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Abstract: Understanding magnetic interparticle interactions within a single hydrodynamic volume
of polydispersed magnetic nanoparticles and the resulting nonlinear magnetization properties is
critical for their implementation in magnetic theranostics. However, in general, the field-dependent
static and dynamic magnetization measurements may only highlight polydispersity effects including
magnetic moment and size distributions. Therefore, as a complement to such typical analysis
of hysteretic magnetization curves, we spectroscopically examined the complex magnetization
harmonics of magnetic nanoclusters either dispersed in a liquid medium or immobilized by a
hydrocolloid polymer, later to emphasize the harmonic characteristics for different core sizes. In the
case of superparamagnetic nanoclusters with a 4-nm primary size, particularly, we correlated the
negative quadrature components of the third-harmonic susceptibility with an insignificant cluster
rotation induced by the oscillatory field. Moreover, the field-dependent in-phase components
appear to be frequency-independent, suggesting a weak damping effect on the moment dynamics.
The characteristic of the Néel time constant further supports this argument by showing a smaller
dependence on the applied dc bias field, in comparison to that of larger cores. These findings
show that the complex harmonic components of the magnetization are important attributes to the
interacting cores of a magnetic nanocluster.

Keywords: magnetic nanoclusters; magnetic interactions; magnetization harmonics; polydispersity;
magnetic theranostics

1. Introduction

Superparamagnetism of magnetic nanostructures has been one of the main concepts underlining
recent theranostic applications [1,2]. This property is well understood as a physical manifestation
of the dynamic behavior of a macrospin system above its blocking temperature, which results in a
non-hysteretic magnetization curve against a periodically ramped magnetic field at extremely low
frequencies [3,4]. For a superparamagnetic nanoparticle system, the corresponding static magnetization
easily saturates according to the Langevin model with a high saturation value [4]. Owing to the delays
in the oscillatory magnetic-field-induced relaxation responses Néel and Brownian relaxations [5,6],
the system may exhibit a ferromagnetic-like behavior by showing magnetization reversal with a
finite coercivity [7,8]. The resulting heat dissipation and magnetic signals are therefore promising
for magnetic hyperthermia, particle imaging, and biosensing [9–11]. Nevertheless, these applications
substantially demand a good understanding of colloidal magnetic nanostructures and their nonlinear
magnetization dynamics to acquire high hyperthermic efficiency and nonlinear magnetization at
low-field regimes.

Specific to the case of magnetic nanoclusters, the dipolar interparticle interaction of the core
particles within a single hydrodynamic volume is one of the critical considerations in explaining the
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nonlinear field-dependent magnetization responses [12,13], in addition to the polydispersity effects
(e.g., magnetic moment and size distributions, and the corresponding anisotropy energies). In fact,
there is a trade-off in whether such magnetic interaction promotes a negative contribution to the
magnetization response at the low-field regime [14]. Therefore, understanding magnetic interaction is
critical as it potentially affects the room temperature magnetism due to an increase of the blocking
temperature. In this regard, our study focuses on analyzing the intrinsic dipolar magnetism of
colloidal magnetic nanoclusters in terms of the complex magnetization harmonics. We hypothesize
that the change in the nonlinear magnetization properties attributed to dipole-dipole interactions
should correlate with both the real and imaginary parts of the apparent magnetization harmonics.
Nevertheless, recent interest in exploring these harmonic signals toward magnetic particle imaging
(MPI), for instance, appears to ignore such phase-delay characteristics of the complex magnetization
harmonics but emphasize the respective magnitudes instead [15]. Thus, this article also aims to
introduce the physical meaning of the complex magnetization harmonics related to the dynamics of
magnetic nanoclusters, particularly for the benefit of MPI.

2. Materials and Methods

Depending on the interparticle distance and the primary size-dependent magnetic moment
of the core particles, magnetic nanoclusters may have a non-zero effective (cluster) moment.
The nanoclusters then may undergo a corresponding oscillatory-field induced physical rotation at
low frequencies, which is spectroscopically observable from the imaginary part of the magnetic
susceptibility [16]. More specifically, the superparamagnetic nanoclusters with very small core-particles
may preferably demonstrate moment relaxation, owing to the low anisotropy energy barrier
and weak dipolar magnetism [17]. In this regard, we evaluated the complex magnetization
harmonics of carboxymethyl-diethylaminoethyl dextran (CMEAD)-coated maghemite nanoparticles
(Meito Sangyo Co., Ltd., Kiyosu-shi, Japan) and compared them to those of sodium α-olefin sulfonate
(AOS)-coated magnetite nanoparticles (Sigma Hi-Chemical Inc., Chigasaki-shi, Japan, product name:
M-300). In terms of physical properties (Figure 1a), these polydispersive ferrofluids contain magnetic
nanoclusters with similar secondary sizes. However, the CMEAD-γFe2O3 core particles with an
average primary size of about 4 nm are three times smaller than the AOS-Fe3O4 core particles. We used
a typical phase-sensitive detection method to measure the complex third-harmonic signals (Figure 1b).
In addition, we preliminarily characterized the static and dynamic magnetization curves of the
ferrofluid samples, as well as the field-dependent relaxation time constant of the immobilized particles.
During all measurements, the concentration and sample volume were set to 28 mg-Fe mL−1 and
0.1 mL, respectively.
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Figure 1. (a) Transmission electron microscopy images and dynamic light scattering measurements
of the characterized ferrofluid samples; (b) Phase-sensitive detection system to measure the complex
magnetization harmonics of a 0.1-mL ferrofluid sample placed within an area with a spatially uniform
field-distribution. The signal amplitude and phase differences at the fundamental and third-harmonic
frequencies (∆R1, ∆ϕ1, ∆R3, and ∆ϕ3, respectively) were recorded while varying field strength and
frequency of the applied fields.

3. Results and Discussion

3.1. Magnetism of CMEAD-γFe2O3

Owing to the random Brownian dynamics, the colloidal CMEAD-γFe2O3 nanoclusters are
expected to exhibit neither remanence nor coercivity in their static magnetization at room temperature,
as well as the case of hydrodynamic AOS-Fe3O4 nanostructures. By highlighting the minor hysteresis
properties of the dynamic magnetization curves at 1 kHz, Figure 2 further reveals that their colloidal
relaxation behaviors appear to depend on the primary size and the respective magnetic interaction of
the core particles. In the case of the CMEAD-γFe2O3 ferrofluid, we observe extremely small coercivities
for various field amplitudes. Under ±300 Oe, for instance, it reaches only about 0.4 Oe, much smaller
than that spotted in the AOS-Fe3O4 ferrofluid. For analyzing the magnetism of the respective core
particles, both ferrofluid samples were solidified by the hydrocolloid polymer (i.e., agar). We then
confirm that the immobilized CMEAD-γFe2O3 nanoclusters have similar dynamic magnetization
curves to those dispersed in water. In contrast, the solidified AOS-Fe3O4 ferrofluid shows an even
larger hysteresis area. The coercivity of the AOS-Fe3O4 core particles increases from 0.9 Oe (under dc
field) to 24 Oe (under ±300 Oe at 1 kHz).

Referring to Figure 1a, the AOS-Fe3O4 ferrofluid may contain a mixture of superparamagnetic
and ferrimagnetic magnetite nanoparticles [18]. Figure 2 further indicates that their hydrodynamic
nanostructures may physically rotate under the oscillatory field to result in a hysteresis area.
From Figure 3a, the effective Brownian relaxation frequency (under 50-Oe field amplitude) is
observable around 6 kHz, associated with the maximum imaginary part of the fundamental
susceptibility χ

′′
1 . This Brownian peak might be attributed to the physical relaxations of either the minor

magnetite particles with diameters above 16.5 nm or the major nanoclusters with strong magnetic
interactions between the composing particles (see illustration inset Figure 2). The widely distributive
core sizes let them collectively behave in the liquid medium as a typical single-core structure with an
effective core size [16]. Moreover, the real parts χ′1 continuously decrease with frequency. The particle
immobilization further results in χ′1 decaying proportionally to ln( f ) and the χ

′′
1 being small and

virtually frequency-independent [19–21]. Nevertheless, this typical relaxation behavior for thermally
blocked magnetic nanoparticles was not the case for CMEAD-γFe2O3 nanoclusters.
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Figure 2. Dynamic magnetization curves of the ferrofluid samples at 1 kHz. The different coercive
fields HC and remanences MR within low-field regimes (e.g., ±50, ±100, ±200, and ±300 Oe) indicate
magnetization reversal. The measured magnetization M has been normalized by the saturated
magnetization MS of the respective samples.
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Figure 3. (a) Frequency-dependent complex magnetic susceptibilities at 50 Oe. The field-induced
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of the solidified samples (solid triangles). The imaginary parts for the solid samples (open triangles)
are later attributed to the moment dynamics; (b) Illustrative M′′

n(M′n) plot of an empirical relaxation
model with a and b fitting parameters [16]. The semicircle Cole-Cole model can be partially fitted to
the M′′

1
(

M′1
)

plots of the ferrofluid samples, whereas M′′
3
(

M′3
)

appears to have unique patterns.

3.2. Frequency and Field Dependences of Complex Third-Harmonic Magnetization

CMEAD-γFe2O3 nanoclusters are morphologically treated as a multicore particle system
containing small superparamagnetic maghemite crystallites, in which the dipolar interaction between
individual cores inside a single nanocluster is supposed to be negligible. Their fundamental
susceptibility spectra appear to be identical, independent of whether the nanoclusters were suspended
or immobilized (Figure 3a). Thus, all core particles within the CMEAD-γFe2O3 nanoclusters should
magnetically relax via the Néel mechanism under the alternating field. There is no peak in both
χ
′′
1 ( f ) plots of the CMEAD-γFe2O3 liquid and solid samples. However, slightly larger χ′1 values of the

liquid sample at low frequencies might be attributed to the insignificant contribution of the Brownian
dynamics. Owing to these relaxation properties, their magnetization harmonics are later found to be
characteristically different from those of the AOS-Fe3O4 nanoclusters.
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In principle, the equilibrium magnetization harmonics for a given sinusoidal magnetic field
H0 cos(2π f t) where H0 is the field amplitude can be mathematically derived from the Taylor series of
the Langevin function in the form of Chebyshev polynomials. The Langevin equation itself ideally
represents the magnetization characteristics of a single magnetic nanoparticle or a non-interacting
uniform nanoparticle system. For polydispersive nanoclusters, however, one may experimentally
extract the nth complex harmonic components from the time-domain magnetization responses M(t).
Equations (1) and (2) further describe the real part M′n( f ) as

M′n( f ) =
2 f
µ0

∫ 1
f

0
M(t) cos(2πn f t)dt, (1)

and the imaginary part M′′
n ( f ) as

M′′
n ( f ) =

2 f
µ0

∫ 1
f

0
M(t) sin(2πn f t)dt, (2)

for one relaxation cycle at an applied frequency f , where µ0 is the vacuum permeability [22].
Regarding these complex magnetization harmonics Mn = M′n − iM′′

n , we mainly discussed the third
harmonic components (n = 3) of the frequency- and field-dependent complex magnetic susceptibilities
χn = Mn/H0 for both the real χ′3 and imaginary χ

′′
3 parts.

3.2.1. Spectra of Third-Harmonic Susceptibility

In terms of spectral responses, the phase difference between the applied field and the resulting
magnetization is one of the crucial parameters to study the complex properties of the magnetization
harmonics. For instance, the third-harmonic phase difference ∆ϕ3 is principally three times larger than
the fundamental phase difference ∆ϕ1 [22,23]. Hence, for an ideal Debye case with ∆ϕ1 = tan−1 2π f τ

and the effective relaxation time constant τ, the maximum χ
′′
3 is at the frequency that ∆ϕ3 = 3∆ϕ1

equals π/4 rad. For the polydispersive AOS-Fe3O4 ferrofluid, accordingly, the χ
′′
3 ( f ) plot shows

such typical spectral peak difference upon χ
′′
1 ( f ), in which it peaks at about 2 kHz, one-third of the

frequency-maximizing χ
′′
1 ( f ) plot (Figure 3a). Meanwhile, for the CMEAD-γFe2O3 ferrofluid, it is

expected to have identical χ′3 and χ
′′
3 spectra of the solid and liquid samples due to the dominant

moment dynamics. Interestingly, we found that their χ
′′
3 components have negative values at low

frequencies. Regarding this characteristic, the short Néel time constant of each core particle should
be responsible for creating a large ∆ϕ1, thus ∆ϕ1 > π/3 rad mathematically leads to a negative
χ
′′
3 ∝ sin 3∆ϕ1. Being consistent with our finding, the authors of [22], furthermore, numerically

identified that χ′3 ∝ cos 3∆ϕ1 may also be negative for this situation.
To argue that the negative χ

′′
3 and positive χ′3 of the CMEAD-γFe2O3 ferrofluid are not

coincidental, we consider an empirical non-Debye relaxation model to evaluate the spectral
magnetization responses [16,24]. As illustrated in Figure 3b, the fundamental frequency-varying
magnetization M1( f ) of the polydispersive nanoparticle system (under arbitrary field strength) settles
at a nonzero value of the infinite-frequency magnetization M∞; M∞ = 0 for the linear relaxation
response. Thus, the equilibrium (static) magnetization M0 derived from the Langevin function may
not be equivalently treated as the initial magnetization Mi at a near-zero frequency for inhomogeneous
relaxation responses. The parametric M′′

1
(

M′1
)

plot further defines M∞ and Mi as the minimum and
maximum values of the in-phase magnetization components M′1 at fundamental frequency, respectively.
In the case of M′′

3 (M′3) plot strongly correlated with 3∆ϕ1, the large M∞ of such non-Debye case lets
M′′

3 be negative for π/3 < ∆ϕ1 < π/2 rad, while M′3 remains positive. For the negative M′′
3 attributed

to the dominating moment dynamics, one may employ it as an indicator of the viscosity-related
tracer immobility for a cellular MPI, in addition to the positive M′′

1 as a typical estimate for the local
thermal dissipation.
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3.2.2. Field-Dependent Third-Harmonic Susceptibility

Relaxation behaviors of magnetic nanoparticles characteristically depend their frequency
dependence and change with increasing field strength [24]. The field dependence of the Brownian and
Néel relaxation times thus becomes an important issue to discuss the third-harmonic magnetization
responses. For the CMEAD-γFe2O3 samples, Figure 4 shows that χ′3(H0) peaks at relatively the same
field strength regardless of frequency and only has a slight magnitude difference between the liquid
and solid samples. Such a parabolic property of χ′3(H0) seems to agree with the projection of the
quasi-static χ3(H0) ∝ H2

0 /
(
c0 + c1H0 + c2H2

0 + c3H3
0
)

derived from polynomial forms of the Langevin
function for H0 ≥ 0 [22], where c0, c1, c2, and c3 are constants. However, for the AOS-Fe3O4 samples,
χ′3(H0) is frequency-dependent and is maximized only for the liquid sample. More interestingly,
their χ

′′
3 (H0) are negatively inverted far above 100 Oe, and the phase-inverting field amplitude appears

to have a frequency dependence, as shown in Figure 4 (inset).Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 9 
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imaginary χ′′3 parts of the liquid samples (solid and open circles, respectively), as well as those of the
solidified samples (solid and open triangles), distinguish the superparamagnetism of CMEAD-γFe2O3

nanoclusters from the frequency independence.

Being thermally blocked at low field amplitudes (i.e., having a non-zero coercivity, Figure 2),
the AOS-Fe3O4 nanoparticles have Néel relaxation time constant τN that should decrease with
increasing field strength. For the time required to rotate a single magnetic moment mp, Equation (3)
defines τN by emphasizing the dependences on the field strength H, particle volume Vm, anisotropy
constant kU , and temperature T; kB is the Boltzmann constant [24]. The pre-exponential component τ0

is an intrinsic time constant augmented by a random field term of the thermal fluctuations, which can
be defined by Equation (4) taking the Gilbert damping factor α and electron gyromagnetic ratio γ

into account [5]. Equation (3) is a general approximation of τN(H) formulated by Brown [25] in
the case of low field values H ≤ 0.8 kUVmm−1

p . Treating the Brownian time constant τB similarly
as a field-dependent parameter, the shorter effective time constant above 100 Oe might create
∆ϕ1 > π/3 rad to initiate the phase-inversion of the third-harmonic magnetization. In this situation,
Brownian relaxation might be no longer dominant, even at frequencies below 10 kHz (Figure 4).
We further believe that the negative χ

′′
3 becomes a distinguishing parameter of such insignificant

particle rotation. However, we still confirmed positive χ
′′
3 components below 100 Oe in the case of

the immobilized nanoclusters and addressed this issue to the damping behavior of the moment
dynamics. Therefore, we emphasized the contribution of the α in correlation with the moment
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alignment within a single particle [5], instead of questioning the imperfect particle immobilization by
the hydrocolloid polymer.

τN = τ0 exp

[
kUVm

kBT

(
1−

mpH
2kUVm

)2
]

(3)

τ0 =
mp

γkBT
1 + α2

2α
(4)

3.3. Damping Effect on Moment Dynamics

Regarding how systematically the damping behavior of magnetic moments in both the
CMEAD-γFe2O3 and AOS-Fe3O4 core particles contributes to their magnetization harmonics, Figure 4
highlights the maximum value of χ′3(H0) and, importantly, the sign inversion of χ

′′
3 (H0) for the solid

samples. We then investigated the magnetization decay rate of the immobilized particles by pulsating a
10-Oe magnetic field perpendicularly under a varying external dc bias field up to 450 Oe (see illustration
in Figure 5); the pulse period, width, and time constant were 10, 10−1, and 10−7 s, respectively.
The α was qualitatively examined from the field-dependence of τN . Experimentally, τN may not
satisfy Equation (3) because of the non-uniform core size distribution and dipolar interparticle
interactions. The authors of [24] give an empirical approximation of the effective Néel time-constant
τ∗N(H), resembling the field-dependent Brownian time constant [22], but it appears to be limited for
low-field regimes. An important issue, however, remains at high-field regimes in which τ∗N should be
proportional to the effective τ∗0 due to gyromagnetic precession [26]. Therefore, we optionally provided
an empirical equation of τ∗N by Equation (5) to include the field-independent time constant τ∗0 ; a0 and
b0 are arbitrary constants.

τ∗N(H) = τ∗0 + a0e−b0 H (5)
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(solid squares) and AOS-Fe3O4 (solid circles) nanoparticles representing the damping behavior of the
particle moment mp.

For both solid samples, τ∗N exponentially decays with the increase in bias field, but the AOS-Fe3O4

nanoparticles exhibit a stronger field-dependence (Figure 5). The larger initial τ∗N of the AOS-Fe3O4

nanoparticles significantly drops at H = 450 Oe. We claim that this result was due to a stronger
damping behavior of the respective moment dynamics. Fitting τ∗N(H) by Equation (5), we obtained τ∗0
of 166 ns and 50.7 ns for the CMEAD-γFe2O3 and AOS-Fe3O4 nanoparticles, respectively. These values
appear to overestimate those typically assumed (τ0 < 1 ns) to consider the dipolar interactions.
However, less measurement data for the extrapolation may be another possible cause of high τ∗0 values.
As a qualitative analysis, nevertheless, we can conclude with Equation (4) that the CMEAD-γFe2O3

nanoparticles should have a smaller α than the AOS-Fe3O4 nanoparticles, noting that they have
smaller mp proportional to the core diameter (Figure 1a) and α < 1 for both iron oxides [27,28] allows
us to simplify

(
1 + α2)/2α into 1/2α. For α ∝ mp/τ∗0 , the high damping effect on the AOS-Fe3O4

nanoparticle moments, as well as that originated from the Brownian torques on their hydrodynamic
nanostructures, collectively contribute to the apparent magnetization dynamics in the case of liquid
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sample. Therefore, it is important to control the superparamagnetic core size of magnetic nanoclusters
as the parameter contributing to mp, α, and intrinsic dipolar interactions within the nanoclusters to
achieve high complex harmonics for a functional phase-contrast MPI.

4. Conclusions

Magnetic interparticle interactions contribute to changing the nonlinear properties of the dynamic
magnetization (i.e., complex magnetization harmonics) and highlight the field-induced particle
rotation of polydispersive magnetic nanoclusters as one of the crucial factors. For superparamagnetic
nanoclusters with few nanometer core particles (e.g., CMEAD-γFe2O3 nanoclusters), the negative
quadrature components of the third-harmonic susceptibility were due to the fast moment dynamics
creating large phase differences of the magnetization against the applied field. In contrast,
for larger core particles (e.g., AOS-Fe3O4 nanoclusters), the positive quadrature components of the
third-harmonic susceptibility were spectrally shifted to lower frequencies as compared with those of
the fundamental susceptibility spectra. The sign inversion at higher frequencies and field amplitudes
is to address the dominance of Neel relaxation over Brownian relaxation. The damping behavior of
moment dynamics later becomes another important parameter to generalize the complex magnetization
harmonics. We qualitatively concluded that a small damping factor is responsible for the frequency
independence of the maximum in-phase components and the negative sign of quadrature components
of the third-harmonic susceptibility. For such distinguishable complex components of magnetization
harmonics, the magnetic nanoclusters are of the potential for MPI by suggesting an imaginary (phase)
image in addition to spatially plotting the harmonic magnitudes.
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