repressed state.

Hsp104-K480C and Hsp104-Y507D cause cellular toxicity
in a temperature-dependent manner

Since the repressed and de-repressed ClpB mutants showed a

difference in cell viability at high temperatures [48], we next tested

whether any of the Hsp104 M-domain mutants showed temper-

ature-dependent growth defects. We created hsp104D strains that

maintained a plasmid expressing the Hsp104 mutant (or a wild

type control) from its native promoter and as the only copy of

Hsp104 (Figure S1). We grew these strains on media that selected

for the plasmid at 25, 30, and 37uC. At 25 and 30uC, all the

mutant strains grew similar to wild type HSP104 cells (Figure 4). At

37uC, however, both hsp104-K480C and hsp104-Y507D strains

were unable to grow (Figure 4). This heat sensitive growth defect is

similar to that of the analogous ClpB mutants, ClpB-K476C and

ClpB-Y503D, which were shown to be hyperactive mutants that

resulted in cellular toxicity [48,54]. For comparison, a vector-only

control was also plated, and this strain shows normal cell growth.

Therefore, the toxicity associated with these Hsp104 mutations is

not due to a lack of Hsp104 or a simple loss-of-function, but

suggests a toxic gain-of-function of these mutants that impairs cell

growth. As this toxicity is observed at a temperature that induces

more Hsp104 expression (37uC), it is possible that constitutive

expression of these two mutants is detrimental to cellular

homeostasis and decreases cell viability due to an enhanced

interaction with a natural, essential substrate.

M-domain mutants present varying levels of
thermotolerance and non-prion aggregate
disaggregation

Hsp104 is required for cell viability following heat shock

(thermotolerance) [7]. To confer thermotolerance, Hsp104 must

disaggregate non-prion substrates that aggregate as a consequence

of the heat stress. The M-domain of Hsp104 (and ClpB) is

proposed to affect the disaggregation of substrates by providing a

site for an interaction with co-chaperones (Hsp70 and Hsp40 in

yeast, DnaK and DnaJ in bacteria) [47,52]. Thus, mutations in the

M-domain, which abrogate the interaction with co-chaperones,

have a negative effect on the ability of Hsp104 to disaggregate

substrates [53,63]. Furthermore, as the ATPase activity and

disaggregation activity are interdependent, mutations in the M-

domain that affect the regulation of ATPase activity may also

affect the disaggregation mechanism. Therefore, we investigated

the general disaggregation activity of the Hsp104 M-domain

mutants in vivo by analyzing their ability to confer thermotoler-

ance to yeast. As above, we transformed an hsp104D strain with a

plasmid expressing each of the M-domain mutants from the native

promoter, wild type HSP104, or an empty vector control. We then

grew these strains to mid-logarithmic phase at 30uC, moved them

to 37uC to induce expression of Hsp104, then heat shocked the

strains at 50uC for various amounts of time before plating the cells

to assess viability. We found that, like the hsp104D strain, hsp104-

D434A cells were not thermotolerant (Figure 5A). Conversely, both

hsp104-V426I and hsp104-V426C cells maintained wild type

thermotolerance (Figure 5A). Interestingly, the two mutants with

the highest ATPase activity, hsp104-K480C and hsp104-Y507D,

presented an intermediate level of thermotolerance, where the

amount of cell recovery after heat stress was between that of wild

type HSP104 and hsp104D strains (Figure 5A). This loss of

thermotolerance, however, is likely due to the temperature-

dependent cytotoxicity associated with hsp104-K480C and

hsp104-Y507D cells (Figure 4).

We next tested the ability of the M-domain mutants to

disaggregate heat-aggregated luciferase, which has previously

been shown to be a substrate of Hsp104 [36]. The strains

described above, each containing a plasmid expressing either wild

type or mutant Hsp104, were transformed with a plasmid

expressing luciferase. After growing to mid-logarithmic phase,

these strains were grown for an hour at 37uC to induce Hsp104

expression and were then heat shocked for an hour at 44uC to

induce luciferase aggregation. After heat shock, the cells were

allowed to recover at 30uC and we took samples over time and

quantified the relative amount of luminescence, which represents

the amount of luciferase resolubilized and refolded. As we saw in

the thermotolerance assays, hsp104-D434A cells resembled the

Figure 2. Hsp104 M-domain mutants affect ATPase activity. The
ATPase activity of recombinant wild type (WT) Hsp104, Hsp104-V426I,
Hsp104-V426C, Hsp104-D434A, Hsp104-K480C, and Hsp104-Y507D was
measured by the Malachite Green assay after incubation of 2 mg of
protein with 5 mM ATP at 37uC either in the absence (black) or
presence (grey) of 0.25 mg/mL b-casein. The amount of free inorganic
phosphate in each sample was calculated from analysis of phosphate
standards. For each protein, the average initial rate of ATP hydrolysis is
plotted. Each protein was assayed in quadruplicate from two separate
purification preparations and the error bars reflect standard deviation
between the samples.
doi:10.1371/journal.pone.0087521.g002
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hsp104D strain harboring a vector only, in that there appeared to

be no increase in the amount of resolubilized luciferase over time

(Figure 5B). This indicates that Hsp104-D434A has a general

defect in disaggregation. Cells expressing hsp104-K480C and

hsp104-Y507D, on the other hand, showed luciferase recovery at

rates that were about half of that observed in wild type HSP104

cells. However, this may again be because these cells exhibit

cytotoxicity at higher temperatures. Interestingly, Hsp104-V426I

and Hsp104-V426C also showed a two-fold decrease in lucerifase

refolding capability, despite being fully functional in conferring

Figure 3. The M-domain plays a role in hexamer formation. The oligomeric distribution of recombinant wild type (WT) Hsp104 (blue, A & B)
and (A) Hsp104-V426I (red), Hsp104-K480C (yellow), and Hsp104-Y507D (green), or (B) Hsp104-V426C (orange) and Hsp104-D434A (purple), was
analyzed by ultracentrifugation through a linear glycerol gradient in the presence of 5 mM ATP. Equal fractions from the gradients were collected and
analyzed by western blot with an anti-Hsp104 antibody. The amount of Hsp104 in each fraction was quantified by ImageJ and graphed as a fraction
of the total Hsp104. The gradients were repeated twice with recombinant protein from two separate recombinant protein purification preparations.
doi:10.1371/journal.pone.0087521.g003

Figure 4. Hsp104-K480C and Hsp104-Y507D are toxic at high temperatures. hsp104D strains expressing wild type HSP104, hsp104-V426I,
hsp104-V426C, hsp104-D434A, hsp104-K480C, or hsp104-Y507D from a HIS3-containing plasmid, were plated on solid medium lacking histidine and
grown at 25, 30, or 37uC to assess temperature-dependent growth defects, as compared to an empty vector control (Vector). Dashed lines represent
different parts of the same plate that have been cropped for clarity. These spottings are representative of three independent experiments.
doi:10.1371/journal.pone.0087521.g004
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thermotolerance. This suggests that these mutations impair the

ability of Hsp104 to disaggregate substrates, which agrees with the

sectoring [PSI+] phenotype that we originally observed with

Hsp104-V426I.

Hsp104 M-domain mutants vary in their ability to
propagate variants of the [PSI+] prion

Given the varying effects of the M-domain mutants on ATPase

and disaggregase activity, we next sought to ascertain the effect of

the M-domain mutants on [PSI+] propagation. We first demon-

strated that Hsp104-V426I caused a defect in the propagation of

one [PSI+] variant, strong [PSI+], and resulted in sectoring

Figure 5. M-domain mutants have differing effects on the ability to disaggregate non-prion substrates. (A) hsp104D strains expressing
wild type HSP104, hsp104-V426I, hsp104-V426C, hsp104-D434A, hsp104-K480C, hsp104-Y507D from a HIS3-containing plasmid, or an empty vector
control (hsp104D), were heat shocked to measure the mutants’ ability to confer thermotolerance. Cultures were grown at 37uC to induce Hsp104
expression, then heat shocked at 50uC for various amounts of time, as compared to controls with no heat shock (No Heat), serially diluted five-fold,
and spotted on medium lacking histidine to assess viability. Data are representative of three individual experiments. (B) hsp104D strains containing a
plasmid expressing luciferase and expressing wild type (WT) HSP104 (blue), hsp104-V426I (red), hsp104-V426C (orange), hsp104-D434A (purple),
hsp104-K480C (yellow), hsp104-Y507D (green), or an empty vector (EV) control (gray) were grown at 37uC to induce Hsp104 expression, then heat
shocked at 44uC for an hour to induce luciferase aggregation. At the indicated times during recovery at 30uC, samples were taken, luciferin was
added, and the luminescence was measured. The graph represents the amount of luciferase recovered as a fraction of the total luciferase before heat
shock. Three separate samples for each mutant were analyzed and error bars reflect standard deviation between the samples.
doi:10.1371/journal.pone.0087521.g005
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colonies (Figure 1A). To investigate the effect of the remaining M-

domain mutants on strong [PSI+] propagation, we transformed a

strong [PSI+] heterozygous HSP104/hsp104D diploid with a

plasmid expressing either wild type HSP104 or the hsp104 M-

domain mutants from the HSP104 promoter. Heterozygous

HSP104/hsp104D diploids maintain both strong and weak [PSI+]

variants with no noticeable defect in propagation due to potential

haploinsufficiency (data not shown). We first noticed that hsp104-

D434A had a dominant curing effect and resulted in red [psi2]

diploids (Figure 6A). Next, we sporulated the diploids, selected

hsp104D haploids harboring the wild type or mutant Hsp104

plasmid, and then assessed [PSI+] propagation phenotypically.

Figure 6. M-domain mutants differentially affect propagation of strong and weak variants of [PSI+]. (A) Heterozygous HSP104/hsp104D
diploids or hsp104D haploids propagating strong [PSI+] and containing plasmids expressing HSP104 (WT), hsp104-V426I, hsp104-V426C, hsp104-D434A,
hsp104-K480C, hsp104-Y507D, or an empty vector control (EV), were normalized, serially diluted five-fold, and spotted on medium to select for the
plasmid. Dashed lines represent different parts of the same plate that have been cropped for clarity. (B) Strong [PSI+] hsp104D haploids harboring the
indicated Hsp104 plasmid or containing an empty vector control (EV) were subjected to SDD-AGE and western blot with an antibody against Sup35.
The dashed line represents different parts of the same gel that have been cropped for clarity. This is one representative of three separate
experiments. (C) Heterozygous HSP104/hsp104D diploids or hsp104D haploids propagating weak [PSI+] and containing plasmids expressing HSP104
(WT), hsp104-V426I, hsp104-V426C, hsp104-D434A, hsp104-K480C, hsp104-Y507D, or an empty vector control (EV), were normalized, serially diluted five-
fold, and spotted on medium selecting for the plasmid. Dashed lines represent different parts of the same plate that have been cropped for clarity.
(D) The weak [PSI+] parental strain (WT) and weak [PSI+] haploids harboring the indicated Hsp104 plasmid or an empty vector control (EV) were
subjected to SDD-AGE and western blot with an antibody against Sup35. The dashed line represents different parts of the same gel that have been
cropped for clarity. This is one representative of five separate experiments.
doi:10.1371/journal.pone.0087521.g006
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First, by the [PSI+]-dependent colorimetric assay, hsp104-V426I

colonies appeared to sector, as observed originally. Note, however,

that colonies grown on minimal media to select for the plasmid do

not show as striking color development as they do on rich media.

By contrast, cells expressing hsp104-V426C, hsp104-D434A, hsp104-

K480C, or hsp104-Y507D appeared darker pink to red, similar to

the vector control, thus indicating an impaired ability to propagate

[PSI+] (Figure 6A). To determine whether these cells are

propagating [PSI+] at all or are harboring any form of Sup35

aggregates, we performed semi-denaturing detergent agarose gel

electrophoresis (SDD-AGE) with the haploids. We found that

hsp104-V426I, hsp104-V426C, and hsp104-K480C cells still main-

tained aggregates of Sup35, while hsp104-D434A cells did not

(Figure 6B). However, the distribution of Sup35 aggregates in

hsp104-V426C and hsp104-K480C cells was shifted to a higher

molecular weight as compared to wild type HSP104 strong [PSI+]

cells. This explains the weaker nonsense suppression phenotype

[19], and suggests that these mutants are defective in fragmenting

Sup35 aggregates. Unfortunately, for unknown reasons, SDD-

AGE does not reliably show monomeric protein.

We next tested whether any of the mutants were capable of

propagating a structurally distinct Sup35 aggregate species, a weak

[PSI+] variant. Using the same approach as for strong [PSI+], we

transformed weak [PSI+] heterozygous HSP104/hsp104D diploids

with plasmids expressing either wild type HSP104 or the M-

domain mutants from the HSP104 promoter. Similar to our

observations with the strong [PSI+] diploid, hsp104-D434A

dominantly cured diploids propagating a weak [PSI+] variant

(Figure 6C). Since hsp104-D434A dominantly cures two distinct

variants of [PSI+], this suggests that this mutation inhibits wild

type Hsp104 function in mixed hexamers. Diploids harboring

hsp104-K480C also appeared to have decreased nonsense suppres-

sion, suggesting that hsp104-K480C might also have a dominant

curing effect on weak [PSI+] (Figure 6C). Next, we sporulated the

diploids and isolated hsp104D haploids expressing the wild type or

mutant Hsp104 to assess the color phenotype and the presence of

Sup35 aggregates using SDD-AGE (Figure 6C,D). In contrast to

Figure 7. M-domain mutants differentially propagate [RNQ+] variants. hsp104D strains propagating the [RNQ+] variants, s.d. low, s.d.
medium, s.d. high, s.d. very high, or m.d. high, and expressing HSP104 (WT), hsp104-V426I, hsp104-V426C, hsp104-D434A, hsp104-K480C, hsp104-Y507D,
or an empty vector control (EV) were subjected to SDD-AGE and western blot with an antibody against Rnq1. Dashed lines represent different parts of
the same gel that have been cropped for clarity. Each SDD-AGE is one representative of at least three independent experiments.
doi:10.1371/journal.pone.0087521.g007
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strong [PSI+], we found that the only mutant able to propagate the

weak variant of [PSI+] was Hsp104-V426C. This shows that these

mutants differentially affect propagation of [PSI+] variants.

Interestingly, despite several attempts to generate strong or

weak [PSI+] haploids expressing hsp104-Y507D, we were only able

to isolate single haploids expressing hsp104-Y507D from both the

strong and weak [PSI+] heterozygous diploids (Figure 6A,C). In

fact, these haploids were unable to grow beyond the initial

isolation and spotting (Figure 6A,C), and thus were not used in

further biochemical analysis. In addition to sporulating diploids,

we also attempted to replace wild type HSP104 in a strong [PSI+]

hsp104D strain with hsp104-Y507D by co-expressing both wild type

HSP104 and hsp104-Y507D and then eliminating the wild type

HSP104 plasmid. This method also proved unsuccessful in our

attempts to isolate [PSI+] cells expressing Hsp104-Y507D. From

these data, we propose that hsp104-Y507D is highly toxic in the

presence [PSI+]. Indeed, expression of Hsp104-Y507D in [psi2]

hsp104D cells did not show similar toxicity, suggesting that toxicity

is dependent on Sup35 aggregation. Similar toxicity in the

presence of [PSI+] has been observed for another M-domain

mutant, hsp104-A503V [64], suggesting that prion-dependent

toxicity is not specific for this one residue, but may be caused by

a particular dysregulation of the M-domain.

M-domain mutants are able to propagate distinct
variants of [RNQ+]

We next examined the ability of the M-domain mutants to

propagate several different variants of the [RNQ+] prion. Similar

to [PSI+], the [RNQ+] prion is also sensitive to changes in Hsp104

activity and we previously showed that variants of [RNQ+] are

differentially affected by changes in Hsp104 activity [30,59,65].

Variants of [RNQ+] have been characterized by their ability to

induce the [PSI+] prion and by the Rnq1 aggregate pattern

observed in cells by fluorescence [58,66,67]. [RNQ+] variants

typically display either a single-dot (s.d.) or multiple-dot (m.d.)

pattern of fluorescence that describes the appearance of Rnq1-

GFP aggregates in [RNQ+] cells [66]. [RNQ+] variants that harbor

the s.d. fluorescence pattern can facilitate the induction of [PSI+]

at low, medium, high, and very high levels upon Sup35 over-

expression. Only one established m.d. variant of [RNQ+] has been

characterized and it exhibits a high rate of [PSI+] induction. We

utilized these five [RNQ+] variants to ascertain the effect of the M-

domain mutants on conformational variants of [RNQ+].

We used hsp104D cells that were complemented by wild type

HSP104 from a plasmid and propagated one of the [RNQ+]

variants as a starting point to replace HSP104 with the M-domain

mutants. We transformed the plasmids containing the Hsp104 M-

domain mutants into these strains and subsequently selected for

cells that eliminated wild type HSP104 by growing them on media

that counter-selected against cells containing the URA3-marked

HSP104 plasmid. Interestingly, we observed a differential effect of

the mutants on the propagation of the [RNQ+] variants by both

SDD-AGE analysis (Figure 7) and well-trap assay (data not

shown). Of the M-domain mutants, hsp104-V426I cells were able

to maintain all of the [RNQ+] variants except s.d. medium [RNQ+]

(Figure 7). In fact, none of the Hsp104 mutants were able to

maintain propagation of the s.d. medium [RNQ+] variant,

suggesting that this prion conformation is most sensitive to

changes in the Hsp104 M-domain activity. On the other hand,

cells expressing hsp104-D434A did not propagate any of the tested

variants of [RNQ+], suggesting that this mutant is a general prion

inhibitor. Cells expressing hsp104-V426C only propagate s.d. high

and m.d. high [RNQ+], while hsp104-K480C cells propagate these

two variants along with s.d. low [RNQ+]. However, a larger

aggregate size was maintained in these cells, suggesting that

propagation is still impaired. Interestingly, m.d. high [RNQ+] was

the only prion variant that was maintained in hsp104-Y507D cells.

Discussion

Here, we present an analysis of five Hsp104 M-domain mutants,

which have differential effects on chaperone function and cell

viability. Our data provide further support that positioning of the

M-domain is crucial to regulating the function of Hsp100

chaperones. Initially, we identified Hsp104-V426I from a screen

for factors that affected [PSI+] propagation. We observed that

hsp104-V426I cells had defects in [PSI+] propagation that

Table 1. Summary of biochemical and biological effects of the Hsp104 M-domain mutants.

WT V426I V426C D434A K480C Y507D

ATPase Activity + + 2 2 ++ ++

Hexamerization + + 2 2 + +

Temp. Sensitivity + + + + ++ ++

Thermotolerance + + + 2 +/2 +/2

Luciferase Refolding + +/2 +/2 2 +/2 +/2

Strong [PSI+] 2n + +/2 +/2 2 +/2 +/2

Weak [PSI+] 2n + + +/2 2 +/2 +/2

Strong [PSI+] n + +/2 +/2 2 +/2 NT

Weak [PSI+] n + 2 +/2 2 2 NT

s.d. low [RNQ+] + + 2 2 +/2 2

s.d. med [RNQ+] + 2 2 2 2 2

s.d. high [RNQ+] + + +/2 2 +/2 2

s.d. very high [RNQ+] + + 2 2 2 2

m.d. high [RNQ+] + + +/2 2 +/2 +

Effects of Hsp104 mutations were characterized as follows for the indicated properties and prion propagation, as compared to wild type (WT) Hsp104: (+) comparable to
WT, (+/2) some defect, (2) abolished/cured, or (++) enhanced activity or sensitivity. NT: not tested, 2n: yeast diploids, n: yeast haploids.
doi:10.1371/journal.pone.0087521.t001

Hsp104 M-Domain Activity Affects Prion Propagation

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e87521



manifested as a sectoring [PSI+] phenotype. We have reported this

phenotype previously with other Hsp104 mutants that have

varying effects on Hsp104 structure and function [22], but this was

the only mutation we identified in the M-domain. The coiled-coil

M-domain of Hsp104 is proposed to regulate ATPase activity,

substrate disaggregation, and co-chaperone interactions [45]. We

noted that the V426 residue in Hsp104 is analogous to the recently

characterized L424 residue in ClpB, which plays a role in

regulating the position and mobility of the M-domain in ClpB

[48]. Previously, it was shown that the stability of the coiled-coil

M-domain of ClpB depends on the leucine zipper-like interactions

between leucine and isoleucine residues and that mutation of these

residues to alanine caused significant changes in chaperone

activity, ATP hydrolysis, and hexamer formation [68]. Perhaps,

then, mutation of the valine at residue 426 to an isoleucine disrupts

the normal isoleucine-leucine interactions, thereby resulting in

slight destabilization of the M-domain. However, we do not have

direct evidence that the V426I mutation affects the mobility of the

M-domain of Hsp104. Yet, if this residue plays an analogous role

to that of ClpB, then this residue contributes to M-domain

positioning, and its mutation perturbs interactions of the M-

domain with neighboring subunits within the hexamer.

In order to elucidate the effect of the V426I mutation on the

function of the M-domain and activity of Hsp104, we examined

the rates of ATP hydrolysis, hexamer formation, thermotolerance,

and disaggregation. We also examined these same properties using

a set of mutations in the Hsp104 M-domain. These mutations

were analogous to mutations in ClpB that were proposed to

stabilize either the repressed or de-repressed conformation of the

M-domain, resulting in changes in the regulation of overall

chaperone activity [48,54]. Analyzing the homologous mutations

in Hsp104, we found that, in general, the M-domain mutants had

similar effects on the activity of Hsp104 as they displayed in ClpB,

but some differences were noted (Table 1). (Importantly, the

decreased steady state levels of Hsp104-V426C in yeast (Figure S1)

do not explain our observed results.)

The Hsp104-D434A mutation decreased ATPase activity and

disaggregation activity, thereby supporting the prediction that this

mutation stabilizes a repressed conformation of the M-domain and

thereby inhibits overall Hsp104 activity [48]. The M-domain

mutants Hsp104-K480C and Hsp104-Y507D, on the other hand,

increased the rate of ATP hydrolysis and caused toxicity when

expressed in cells grown at higher temperatures, indicative of a de-

repressed conformation of the M-domain [48,69]. Interestingly,

our biochemical characterization suggested that both Hsp104-

V426I and Hsp104-V426C did not stabilize either the repressed or

the de-repressed conformation. Instead, we propose that the

Hsp104-V426I and Hsp104-V426C mutations have moderate

effects on the mobility and regulatory function of the M-domain.

Moreover, the difference in the ATP hydrolysis rates of Hsp104-

V426I and Hsp104-V426C suggest that the biochemical proper-

ties associated with the side chain of this residue are important

[43]. Thus, the M-domain is finely tuned to regulate various

functions of Hsp104 and disruption of this balance can lead to

severe consequences for Hsp104 function.

Although several studies have examined the role of the M-

domain in regulating protein disaggregation and ATPase activity

[46,48,49,52,53,63], much less is known about the effect of the

Hsp104 M-domain regulatory function on yeast prion propaga-

tion. Here, we show that mutations that disrupt M-domain

function also inhibit prion propagation. The repressed mutant

Hsp104-D434A dominantly cured both strong and weak [PSI+]

variants. Interestingly, the de-repressed mutants Hsp104-K480C

and Hsp104-Y507D appear to have distinct effects on [PSI+]

propagation despite having similar biochemical properties. While

Hsp104-Y507D appears to be toxic in the presence of both strong

and weak [PSI+], Hsp104-K480C is able to propagate strong

[PSI+], but has an incomplete dominant inhibitory effect on weak

[PSI+]. These data correlate well with observations that over-

expression of Hsp104 cures weak [PSI+] variants more efficiently

than strong [PSI+] variants [8]. One hypothesis to explain the

observed differences between weak and strong [PSI+] is that weak

[PSI+] variants are more dependent on Hsp70s and Hsp40s for

efficient propagation, as varying levels of Hsp70 or Hsp40

expression can have greater effects on weak [PSI+] variants than

strong variants [70,71]. Indeed, Hsp104 acts in concert with

Hsp70s and Hsp40s and the stoichiometric balance of this

complex is an important variable in regulating protein disaggre-

gation [1,72,73]. In fact, expression of ClpB in yeast is capable of

prion propagation if it contains the M-domain of Hsp104 to

maintain proper interactions with yeast co-chaperones, or if the

yeast express the bacterial Hsp70 and its partner nucleotide

exchange factor [63]. Furthermore, the de-repressed M-domain

mutants of ClpB were shown to have reduced interaction with the

KJE chaperones [54]. Therefore, perhaps a reduced interaction of

Hsp104-K480C with co-chaperones is responsible for specifically

curing the weak [PSI+] variant.

Similar to Hsp104-K480C, Hsp104-V426I and Hsp104-V426C

differentially affect propagation of the [PSI+] variants. These

mutations maintain strong [PSI+], albeit inefficiently, but either

cure or alter the propagation of weak [PSI+]. It was previously

demonstrated both in vitro and in vivo that Hsp104 has a

decreased interaction with Sup35 structures that produce weak

[PSI+], as compared to those that produce strong [PSI+] [20,36].

In addition, we have recently found that decreased Hsp104

activity is sufficient to propagate strong but not weak variants of

[PSI+] [22]. Therefore, the data we present in this study provide

additional insight by showing that changes in the regulatory

function of the M-domain is one mechanism that can alter the

ability of Hsp104 to stably propagate distinct [PSI+] variants.

In addition to changes in [PSI+] propagation, we also found

differential effects of the M-domain mutants on the propagation of

conformational variants of the [RNQ+] prion. The repressed M-

domain Hsp104-D434A mutant cannot propagate any tested

variant of [RNQ+]. As we have previously characterized mutants of

Hsp104 that display decreased activity, but are still able to

propagate specific variants of [RNQ+] [22,59], there is clearly a

threshold of activity that exists that is required for [RNQ+]

propagation. Our data suggest that the activity of Hsp104-D434A

does not meet this threshold. Interestingly, none of the M-domain

mutants were able to propagate s.d. medium [RNQ+], and

Hsp104-Y507D maintained propagation of only the m.d.

high [RNQ+] variant. Besides modulating interactions with

co-chaperones, another hypothesis for such differential prion

variant propagation is that the stability of the prion variant dictates

the requirement for Hsp104 activity in prion maintenance [20].

Indeed, the decreased stability of m.d. high [RNQ+] [74] may help

explain why this prion conformer can still propagate in hsp104-

Y507D cells, while the other [RNQ+] variants cannot. However,

the s.d. [RNQ+] variants have been shown to have similar

stabilities [74], yet are differentially propagated by the Hsp104 M-

domain mutants. This suggests that aggregate stability is only one

contributing factor to Hsp104 dependency, and that the ability of

co-chaperones to interact with prion aggregates and Hsp104 likely

plays an additional major role in dictating the propagation of

different prion variants. Therefore, our data clearly demonstrate

the complexity of prion variant propagation and illustrate the need

for further investigation to understand the mechanism of

Hsp104 M-Domain Activity Affects Prion Propagation

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e87521



interaction between chaperones and conformationally distinct

prion variants.

The M-domain clearly plays a crucial role in regulating

Hsp104/ClpB function. However, the structure and function of

the Hsp104/ClpB M-domain has been a subject of much

investigation and controversy in recent years. Various structural

studies of ClpB and Hsp104 have proposed significantly different

models for the position of the M-domain in relation to the

hexameric structure [55,56,75]. Specific residues in the M-domain

are protected, suggesting that at least part of the M-domain is

tightly packed into or against the body of the hexamer [48,52,56].

Additionally, cross-linking and fluorescence quenching experi-

ments suggest that the M-domain contacts residues in the NBD1,

either in the neighboring subunit or in the same subunit [48]. The

flexibility of the M-domain to break and re-form these contacts is

integral to the regulation of chaperone function [43,48,54]. While

the data in our study do not lend direct support to any one

structural model, our data show that the M-domain of Hsp104

plays a key role in regulating the disaggregation of both prion and

non-prion substrates. This supports the findings from several other

studies that show that mutations in the coiled-coil M-domain affect

all of the distinct activities that Hsp104/ClpB possesses

[42,43,47,48,49,52,54,64]. This suggests that this domain may

be the master regulator of Hsp104/ClpB function. As such,

elucidation of the regulatory mechanism of the M-domain is vital

to understanding the disaggregation mechanism of Hsp104/ClpB.

Supporting Information

Figure S1 Expression of Hsp104 mutants. hsp104D cells

harboring plasmids expressing HSP104 (WT), hsp104-V426I,

hsp104-V426C, hsp104-D434A, hsp104-K480C, or hsp104-Y507D

from the native HSP104 promoter, or an empty vector control

(EV), were grown at 30uC to an OD600 ,1.0, lysed, and subjected

to SDS-PAGE and western blot using anti-Hsp104 and anti-Pgk1

antibodies.

(TIF)
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