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Abstract

Motivation: Deep learning architectures have recently demonstrated their power in predicting

DNA- and RNA-binding specificity. Existing methods fall into three classes: Some are based on

convolutional neural networks (CNNs), others use recurrent neural networks (RNNs) and others

rely on hybrid architectures combining CNNs and RNNs. However, based on existing studies the

relative merit of the various architectures remains unclear.

Results: In this study we present a systematic exploration of deep learning architectures for pre-

dicting DNA- and RNA-binding specificity. For this purpose, we present deepRAM, an end-to-end

deep learning tool that provides an implementation of a wide selection of architectures; its fully

automatic model selection procedure allows us to perform a fair and unbiased comparison of deep

learning architectures. We find that deeper more complex architectures provide a clear advantage

with sufficient training data, and that hybrid CNN/RNN architectures outperform other methods in

terms of accuracy. Our work provides guidelines that can assist the practitioner in choosing an ap-

propriate network architecture, and provides insight on the difference between the models learned

by convolutional and recurrent networks. In particular, we find that although recurrent networks

improve model accuracy, this comes at the expense of a loss in the interpretability of the features

learned by the model.

Availability and implementation: The source code for deepRAM is available at https://github.com/

MedChaabane/deepRAM.

Contact: asa@cs.colostate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA- and RNA-binding proteins are involved in many biological

processes including transcription, translation and alternative splic-

ing (Ferré et al., 2016; Gerstberger et al., 2014). Unfortunately, only

some of these binding sites have been identified by biological experi-

ments. Moreover, these experiments are expensive and time-

consuming. Position weight matrices (PWMs) are the most common

method to characterize the sequence specificity of a protein, thanks

to their simplicity and ease of interpretation (Stormo, 2000).

However, many studies suggest that sequence specificity can be bet-

ter captured using more complex models (Kazan et al., 2010; Rohs

et al., 2010; Siggers and Gordâ n, 2014).

In recent years, deep neural networks have become the technique

of choice for challenging tasks in computer vision (Krizhevsky et al.,

2012; LeCun et al., 2015), speech recognition (Hinton et al., 2012),

machine translation (Sutskever et al., 2014) and computational biol-

ogy (Angermueller et al., 2016). Methods based on convolutional

neural networks (CNNs) (LeCun et al., 1998) and recurrent neural

networks (RNNs) (Hochreiter and Schmidhuber, 1997) have been

proposed for the task of identifying protein binding sites in DNA

and RNA sequences, and have achieved state-of-the-art performance

(Alipanahi et al., 2015; Hassanzadeh and Wang, 2016; Quang and

Xie, 2016; Shen et al., 2018).

DeepBind (Alipanahi et al., 2015) was the first deep learning ap-

proach for this task. It used a single layer of convolution and demon-

strated the accuracy of CNNs as well as their ability to learn signal

detectors that recapitulate known motifs. Zeng et al. (2016)

explored in more detail the effect of various architecture parameters

such as the number of layers and operations such as pooling. Other

studies opted for more complex architectures and introduced hybrid
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models that integrate both CNNs and RNNs. DeeperBind

(Hassanzadeh and Wang, 2016) and DanQ (Quang and Xie, 2016)

for example, add long short-term memory (LSTM) layer(s) to the

DeepBind architecture. The additional RNN layers are designed to

improve binding accuracy prediction by learning long-range depend-

encies between the sequence features learned by the CNN layers.

Purely RNN-based methods were also examined: the KEGRU

method (Shen et al., 2018) used a layer of bidirectional gated

recurrent units (bi-GRUs), combined with a k-mer embedding repre-

sentation of the input sequence to create an internal state of the net-

work that allows it to capture long-range dependencies and thus

obtain good performance. Methods that are specific to modeling

RNA-binding proteins (RBPs) were also developed. iDeepS for ex-

ample, uses both CNN and RNN layers, and identifies sequence and

structural motifs simultaneously (Pan et al., 2018).

Despite all these studies, it is still not clear which deep learning

architecture performs best for detecting binding in DNA and RNA

sequences. A fair and unbiased comparison can be very challenging

especially when considering the sensitivity of deep learning methods

to the step of model selection: deep neural networks have many

hyper-parameters that require careful tuning, and differences in per-

formance can be the result of the use of different model selection

strategies (Lipton and Steinhardt, 2018; Melis et al., 2018).

Therefore, a meaningful comparison requires the use of a coherent

model selection strategy applied uniformly across all architectures.

In this study, we conduct a systematic exploration of the perform-

ance of different architectures using CNNs and/or RNNs for the

study of DNA and RNA sequence binding specificity prediction. For

this purpose, we have designed a collection of architecture variants,

some of which correspond to published methods by varying the net-

work components, depth and input layer representation. To ensure

the objectivity of our evaluation, we used the same model selection

strategy and made the pipeline fully automatic to avoid the need for

hand-tuning.

Our experiments use datasets collected from the Encyclopedia of

DNA Elements (ENCODE) project (ENCODE-Project-Consortium,

2012) and verified binding site of RBPs derived from large-scale

CLIP-seq experiments (Stra�zar et al., 2016). We find that more com-

plex architectures that combine RNNs and CNNs indeed provide

improved performance over the vanilla CNN model, and that this

advantage increases with increasing number of training examples

that are available. However, the improvement in accuracy comes at

the expense of the interpretability of the learned models and

increased training times. Our results also demonstrate the advantage

of using a k-mer embedding to represent the input sequence instead

of the standard one-hot encoding, especially for RBP binding site

prediction. Finally, we present an end-to-end deep learning toolkit

called deepRAM that provides a framework for training and evalu-

ating deep learning architectures for DNA/RNA sequence analysis.

2 Materials and methods

In this study, we present a comprehensive evaluation of different

deep learning architectures for the task of predicting DNA- and

RNA-protein binding sites. First, we present the benchmark datasets

used in our study. Then, we present the architectures used in our

experiments. Third, we provide the technical details of the model se-

lection process that we followed to ensure unbiased model compari-

son. These methods are implemented as an open-source deep

learning package called deepRAM that allows users to evaluate dif-

ferent architectures for predicting DNA- and RNA-protein binding

sites. Finally, we describe our method for extracting motifs from the

learned models.

2.1 Datasets
The deep learning models are evaluated on data from ChIP-seq and

CLIP-seq experiments. For ChIP-seq data we used data from 83

ChIP-seq experiments from the ENCODE project that assayed bind-

ing of diverse transcription factors. These datasets were used to

evaluate deep learning architectures in Alipanahi et al. (2015) and

Zhou and Troyanskaya (2015), and we use the same sequences as

training/testing examples. The authors of DeepBind split the ChIP

peak data into three lists: A, B and C. A is the set of the top 500

even-numbered peaks when considering the ranked list of peaks

detected. B is the set of the top 500 odd-numbered peaks and C is

the set of remaining peaks. For model training, we use the peaks

from A and C, and the peaks from B were used for testing. Positive

examples in this binary classification task consist of 101 bp regions

centered on each ChIP-seq peak. The negative examples were gener-

ated by shuffling the positive sequences while matching dinucleotide

composition.

We also evaluate the ability of different architectures to identify

RNA-binding sites. We use the same benchmark human dataset

used by the developers of iONMF (Stra�zar et al., 2016) which con-

sists of 31 CLIP-seq experiments over 19 proteins. The data were

obtained from (https://github.com/mstrazar/ionmf); original data

were retrieved from DoRiNA (Blin et al., 2015) and iCount (http://

icount.biolab.si/). Positive sites represented nucleotides that were

identified as being within clusters of interaction sites derived from

CLIP-seq. Negative sites were extracted from genes not participating

in the protein-RNA interaction process in any of the 31 experiments.

Each experiment consists of 40 000 examples divided into 30 000

examples for training and 10 000 for testing.

2.2 Model architectures
In this section, we describe the deep learning architectures to be

evaluated (see Fig. 1). In addition to comparing architectures, we

compare two ways of representing the input sequence: either using a

one-hot encoding or a k-mer embedding computed using word2vec

(Asgari and Mofrad, 2015; Mikolov et al., 2013). When using the

one-hot encoding, the input sequence is represented by a 4�L ma-

trix where L is the length of the sequence and each position in the

sequence is associated with a vector of length four with a single non-

zero element corresponding to the nucleotide in that position. For

the k-mer embedding representation (see Fig. 1), we first split the se-

quence into overlapping k-mers of length k using a sliding window

with stride s and then map each k-mer in the obtained sequence into

a d-dimensional vector space using the word2vec algorithm

(Mikolov et al., 2013). Word2vec is an unsupervised learning algo-

rithm which maps k-mers from the vocabulary to vectors of real

numbers in a low-dimensional space. The embedding representation

of k-mers is computed in such a way that their context is preserved,

i.e. word2vec produces similar embedding vectors for k-mers that

tend to co-occur.

Convolutional networks. To apply CNNs to biological sequence

data we use 1D convolution. In 1D convolution we slide local signal

detectors (filters) along the sequence; subsequent convolutional

layers integrate the results of previous layers at increasing spatial

scales, generating a representation that is able to abstract away

some of the variability observed in binding sites. Each convolutional

module is composed of a convolutional layer and a pooling layer

(see Fig. 1). A convolutional layer consists of 1D convolution with a
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specified number of kernels or filters. The results of applying each

filter at each position of the sequence is transformed using a non-

linear activation function. We use the commonly used rectified lin-

ear unit (ReLU), which keeps only positive filter values and sets the

remaining to 0, which helps avoid the so-called vanishing gradient

problem (Bengio et al., 1994; Maas et al., 2013). More specifically,

a convolution layer computes

convolutionðXÞi;k ¼ ReLU
XM�1

m¼0

XN�1

n¼0

Wmn
kXiþm;n

 !
; (1)

where X is the input matrix representing the sequence, i is the index

of the output position and k is the index of the filter. Each convolu-

tional filter Wk is an M�N matrix with M being the window size

and N being the number of input channels. For the first convolution

layer N equals the input representation dimension (four for one-hot

encoding or d for the word2vec representation); for higher-level con-

volutional layers N is the number of filters in the previous convolu-

tional layer. Next, the output of convolution undergoes pooling,

which aggregates the outputs from neighboring positions for each

filter in order to achieve consistency and invariance to small shifts in

the input sequence. In this work, we use max-pooling which com-

putes the maximum value over a fixed number of spatially adjacent

overlapping windows over the convolutional layer’s output:

poolingðYÞik ¼ maxðYiP;k;YiPþ1;k; . . . ;YiPþP�1;kÞ; (2)

where Y is the output of the convolutional layer, P is the pooling

window size, i is the output position and k is the index of the filter

being pooled.

The first convolutional layer can be thought of as a motif detect-

or where each filter is analogous to a PWM and the convolution op-

eration is equivalent to scanning the PWM with a sliding window

across the sequence. Additional layers of convolution and pooling

enable the network to extract features from larger spatial ranges and

potentially capture interactions between motifs, allowing the net-

work to represent more complex patterns than shallower networks.

On the flip side, deeper networks have more parameters and require

more data for obtaining high levels of performance.

RNN-based models. The second class of architectures we ex-

plore are RNN-only models. RNNs have an internal state that is

updated as the network reads the input sequence. This internal

memory allows RNNs to capture interactions between distant

Fig. 1. Overview of the deep learning architectures evaluated in this work. These include CNN-only models known for their ability to detect motifs (left), RNN-only

models (center) which excel at capturing long-term sequence dependencies, and hybrid CNN-RNN models. The input for all variants is either a one-hot encoding

or a k-mer embedding of the DNA/RNA sequence obtained using word2vec
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elements along the sequence, and is therefore commonly used in nat-

ural language processing (Hirschberg and Manning, 2015). Two

types of RNN units were tested using deepRAM: LSTM units

(Hochreiter and Schmidhuber, 1997) and GRU units (Cho et al.,

2014; Chung et al., 2014). A GRU unit given an input xt at position

t in the sequence performs the following operations:

zt¼ rðWz � ½ht�1;xt� þ bzÞ;
rt ¼ rðWr � ½ht�1;xt� þ brÞ;
h
�

t ¼ tanhðWh � ½rt � ht�1;xt� þ bhÞ;

ht ¼ ð1� ztÞ � ht�1 þ zt � h
�

t;

(3)

where � is element-wise multiplication, zt and rt are the two GRU

gates called the update gate and reset gate, respectively; Wz, Wr and

Wh are weight matrices, and bz, br and bh are the biases. ht is the

hidden state that is used as memory to hold information on previous

data the network has seen before, and h
�

t is the candidate memory

state that is considered for potentially replacing ht. The reset gate

controls how much past information to forget and the update gate

controls how much information to throw away and what new infor-

mation to add. The gates and hidden states are vectors of real num-

bers of the same dimension, which is a tunable hyper-parameter.

LSTM units are more complex than GRU units, and we refer the

readers to the original publications for details (Hochreiter and

Schmidhuber, 1997). The basic idea of using a gating mechanism in

both LSTM and GRU architectures is to capture short- and long-

term dependencies in sequences. After the LSTM/GRU has iterated

over the sequence, we use its hidden state at the last position, which

contains information about the entire sequence, as the output of

that layer.

The bi-RNN (bi-GRU/bi-LSTM) is an extension of the regular

RNN, which consists of a forward layer and a backward layer, rep-

resenting traversals of the sequence in both directions. The output of

the bi-RNN is then computed by concatenating the output vectors

of the two traversals together.

Hybrid models. The third type of architecture we consider is that

of hybrid convolutional and recurrent networks (see Fig. 1). The

convolution stage that is composed of one or more convolutional

modules scans the sequence using a set of 1D convolutional filter in

order to capture sequence patterns or motifs. The convolutional

stage is followed by an RNN stage which is capable of learning com-

plex high-level grammar-like relationships by considering the orien-

tations and spatial relationships between the motifs.

The final module in all three types of models is composed of one

or two fully connected layers to integrate information from the en-

tire sequence followed by a sigmoid layer to compute the probability

that the input sequence contains a DNA- or RNA-binding site.

Evaluated architectures. The deepRAM tool provides implemen-

tations of several existing architectures: DeepBind (Alipanahi et al.,

2015), which uses a single CNN layer; DanQ, which uses a single

layer CNN followed by a bidirectional LSTM (Quang and Xie,

2016); KEGRU, which uses k-mer embedding and a layer of GRU

units (Shen et al., 2018) and dilated multi-layer CNN (Gupta and

Rush, 2017). To fully evaluate the range of deep learning architec-

tures we considered additional variants denoted as DeepBind*

(multi-layer CNN), DanQ* (DanQ with multiple layers of convolu-

tion), DeepBind-E* (multi-layer CNN with k-mer embedding),

ECLSTM (k-mer embedding with single layer CNN and LSTM) and

ECBLSTM (k-mer embedding with single layer CNN and bidirec-

tional LSTM). These architectures are summarized in Table 1.

2.3 Model training, selection and evaluation
Model selection is perhaps the most challenging step in deep learn-

ing as the performance of deep learning algorithms is very sensitive

to the calibration parameters (Lipton and Steinhardt, 2018). A care-

ful configuration and selection of the hyper-parameters is thus essen-

tial. For each dataset, we use automatic calibration that is based on

randomly sampling 40 hyper-parameter settings from all possible

combinations; each parameter setting is evaluated using its area

under the ROC curve (AUC) in 3-fold cross-validation. Next, we

use the selected best hyper-parameter setting to train five models

using the full training data and choose the model with the best train-

ing performance as the final selected model. Multiple models are

trained to avoid the effect of random initialization on model per-

formance. This model selection strategy is based on the one used by

the authors of DeepBind (Alipanahi et al., 2015).

In the training phase, we consider the number of learning steps

as a hyper-parameter. For each of the 40 calibration sets, we train a

model for a maximum of 40 000 learning steps and test it on the

held out validation set every 5000 learning steps. The iteration with

the best validation accuracy is picked as the number learning steps.

The number of filters in the first convolutional layer is chosen as

part of model selection; the number of filters in each subsequent

layer is increased by 50% compared to the layer before it. Some

model parameters were chosen on the basis of preliminary experi-

ments that demonstrated consistent behavior across datasets (e.g.

embedding k-mer length and embedding stride); complete details of

the hyper-parameter space are summarized in Table 2.

Model training. To train a given model, we minimize the cross-

entropy objective function. This is performed by stochastic gradient

descent (SGD) or Adagrad, and the choice is made as part of the

model selection process. Examples were processed using a batch size

of 128 in all experiments. We used multiple regularization schemes

including dropout (applied to max-pooling layers/RNN layers/hid-

den layers), weight decay and early stopping.

We ran our experiments on an Ubuntu server with a TITAN X

GPU with 12 GB of memory. Typical running times of each experi-

ment for model selection was between 1 h for a single layer CNN

and almost 4 h for a network that includes convolutional and bi-

LSTM modules (see details in Supplementary Table S3).

2.4 Motif extraction
In order to make models implemented using deepRAM easily inter-

pretable, we extract motifs from the first convolutional layer follow-

ing a similar methodology as in DeepBind (Alipanahi et al., 2015).

To do so, we feed all test sequences through the convolution stage.

For each filter, we extract all sequence fragments that activate the

filter and use only activations that are greater than half of the filter’s

maximum value. Once all the sequence fragments are extracted,

they are stacked and the nucleotide frequencies are counted to form

a position frequency matrix (PFM). Sequence logos are then con-

structed using WebLogo (Crooks et al., 2004). Finally, the discov-

ered motifs are aligned using TOMTOM (Gupta et al., 2007)

against known motifs from CISBP-RNA (Ray et al., 2013) for RBPs

and JASPAR (Mathelier et al., 2014) for transcription factors.

2.5 deepRAM
deepRAM is an end-to-end deep learning toolkit for predicting pro-

tein binding sites and motifs. It is designed to help users run experi-

ments using a variety of architectures and implements the fully

automatic model selection strategy described above. This helps

avoid the need for hand-tuning and thus removes, making it user
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friendly without losing its flexibility. While it was designed with

ChIP-seq and CLIP-seq data in mind, it can be used for any DNA/

RNA sequence binary classification problem.

deepRAM allows users the flexibility to choose a deep learning

model by selecting its different components: input sequence repre-

sentation (one-hot or k-mer embedding), whether to use a CNN and

how many layers, and whether to use an RNN, and the number of

layers and their type. For CNNs the user can choose to use dilated

convolution as well. Once the model is trained, the learned motifs of

the first convolutional layer are automatically extracted and visual-

ized using WebLogo, and then matched with known motifs using

TOMTOM.

We implemented deepRAM using PyTorch 1.0 (http://pytorch.

org/), which supports GPU acceleration. Our implementation has

been packaged to make it runnable on any Unix-based system, and

is available at: https://github.com/MedChaabane/deepRAM.

3 Results

3.1 Deeper is better
We evaluated and compared the performance of the models intro-

duced in Section 2.2 on the two tasks of predicting DNA- and

RNA- protein binding sites (see Fig. 2). Overall, all models

performed well with median AUCs >0.90 on ChIP-seq data and

>0.91 on CLIP-seq data. The proposed ECBLSTM model

(Embedding, Convolution, bi-LSTM) provided the most significant

improvement over DeepBind with a median AUC of 0.930 com-

pared with 0.902 for DeepBind on ChIP-seq data, and with a

more pronounced gap for CLIP-seq data: 0.951 for ECBLSTM

versus 0.914 for DeepBind. All the performance differences

described here are statistically significant except when noted expli-

citly (see Fig. 2). Detailed accuracy values for individual datasets

are provided in Supplementary Tables S1 and S2.

DeepBind is the simplest model considered here: it uses one-hot

sequence encoding, and a single convolutional layer. The results

shown in Figure 2 demonstrate that adding multiple convolutional

layers, dilated convolution and sequence embedding all provide

improved performance over the original DeepBind. The addition of

a recurrent module provides further improvement as seen by com-

paring the performance of ECBLSTM to a model called DeepBind-

E* which has multiple convolutional layers and an embedding stage.

This shows that adding recurrent connections to capture long-term

dependencies between motifs detected by the convolutional layer

leads to improved performance. The performance advantage of

RNNs is further highlighted by comparing the performance of

DanQ where the additional bidirectional LSTM layer has helped im-

prove its performance over DeepBind.

Our results demonstrate the performance advantage of deeper

more complex networks. This is in contrast to Zeng et al. (2016)

whose findings suggested that simpler models performed best in this

task. Furthermore, the finding that more complex networks per-

formed better demonstrates the effectiveness of our model tuning

strategy.

We note that iDeepS which is specifically designed for RNA-

binding and uses a CNN over sequence and local secondary struc-

ture in combination with an LSTM module, achieved a median AUC

of 0.917 for the CLIP-seq data, which is less than all the evaluated

methods except DeepBind (see Supplementary Figure S7 and Table

S4). All the deep learning methods performed better than iONMF

which uses multiple sources of data, including k-mer frequency, sec-

ondary structure and GO annotations (see Supplementary Table

S4). Finally, we also note that in both tasks, our implementation of

DeepBind achieved nearly identical performance to the original

DeepBind implementation (see Supplementary Figure S3).

3.2 k-mer embedding boosts model performance
We observe that using k-mer embedding to represent input sequen-

ces rather than one-hot encoding improves model performance, and

more so for the RBP binding datasets. For example, among models

with the same architecture, we see that ECBLSTM outperforms

DanQ in both tasks (see Fig. 2 and Supplementary Figures S2 and

S3). We also observe that in the task of RNA-protein binding site

prediction, all models that use embedding representation have

Table 1. Overview of the models compared in this work

Layers DeepBind DeepBinda Dilated DanQ DanQa DeepBind-Ea KEGRU ECLSTM ECBLSTM

Embedding 2 2 2 2 2 1 1 1 1

Convolution 1 1(3) 1(3)a 1 1(3) 1(3) 2 1 1

Recurrent 2 2 2 bi-LSTM bi-LSTM 2 bi-GRU LSTM bi-LSTM

Note: ‘þ’ and ‘�’ denote the presence and absence of the layer type respectively. ‘(.)’ denotes the number of convolution layers if present. In the recurrent layers,

if present, the type of RNN is specified.
aThe dilated architecture consists of three convolution layers, one non-dilated followed by two dilated (dilation¼ 2) convolution layers.

Table 2. deepRAM hyper-parameters, search space and sampling

method

Calibration parameters Search space Sampling

Embedding dimensionality 50 Fixed

Embedding k-mer length 3 Fixed

Embedding stride 1 Fixed

Motif length {10, 24}a Fixed

Number of filters {16, 32} Uniform

Pooling window size 3 Fixed

Pooling stride 1 Fixed

RNN hidden size {20, 50, 80, 100} Uniform

Dense layer size {None, 32 units, 64 units} Uniform

Optimizer {SGD, Adagrad} Uniform

Learning rate [1e-3, 1e-1] Log uniform

Momentum (SGD) [0.95, 0.99] Sqrt uniform

Number of learning steps [5000:40 000]b Evaluate all

Weight initialization {Xavier, normal} Uniform

CNN initial weight std [1e-6, 1e-1] Log uniform

RNN initial weight std [1e-6, 1e-1] Log uniform

Fully connected initial weight std [1e-5, 1e-1] Log uniform

Weight decay [1e-10, 1e-1] Log uniform

Dropout expectation {0.4, 0.55, 0.7, 0.85, 1} Uniform

Note: ‘initial weight std’ refers to the SD of the distribution used to choose

the weights.
aTen with k-mer embedding. 24 with one-hot encoding.
bStep¼ 5000.
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median AUC higher than 0.94 while all models that use one-hot

encoding have median AUC lower than 0.935 (Fig. 2C). These

results suggest that one-hot encoding is not the optimal strategy for

representation of DNA and RNA sequences. In contrast, k-mer

embedding provides contextual information by learning the statistic-

al information of k-mer co-occurrence relationships in the input

sequences.

In this work, we train the k-mer embedding algorithm for each

dataset with k¼3 and stride s¼1. Other studies (Min et al., 2017;

Shen et al., 2018) have shown that using different values of k-mer

length (values in the range of 4–7) does not have considerable effect

on model performance. In preliminary experiments, we have eval-

uated model performance by varying the k-mer length from 3 to 7

and found that k¼3 provided the best performance. In agreement

with other studies, we found that model performance increases with

decreasing stride values, and found that using stride value equal to 1

led to the best performance.

3.3 Deeper is better with sufficient training data
Based on the results shown in Figure 2, one may conclude that

relatively complex models tend to perform better than simpler

models. However, this statement is based on the evaluation of the

overall performance across all experiments and do not take into

consideration the effect of the number of training examples. To

study this aspect, we divided the ENCODE ChIP-seq datasets into

two groups according to the number of training examples. The

first group consists of 38 datasets with <10 000 positive training

samples, and the second group consists of 45 datasets with more

than 10 000 positive training samples. We compare the perform-

ance of different models in these two groups and report the results

in Figure 3. We observe considerably higher AUCs for the large

datasets with median AUCs between 0.967 (DeepBind) and 0.993

(ECBLSTM) compared to median AUCs between 0.864

(DeepBind) and 0.879 (DeepBind-E*) for the small datasets. It is

also worth noting that the effect of the number of training exam-

ples is more pronounced with hybrid models (see Fig. 3 and

Supplementary Figure S4). Indeed, ECBLSTM, ECLSTM and

DanQ* tend to perform very strongly for large datasets (median

AUCs above 0.983) while interestingly, they fell behind

DeepBind-E* when used on smaller datasets. This suggests the

need for sufficient training data for hybrid models. Complex mod-

els such as ECBLSTM still perform well even for the smaller data-

sets, demonstrating that our regularization procedure was

effective in preventing over-fitting.

Fig. 2. (A) The distribution of AUCs across 83 ChIP-seq datasets. (B) Heatmap annotated with P-values of pairwise model comparison using the Wilcoxon signed-

rank test for ChIP-seq datasets. (C) The distribution of AUCs across 31 datasets for predicting RBP binding sites. (D) Heatmap annotated with P-values of pairwise

model comparison using the Wilcoxon signed-rank test for predicting RBP binding sites. In subfigures (A) and (C), the triangle represents the average AUC for the

respective model, the annotated vertical line represents the median AUC whose value is indicated. The models are sorted by their average AUC values. In subfig-

ures (B) and (D), the color red or blue at position (i, j) in the heatmap indicates which model has a high average AUC, and its intensity indicates the magnitude of

the difference
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3.4 Dilated convolution
Dilated convolution uses filters with gaps to allow each filter to cap-

ture information across larger and larger stretches of the input se-

quence (Yu and Koltun, 2015). Hence, dilated convolution finds

usage in applications that benefit from modeling of a wider context

without incurring the increased cost of using RNNs (Gupta and

Rush, 2017; Kelley et al., 2018; Strubell et al., 2017).

In this work, we evaluate a dilated model which consists of three

convolutional modules with dilation parameters equal to 1, 2 and 2

in the first, second and third layers, respectively. We find that the

dilated convolutional model outperforms DeepBind* with signifi-

cant P-values in both tasks (Fig. 2). In addition, the dilated convolu-

tional model had slightly higher median AUC than DanQ in the RBP

binding sites datasets, which suggests that dilated convolution can

capture long-range relationships similarly to LSTMs. These findings

suggest that dilated convolution is a valuable architecture parameter

to consider. This is likely to be even more pronounced for longer

sequences such as those modeled using the Basenji method for ex-

ample (Kelley et al., 2018).

3.5 GRU or LSTM?
The results shown so far do not allow a direct comparison of GRU

and LSTM units. To make that comparison we performed experi-

ments on two additional architectures: (i) CNN layer followed by

bidirectional GRU, using sequence embedding as input and (ii) a sin-

gle bidirectional LSTM layer using sequence embedding as input.

The first architecture is directly comparable to the ECBLSTM archi-

tecture, while the second is directly comparable to KEGRU. In both

cases we observed negligible difference between the corresponding

architectures (see Supplementary Figures S5 and S6).

3.6 Cross-assay performance
Binding assays, and especially in-vivo assays like ChIP-seq, have

assay-specific biases (Chen et al., 2012). To test whether complex

models are more affected by those biases, we identified three tran-

scription factors in the ChIP-seq collection for which SELEX data

are available (MAX, RFX5 and YY1). We then compared the per-

formance of models trained and tested on ChIP-seq data with the

performance of models trained on SELEX and tested on ChIP-seq

data. In all cases cross-assay performance was lower as expected,

and the more complex model (ECBLSTM) performed better than

the simplest model (DeepBind), in addition having better same-assay

performance (see Supplementary Table S5). This result provides

support for the merit of complex deep learning models and demon-

strates their ability to learn biologically relevant features.

3.7 Model interpretation and visualization
To explore the ability of selected architectures to capture inform-

ative motifs, we chose a random sample of ChIP-seq experiments

and extracted motifs from the first convolutional layer as described

in Section 2.4. As shown in Figure 4A, DeepBind and DeepBind-E*

are able to detect informative motifs that match well with known

motifs from the JASPAR database. However, ECBLSTM turns out

to perform poorly in detecting motifs compared to the two other

models and most of its detected motifs are not informative despite

the fact that it is the best performing model among all the models

we compared. We hypothesize that when combined with RNNs, the

CNN filters learn information that is geared toward providing the

subsequent recurrent layer with the information it needs, which is of

a different nature than the localized information learned by CNN-

only models.

To further investigate the difference between the behavior of hy-

brid models and CNN-only models, we explored the distribution of

sequence fragments with positive activation values for a given filter

with DeepBind and ECBLSTM in the positive and negative exam-

ples (Fig. 4B). As expected, the number of activated sequence frag-

ments in positive sequences is much higher than in negative

sequences in both methods. In addition, we observe that the acti-

vated sequence fragments in positive sequences using DeepBind are

concentrated in the middle of the sequence, and are uniformly dis-

tributed for negative examples. This phenomenon was not observed

in the CLIP-seq data, where activated sequence fragments were uni-

formly distributed for both positive and negative examples.

However, using ECBLSTM the activated sequence fragments are

distributed uniformly across the sequence for both positive and

negative sequences. Noting that the centers of positive sequences

correspond to the reported ChIP-seq peaks, we conclude that

DeepBind is detecting sequence motifs that represent the binding

event while ECBLSTM’s convolution stage is extracting features

that span the whole sequence. This is in agreement with our finding

that RNNs lead to a representation which has reduced interpretabil-

ity compared to that of CNNs.

4 Conclusion

In this work, we performed an in-depth analysis and evaluation of

the performance of commonly used deep learning architectures for

Fig. 3. (A) The distribution of AUCs in predicting DNA-protein binding sites across 38 ChIP-seq experiments with <10 000 peaks. (B) The distribution of AUCs in

predicting DNA-protein binding sites across 45 ChIP-seq experiments with more than 10 000 peaks. Figure notation follows the description in Figure 2
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DNA and RNA-binding site prediction. This study was aimed at

providing a better understanding of the performance characteristics

and advantages of different architectures to help users choose the

right architecture for their work. Our experiments demonstrated

the accuracy of hybrid CNN/RNN models; however, that requires

the availability of sufficient training data, and these networks are

harder to interpret and hence their usefulness in motif discovery

might be limited. We have made the software used in our experi-

ments available as an easy to use tool to evaluate and analyze vari-

ous deep learning architectures for DNA/RNA-binding prediction in

a user friendly package called deepRAM. We hope this work will

stimulate further studies on visualizing and understanding deep

models and enhance their usefulness for analyzing biological se-

quence data.

Conflict of Interest: none declared.
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