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A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of
human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches
to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how
disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects
related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two
related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in
translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts
are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type
1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with
applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

1. Introduction

One of the great challenges in the field of health science
is understanding how to integrate the knowledge obtained
about individual molecules and cells to predict integrated
system behavior [1]. Advances in the techniques associ-
ated with molecular biology during the twentieth century
provided immense insight into the individual components
of complex biological systems. Integration of this new
technology has also changed the nature of immunological
research—from static single measurements to large-scale
data-intensive assays obtained at multiple time points. As
highlighted in Figure 1, research costs associated with
these new techniques have escalated dramatically, but the
commercialization rate of new therapeutic products has been
unable to keep pace [2]. This increasing disconnect between

cost and commercialization also corresponds to a growing
awareness of the need to improve understanding of how
the identified biological parts function together in biological
systems and how dysfunction manifests itself as disease [3, 4].

Historically, engineering is an applied field in which
knowledge of how components of a system work, which
is obtained through basic research, is synthesized into
commercially viable products and processes. A fundamental
pillar in this field is the use of computational frameworks for
interpreting and predicting the behavior of complex systems
[6]. These computational frameworks integrate fragmented
knowledge and enable one to explore novel experimental
conditions, as a type of in silico screening. By recreating a
real system in silico, the predictive power of the simulation
(or lack thereof) may be used to infer hidden components
or unknown relationships among existing ones. Engineering
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Figure 1: Productivity metrics of the United States pharmaceutical
industry. Research and development spending by the United States
pharmaceutical industry has escalated dramatically during the last
several decades (solid line—left axis) [5]. However, the translation
of this increased research spending into new therapeutic products,
as represented by the number of new medical entities (NMEs)
approved by the Food and Drug Administration (circles—right
axis), has failed to keep pace [2].

can provide value to the drug development process by
translating observations of the state of a system, that is,
experimental data, into quantitative knowledge about how
biological systems work. In particular, this approach can aid
in understanding the implications of dynamic relationship
among biological components of a system and can identify
knowledge gaps in the collective understanding of a biologi-
cal system.

Interestingly, parallels can be drawn between the devel-
opment of the modern experimental techniques of molecular
biology and the advances in experimental chemistry during
the middle part of the 20th century. These advances in
experimental chemistry were critical driving forces for the
emergence of modern chemical engineering [7]. During this
period, modern chemical engineering played a central role
in developing computational tools that helped transform
chemistry from a qualitative into a predictive science. More
recently, chemical engineering is evolving to incorporate
molecular biology as another enabling science, in addition
to physics and chemistry [8]. Our increased ability to probe
the molecular basis for cellular response provides an intrigu-
ing context for applying engineering principles, such as
thermodynamics, transport phenomena, chemical kinetics,
and multiscale analysis. From the biology perspective, the
National Research Council in the United States identified a
need for deeper integration of theory into biological research
[9]. All immunologists, to some extent, act as theorists in
designing and interpreting experiments. However in this
context, theory is encoded in a computable form that
facilitates quantitative validation of the theory against data.
In fact, mathematical approaches have a rich history in
physiology (e.g., [10]). Computational frameworks are also
used quite extensively in engineering for interpreting and
predicting the behavior of complex systems [6]. However,
there are some nuances associated with mathematical model-
ing within the context of the engineering discipline that may

be helpful outside of the discipline. One of the challenges
facing the integration of engineering approaches into the
drug development process is that there is little understanding
of what engineers actually do [11]. To help bridge that gap,
the objective of this paper is to review how two related
concepts in engineering, namely prototyping and “fitness for
use”, are applied to improve understanding of immunology
in the context of human physiology.

2. What Are Prototyping
and “Fitness for Use”?

Engineers synthesize scientific and mathematical knowledge
to solve problems using an iterative process called engineer-
ing design. A traditional application of engineering design
includes developing a physical representation of the solution
in the form of a prototype, such as a scale-model of an
aircraft for use in a wind tunnel (see Figure 2). However, our
knowledge of the system of interest is invariably uncertain.
Uncertainties create options in the design process that one
must select among. Prototypes developed at intermediate
stages during the design process can represent alternative
solutions and thereby provide a mechanism for making
informed decisions. Informed decisions during the design
process guide researchers iteratively towards a global solution
to all of the design objectives. Collectively, the engineering
design process is a knowledge generating activity [12]. Thus,
these prototypes provide an essential role by improving
the understanding of the problem, by identifying gaps in
knowledge (i.e., uncertainties), by soliciting feedback from
end users, and by providing a mechanism to evaluate the
fitness of the solution against design objectives [13]. It is
this last role that relates to the term “fitness for use.” Fitness
for use is used to characterize how well an object fulfills
its intended purpose, no more or no less [14]. Details that
have no influence on fitness of the solution can be removed
from consideration. Conversely, clarity about the intended
purpose is required prior to creating a prototype. It is this
iterative back and forth between clarifying the purpose and
creating the prototype that enables reaching an optimal
succinct solution.

Prototypes can also include nonphysical objects, such
as a mathematical model. A mathematical model is a
complete and consistent set of mathematical equations
that describe the behavior of the system of interest [15].
The equations represent an explicit external description
of a mental solution to the problem of synthesizing new
knowledge from inspecting data. The process of constructing
a mathematical model forces the researcher to wrestle
with these same engineering design concepts (e.g., problem
definition, uncertainties, feedback, and fitness). Mathemat-
ical models can be particularly valuable in drug discovery
by improving the understanding of the problem and by
identifying uncertainties in domain knowledge relevant to
the target of interest. How uncertainties influence the ability
of a prototype to achieve the design objectives can be
quantified using well-defined techniques, such as sensitivity
analysis [16] or empirical Bayesian approaches for model-
based inference [17].
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Figure 2: A common example of a prototype. A prototype of a
blended wing body aircraft, the X-48B, is shown in a wind tunnel
at NASA’s research center in Langley Air Force Base, VA. The wind
tunnel was used by researchers to evaluate this prototype against
structural, aerodynamic, and operational design objectives for an
advanced aircraft concept (NASA photo/Jeff Caplan).

Interdisciplinary work can also be facilitated by using
“boundary” objects that reside between two different cul-
tures [18], such as engineering and health science. A
mathematical model, as a type of boundary object, imposes
formalism by requiring an explicit account of the interacting
elements and their relationships. In addition, boundary
objects facilitate common understanding through debate and
building consensus with regard to what should be included
or excluded from the model. By explicitly representing
knowledge associated with different scientific domains, the
process of modeling can also help improve problem defini-
tion.

In essence, the primary goal of making a mathematical
model is to make predictions: what do we expect to
happen in a particular interacting system under particular
conditions, given our current understanding of interactions
among components of the system? Similarities between the
simulated behaviors and observed data confirm our explicit
statements while differences highlight areas of uncertainty
in our understanding and provide the engine for scientific
progress [19]. By referring to mathematical models as
mathematical prototypes, it is the process that one uses to
generate the model (i.e., prototyping) that we are intending
to highlight rather than the product (i.e., a mathematical
model). In the following sections, two examples are pre-
sented where a mathematical prototype that was created to
address questions related to type 1 diabetes and the role of
dendritic cells in adaptive immunity.

3. Example 1: Beta Cell Mass and Onset
of Type 1 Diabetes

Type 1 diabetes mellitus is characterized by an impaired
ability to produce insulin due to the progressive and selective
destruction of beta cells in the pancreatic islets of Langerhans
by the immune system [20]. A reduction in endogenous
insulin production results in an increase in plasma glucose
(hyperglycemia). Chronic hyperglycemia exposes patients

with type 1 diabetes to an increased risk for death if left
untreated. Pathogenesis of the disease has been attributed
to a variety of environmental and genetic risk factors [21].
Yet, two of the most significant challenges facing the clinical
management of this disease is the increase in incidence of
type 1 diabetes mellitus across the globe [22] and the lack
of a cure.

One of the persistent challenges with understanding
the etiology of type 1 diabetes mellitus is the inability to
observe directly the events in the human pancreas that lead
to the onset of hyperglycemia. It is clear that a reduction
in endogenous insulin production precipitates the onset of
hyperglycemia. It is common wisdom that the onset of
hyperglycemia occurs when 80–95% of an individual’s beta
cells are destroyed [23, 24]. However, this wisdom is based
largely on a small number of biopsy studies from individuals
with recent disease onset who died soon after diabetes onset
(e.g., [25–27]). One might infer from this common wisdom
that the ability to enhance beta cell function or preserve
the remaining beta cells would have a limited therapeutic
potential [28]. As a result, the research effort has focused
on developing prognostic tools for identifying individual,
who will develop type 1 diabetes, prior to onset. Given the
clinical importance of this question, the objective of a recent
study [29] was to develop a mathematical model to test the
conceptual model for the pathophysiology of type 1 diabetes
mellitus against the histopathological evidence.

A meta-analysis was used to extract and assess the
significance of embedded trends within these landmark
studies. The data reported in these landmark studies provide
measurements of the remaining beta cells (i.e., beta cell mass)
at the time of death. Patients included in these studies died
between 0 and 69 months following diagnosis. While beta
cell mass or endogenous insulin production is not measured
directly following onset, C-peptide is used as a surrogate
measure of endogenous insulin production [30–32]. The
measurement of C-peptide in a cohort of patients with type
1 diabetes has been shown to vary nonlinearly with time
following onset. In the years subsequent to onset of type
1 diabetes, the beta cell mass slowly declines until there is
no endogenous insulin production. Therefore, inferring the
beta cell mass at onset must control for this variability in the
time of beta cell mass measurement. In this new analysis, the
length of time following diagnosis was controlled by limiting
the analysis to a subset of patients who died within three
weeks following diagnosis. As shown in Figure 3, a linear
regression of this subset of recent onset patients (dotted line)
revealed that the percent reduction in beta cell mass at onset
is not fixed but varies with age. This trend is significant
(P < 0.01) and suggests that, in a 20-year old individual,
as little as a 40% reduction in beta cell mass is sufficient to
precipitate clinical symptoms of type 1 diabetes. As this trend
is at odds with the existing model for the natural history of
the disease [21], a mathematical model was created to explain
this behavior [29].

The mathematical model was based on the observation
that the growth of the human body is a dynamic nonlinear
process where different parts of the body grow at different
rates. Of particular relevance to type 1 diabetes mellitus,
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Figure 3: Comparison between the predicted and measured excess
beta cell mass. Comparison of the excess beta cell mass predicted
by the mathematical model (solid curve) compared against the
trendline obtained by linear regression (dotted line) for the
measured reduction in beta cell mass in 63 patients that died within
three weeks of diagnosis of type 1 diabetes mellitus. Figure was
originally published in [29].

body weight changes [33] at a different rate than beta cell
mass [27]. One possible explanation for this observed trend
in extent of reduction in beta cell mass at onset could be
attributed to the dynamic imbalance between the number of
beta cells and the insulin requirements for a growing body.

A mathematical model was used to predict the “excess”
beta cell mass (EBCM) as a function of age by capturing
the dynamic balance between changes in body weight and
beta cell mass. The “excess” beta cell mass corresponds to
the reduction in beta cell mass that is required before hyper-
glycemia occurs and is directly related to the measurements
obtained in these landmark studies. This model, shown
schematically in Figure 4, is derived from a mass balance
on insulin and has a single adjustable parameter. Applying
a mass balance to a system of interest is a common theme
woven throughout the chemical engineering curriculum. In
this instance, the rate of change in insulin is equal to the
source of insulin, which is proportional to beta cell mass,
minus the sinks for insulin, which are proportional to body
weight [29]. The resulting model prediction for EBCM as
a function of age is shown in Figure 3 (solid line). The
trendline obtained by linear regression (dotted line) and the
observed reduction in beta cell mass in pancreata obtained
from the subset of recent onset patients (i.e., died within
three weeks of diagnosis) are also shown for comparison. The
EBCM relationship exhibits a similar dependence with age, as
the youngest patients exhibited an 85% reduction in beta cell
mass while only a 40% reduction was observed by the age
of 20. In other words, the beta cell mass initially grows at a
faster rate relative to the whole body. The beta cell mass peaks
at 8 years of age and remains constant while the overall body
weight peaks at 20 years of age. The net result of the different
growth dynamics is that the “excess” beta cell mass declines
with age. In addition, the mathematical model provides a

prediction of the beta cell mass required to maintain glucose
homeostasis. As a validation of the model, one finds that the
difference between the observed and predicted beta cell mass
(i.e., residual beta cell mass) parallels the observed changes
in C-peptide following diagnosis (see Figure 5), as described
in [34].

In summary, this model (i.e., prototype) suggests that
clinical presentation of the disease is not attributed solely
to the destruction of beta cell mass but is the result of a
dynamic balance between the production of insulin (i.e., beta
cell mass) and the size of the system (i.e., body weight).
The agreement between the model-based predictions and the
reported changes in C-peptide suggests two points. First, the
methods that were used in these landmark studies exhibit
a certain degree of accuracy in estimating beta cell mass,
while the methods may not have had good precision. By
using a mathematical model to interpret the trends in the
data, we are able to correct for the imprecision of the assays
used. Second, the similar dynamic trends suggest that the
natural history of the disease is similar across the collection
of clinical studies. While the biological details associated with
the autoimmune attack on the pancreas and regulation of
human metabolism are missing in this simplified model,
the model exhibits a fitness for use in that it is sufficiently
complex to answer the question posed. Using a mathematical
model to represent our prior knowledge of the biology,
the model provides a unique perspective to interpret these
landmark studies which challenges the common wisdom
in the field of type 1 diabetes. Improved understanding
of the natural history of the disease—as it helps suggest
causality—is a necessary prerequisite for improving the
clinical management of the disease. Understanding causality
is essential for developing new drugs that hold promise for a
cure.

4. Example 2: The Role of Dendritic Cells
in Adaptive Immunity

The human immune system provides the body with natural
defenses against the constant onslaught of overt and oppor-
tunistic pathogens. This defense against invading pathogens
is an emergent behavior of a collection of heterogeneous
cell subsets and typifies a complex system [35]. Individually,
each of these subsets have unique roles in orchestrating
an immune response. Together, these cell subsets inte-
grate information across a range of spatial and temporal
timescales. Despite the impressive advances in the field of
immunology in the past decades, we know relatively little
about the interplay between the individual components
responsible for immunity [1, 36]. A mathematical model
provides a quantitative framework where fragmented knowl-
edge can be synthesized to predict integrated behavior of
these components. In the remainder of this section, we will
discuss a prototype that focuses on a cell subset that plays a
central role in orchestrating an immune response—dendritic
cells (DC)—in the lung.

As the sentinels of the immune system, dendritic cells
(DCs) play an important role in initiating and maintaining
T-cell responses, such as T-helper cell polarization and
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Figure 5: Dynamic change in residual beta cell mass corresponds
to the dynamic change in plasma C-peptide following onset of
type 1 diabetes. The residual beta cell mass (x: right axis) and
plasma C-peptide (square [31], circle [32], and + [30]: left axis) are
shown as a function of time following clinical diagnosis of type 1
diabetes. A 9-point moving average of the residual beta cell mass is
shown for comparison (dotted line). The residual beta cell mass is
the difference between the observed beta cell mass and predicted
beta cell mass. The dynamic change in observed beta cell mass
was obtained from pancreata obtained from patients with type 1
diabetes [25–27]. The predicted beta cell mass is an estimate of the
minimum beta cell mass required to maintain glucose homeostasis.
Figure was originally published in [34].

crosspresentation of exogenous antigens to cytotoxic T cells
[37, 38]. The precise role played by DC in de novo activation
of T cells is the culmination of a series of steps distributed
across both space and time. These sequential steps include
the recruitment into a peripheral tissue, capture of antigen,
trafficking to a draining lymph node, and presentation of
antigen to T cells [37, 39]. A generalized schematic of
this process is shown in Figure 6. Human biopsy data

suggest that the majority of dendritic cells in the lung
epithelium are derived from either blood monocytes (BMs)
or blood dendritic (BD) cells [40]. Individually, BM and
BD represent 97% and 3% of the DC precursor population
in the blood. Although these DC precursor cells can be
easily assayed in the blood, their relative contributions to
the dendritic cell population within the lung epithelium and
their functional roles in driving an immune response are
unknown. Moreover, the role of BD has been largely ignored
due to its relative rarity as a DC precursor.

To explore the implications of DC precursor recruitment
into the lung, we created a mathematical model that captures
the dynamics and origin of tissue dendritic cells [41, 42]. The
dynamic model suggests that BDs are selectively enriched
within the lung as they comprise 20% of the DC population
in the lung [41]. While it is intriguing that BD may exhibit
a higher affinity for the recruitment stimuli compared to
BM, a more important question is whether this observation
is functionally significant. The structure of the model was
designed to capture an important aspects of dendritic cell
biology—an age-structure.

As a dendritic cell traverses from blood to lung to lymph
node, it turns on different “subroutines” encoded within its
genes enabling it to perform different functions within each
compartment. The dynamic execution of these subroutines
is represented by dynamic changes in proteins expressed
on the surface of a DC. The sequence of cellular changes
are collectively referred to as DC maturation. Proteins
expressed on the cell surface enable a cell to sense and
respond to its environment. These dynamic changes in DC
proteins indicate that the particular cellular response of a
DC to the environmental context is highly dependent on
the DC’s particular maturational age. In addition, the ability
of a DC to capture and process protein antigens derived
from invading pathogens is also highly dependent on the
maturational state of a DC. Given the dynamic nature of
the DC population, the appropriate computational paradigm
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for representing DC populations is a model structured by
maturational age [41, 42].

While physiologically-structured models have been pro-
posed since the mid-1960s [43], they are seldom used to
describe cell populations due to the difficulty in obtain-
ing appropriate experimental data and the mathematical
complexity of the resulting models. Given appropriate data,
the additional complexity enables asking different questions.
The dynamic response of cell populations in the blood to
perturbations has been represented using physiologically-
structured models (e.g., [44, 45]). In this case, age-associated
differences in antigen processing ability of these two DC
precursor populations can be compared by explicitly tracking
the functionally unique subpopulations. Differences between
BM- and BD-derived DC become especially apparent when
antigen proteins also change with time. When antigen
proteins have a half-life in the tissue of 60 minutes, BD-
derived DC presents 250% more antigen peptide per cell
relative to the DC derived from BM. De novo activation of
T-helper cells requires that signals, including the density of
antigen peptides, exceed activation thresholds [46, 47]. If the
density of antigen peptides is averaged across all DC subsets,
the dynamic change in density of peptides may be below
the threshold required for activation of T-helper cells. By
explicitly accounting for variability in DC phenotypes, the
density of peptides presented by this minority DC subset
may exceed the threshold for activation. While these studies
highlight the importance of measuring DC heterogeneity,
they also highlight how computer models can be used to
integrate heterogeneous data into a quantitative picture of
the dynamic role of dendritic cells in coordinating immunity.

5. Reflecting Back: Goldilocks
and the Two Maxims

The use of models to aid in understanding system behavior
is a central theme in science that transcends disciplinary
boundaries [48]. In the previous sections, two examples
served to illustrate some of the nuances associated with
mathematical modeling from an engineering perspective,
namely, the concepts of prototyping and fitness for use.

In the case of the type 1 diabetes model, the two
competing theories are that the degree of beta cell reduction
at onset is a fixed value or that the observed reduction is a
result of a dynamic balance between beta cell mass and body
weight. From a mathematical perspective, the models exhibit
similar complexity as both models use a single adjustable
parameter to predict the observed behavior. The Akaike
Information Criterion [49–51], based upon information the-
ory, is used to distinguish between these competing models
using the available data. Intensive computing techniques, like
nonparametric bootstrap resampling [52, 53] and empirical
Bayesian methods [17], complement information-theoretic
metrics by assessing the uncertainty of those metrics, given
the inherent uncertainty in measuring biological systems.
Moreover, this simplified model was also able to compare
changes in beta cell mass to changes in C-peptide following
diagnosis [34]. Finally, one could construct a model that
includes more detail regarding the different timescales for
insulin production [54–56], insulin signaling [57], and beta
cell autoimmunity [58]. However, the simplified model
exhibits a fitness for use as inclusion of such detail is
unnecessary to test the prevailing theory.
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In the case of the dendritic cell trafficking study, a
new model is proposed to represent cellular heterogeneity
and to provide an estimate of its potential importance. In
contrast, existing models that assume that all dendritic cells
are homogeneous (e.g., [59]) are unable to capture with the
observed dynamic patterns of cell surface marker expres-
sion during dendritic cell maturation [60–62]. Additional
structure is required to represent this cellular heterogeneity
within the model. Using computational techniques, such as
parameter identification [63, 64], the increased cost, in terms
of parameters, associated with a more complex model that
captures a larger set of data is justified. Yet, the age-structured
modeling framework is not well suited to explore questions
related to the spatial organization of the lymph node or the
discrete nature of cell-to-cell interactions. The form of the
age-structured model, which is a set of coupled ordinary
differential equations, assumes that the age compartments
are well mixed, that is the cells are homogeneous within an
age compartment. Agent-based models of the lymph node
are better suited to such questions [65–68]. Historically,
agent-based models focus on cell population-level behavior
and neglect the molecular details associated with cellular
decision making, such as an evolution in cell phenotype due
to local changes in developmental cues. Although, models
that aim to combine cellular-level with population-level
behavior are emerging [69]. This highlights the iterative
nature of the engineering design process. As additional
data become available, the mathematical prototype can be
revised to reflect this new information. Moreover, the form
of the model may change depending on the fitness for use
of the particular mathematical framework (e.g., ordinary
differential equation-based or agent-based model) to address
the questions of interest.

Reminiscent of the notable children’s story “Goldilocks
and the Three Bears,” a common criticism of a particular
mathematical model is that it is either too complicated or
too simplistic. In many cases, these statements are subjective
as they are based upon the collective experience of the
critic [19]. One of the benefits of representing theory in
a computable form is that computational tools can be
used to assess objectively the complexity of the model.
Implied in the criticism is the question of model parsimony.
Conventionally, there are two maxims that bracket the
range of plausible explanations for observed phenomena:
Ockham’s Razor and Einstein’s Safety Shield. The concept
of Ockham’s Razor is that if there are a series of theories
and the available data cannot distinguish between the
different theories, then the simplest theory should receive
priority. The concept of Einstein’s Safety Shield is that one
should construct the simplest theory to explain observed
phenomena but no simpler. The emergence of information-
theoretic approaches provides a quantitative basis for these
maxims (see [70] for an introduction to the topic). While
these are important topics to consider when modeling
immunology [71], information-theoretic concepts have been
infrequently applied to modeling efforts in the field [72].
Recent developments in rule-based modeling [73–75], time
scale analysis [76], and in silico model-based inference [17]
all help reduce the barrier for integrating theory—in the

form of mathematical models and engineering concepts—
with experimental immunology. Within the domain of
cellular decision making, the combination of these three
modeling developments allow one to specify a mathematical
model with limited a priori bias in the model structure
and use the available data to determine objectively the
appropriate level of complexity, as illustrated in this sequence
of papers [76–78].

In summary, engineering is historically a field in which
basic research is translated into commercially viable products
and processes. The commercial synthesis of basic science data
is achieved using computational frameworks. Translating
data into knowledge is a major challenge facing contempo-
rary health science research. Two examples discussed in the
previous paragraphs aim to illustrate how the computational
toolkit of an engineer can be integrated into experimental
immunology via mathematical prototyping. These exam-
ples also serve to illustrate that embracing a quantitative
perspective provides an opportunity to integrate focused
experimentation into a larger mosaic that describes human
immunity. Through mathematical prototyping we are able to
represent explicitly our prior knowledge of the dynamics of
immunity and test this prior knowledge against experimental
data. Moreover, the process of creating a mathematical model
provides a roadmap for future experimental effort by iden-
tifying important knowledge gaps in the collective scientific
understanding. Ultimately, improved understanding of the
complexity of biological systems is essential for promoting
human health and restoring health through the rational
design of new therapeutics.
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