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Abrupt onsets have been shown to strongly attract attention in a stimulus-driven, bottom-
up manner. However, the precise mechanism that drives capture by onsets is still debated.
According to the new object account, abrupt onsets capture attention because they signal
the appearance of a new object. Yantis and Johnson (1990) used a visual search task and
showed that up to four onsets can be automatically prioritized. However, in their study the
number of onsets co-varied with the total number of items in the display, allowing for a
possible confound between these two variables. In the present study, display size was
fixed at eight items while the number of onsets was systematically varied between zero
and eight. Experiment 1 showed a systematic increase in reactions times with increasing
number of onsets. This increase was stronger when the target was an onset than when it
was a no-onset item, a result that is best explained by a model according to which only one
onset is automatically prioritized. Even when the onsets were marked in red (Experiment
2), nearly half of the participants continued to prioritize only one onset item. Only when
onset and no-onset targets were blocked (Experiment 3), participants started to search
selectively through the set of only the relevant target type. These results further support
the finding that only one onset captures attention. Many bottom-up models of attention
capture, like masking or saliency accounts, can efficiently explain this finding.
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INTRODUCTION
Attention capture by abrupt onsets is a robust and a fairly undis-
puted finding. It has been replicated many times using various
methodologies (e.g., Todd and van Gelder, 1979; Yantis and
Jonides, 1984; Theeuwes, 1991). One of the most commonly used
methodologies is the placeholder search paradigm in which a pre-
view display consisting of figure-8 placeholders is followed by
a search display consisting of letters, along with a new letter at
a previously un-occupied location (Yantis and Jonides, 1984).
Participants search for a pre-specified target letter among various
distractor letters. Typically Reaction Times (RTs) are faster when
the target is the new item (the onset item) as compared to when
it is one of the old items (the no-onset items). Also, RTs gener-
ally increase as a function of display size for no-onset targets, but
not (or less so) for when the target is the onset item, suggesting
that the abrupt onset is always processed first, irrespective of the
number of items in the display. This effect occurs even when the
type of target (onset or no-onset) is irrelevant to the search task
(i.e., both onset and no-onset items are equally likely to be the tar-
get). Moreover, the capture effect seemed unique to abrupt onsets,
as changes in other dimensions, like color or luminance, did not
have the same effect on attention (Jonides and Yantis, 1988).

Nevertheless, there has been some debate about the mecha-
nism underlying onset capture. According to Hillstrom and Yantis
(1994), an abrupt onset constitutes the appearance of a new
object in the visual field and, thus, instantiates the creation of
an object file (cf. Kahneman et al., 1992), which requires the

allocation of attention to the location of the object. They used let-
ters that were perceptually new, but did not have an abrupt onset
and showed that capture was mediated by the status of the let-
ter as “new” rather than by their abrupt onset [also see Christ
and Abrams (2006) for a similar finding using a slightly different
method]. More evidence favoring the new object account comes
from studies which show that illusory objects capture attention
when these are perceived as new objects (Rauschenberger and
Yantis, 2001; Yeshurun et al., 2009). However, the placeholder
search paradigm remains the predominant methodology used to
study onset capture.

Alternative accounts have been proposed to explain capture by
abrupt onsets. For example, Miller (1989) argued that the cap-
ture effect comes from an increased local luminance change that
occurs primarily at the location of the onset letter. That is, in a
typical placeholder search paradigm, the local luminance change
associated with the appearance of all the segments of the onset
letter was usually larger than the selective disappearance of some
segments of a no-onset letter. He showed that the capture effect
disappeared when the overall change in luminance was held con-
stant between the onset and the no-onset items1 . Further support
for this account comes from Watson and Humphreys (1995) who
showed that increases and decreases in luminance (as occurs with
onsets and offsets) had the same effect on attention when the

1The number of line segments that were deleted to form the no-onset letter
was the same as the number of line segments that made up the onset letter.
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overall change in luminance was kept constant. However, other
studies have shown that a luminance change by its own cannot
entirely account for the capture effect with abrupt onsets. For
example, Enns et al. (2001) showed that a new object with a small
luminance change was found faster than an old object with a large
luminance change, supporting the new object account. Moreover,
Gellatly et al. (1999) showed that a new object captures attention
even when it was equiluminant with the background.

Yet another explanation of capture by abrupt onsets was
offered by Gibson (1996a), who argued that an abrupt onset
captures attention because it becomes available earlier than the
no-onset items. In a series of experiments, he showed that search
was faster in displays with all onsets as compared to displays with
all no-onset items. He suggested that the placeholders preceding
no-onset letters act as pre-masks, reducing their visual quality
relative to that of onset items. This means, in the placeholder
search paradigm the mask would slow down the processing of
the no-onset item, and attention would simply be allocated to the
first available item, the onset—the only item that would not be
masked. Therefore, capture was put down to faster/better stimu-
lus encoding of onsets rather than its status as a new object (but
also see Gibson, 1996b; Yantis and Jonides, 1996). However, the
masking account has also been criticized because no RT difference
was observed between onset and no-onset stimuli in a detection
task when attention was already allocated to the stimulus location
(Yantis and Jonides, 1984; Yantis and Hillstrom, 1994). Thus, it
remains an open question whether the onset effect results from an
attentional advantage to the onset items or from a sensory deficit
suffered by the no-onset items.

Further evidence for the special status of onsets in attention
capture comes from the finding that up to four abrupt onsets are
automatically prioritized in visual search (Yantis and Johnson,
1990; Yantis and Jones, 1991). Yantis and Johnson used a place-
holder search paradigm with various display sizes (for example,
6, 8, 12, and 16 in Experiment 3), but with an equal number of
onsets and no-onsets. Every trial started with the presentation of
eight placeholders for 1 s. Then, depending on display size, place-
holders disappeared (5, 4, 2, or 0, respectively) or changed to
letters (3, 4, 6, or 8, respectively), and simultaneously, new let-
ters appeared (3, 4, 6, or 8, respectively) such that the number
of old (changed) objects and new (added) objects in the display
were the same. The target was equally likely to be an onset or a
no-onset item. They found that target type (onset or no-onset)
interacted with display size between 6 and 8 items but not between
8 and 16 items. They took this as indirect evidence for their claim
that participants selectively searched through up to four onsets
before going through the remaining items in the display. They
proposed a priority tag model, according to which all onsets are
automatically priority tagged to be selectively searched. However,
these tags decay over time and usually around four items are
examined before the tags have decayed completely. Consistent
with the idea that search times are directly linked to the rate
of information extraction, Yantis and Jones (1991) showed that
the number of items that was prioritized decreased from four to
three when the visibility (i.e., visual quality) of the stimuli was
reduced. Considering that onsets were not more likely to be the
target than no-onset items, we would argue that the automatic

prioritization of up to four items is somewhat surprising, given
that observers had no incentive and no benefit from prioritizing
that many items. That is, in spite of the target type being irrele-
vant to search, the onset set seems to get a large advantage during
search, and consequently, the cost to the no-onsets would have
been quite substantial.

This result seems to be in direct conflict with the salience
based accounts of capture, which assume that capture effects are
rather short lived and allows quick disengagement of attention
(e.g., Kim and Cave, 1999; Donk and van Zoest, 2008). The the-
oretical implications of multi-element capture spans literature on
attention capture in general as abrupt onsets are the only type of
stimulus that survive the strictest test for capture using the irrele-
vant feature paradigm (Rauschenberger, 2003; Theeuwes, 2010).
Hence it is important to establish the RT cost arising from having
multiple onset distractors as well as to establish the RT advantage
associated with the onset target.

In a series of three experiments we aim to see how the cost-
benefit curve of onsets changes as a function of the number of
onsets in the display. For a better estimate of the number of onsets
that are automatically prioritized in visual search, it is suggested to
keep the overall display size constant while the number of onsets
is systematically varied. We believe this provides a better measure
for attention capture than in Yantis and colleagues’ study because
an increase in RT is more directly linked to the number of onsets
that capture attention, as there are no interference effects due to
display size variations.

This would also give a more direct measure than Yantis and
colleagues’ paradigm as an increase in RT with an increase in the
number of onsets would indicate that attention was captured by
multiple onsets. An estimation of the number of items that cap-
ture attention can be done as described in the following section.
The following model can fit a number of possible mechanisms,
including the priority tagging model by which capture occurs.
The focus in the present study is to provide an estimate of the
number of onsets that are automatically prioritized and not to
test a precise mechanism by which this is done. However, we will
explain the models and make assumptions according to the prior-
ity tag model as this is the only model that currently accounts for
simultaneous capture of multiple onsets.

A FORMALIZED PRIORITY TAG MODEL
For simplicity, the priority tag model assumes that search operates
as a serial self-terminating process2. Moreover, the model makes
three assumptions: First, onsets are prioritized and there is a limit
to the maximum number of items that can be prioritized. When
the number of onsets exceeds the capacity of the priority set (i.e.,
there are more onsets than priority tags), a random subset of
onsets is tagged. Second, search operates in two stages, where a
subset of items (the priority set) is searched before the remaining
items (the non-priority set). Third, within each subset, items are
sampled in random order3 .

2For a discussion of serial and parallel processing see Nakayama and
Silverman (1986) and Townsend (1971, 1990)
3According to Yantis and Johnson (1990), all onsets are priority tagged, but
search is possible only through a few of them as the tags decay over time.
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This model determines y, which is the expected number of
comparisons that are required to find the target. As it assumes a
serial-self terminating search, the expected umber of comparisons
are based on (n + 1)/2. However, the expected number of com-
parisons is also dependent on, first, the capacity of the priority set
c, which refers to the maximum number of items that are tagged
for priority processing. Second, it is dependent on three display
factors: the total number of items (display size) n, the number of
onsets x, and the target type t, that is, whether the target is an
onset or a no-onset item4 .

In the following equations, the calculation of y depends on
two factors (yielding four equations): The first factor determines
whether the priority set capacity is less than the number of onsets
(c < x) or whether it exceeds or is equal to the number of onsets
(c ≥ x). The second factor determines whether the target is an
onset item or a no-onset item.

y(c; n, x) = c

x
· c + 1

2
+

(
1 − c

x

)
·
(

c + n − c + 1

2

)
,

for c < x, t = onset (1)

y(c; n, x) = n + c + 1

2
− cn

2x
, for c < x, t = onset (1a)

Equation 1 gives the expected number of comparisons y required
to find the target when it is an onset (t = onset) and when the
priority set capacity is smaller than the number of onsets (c < x).
Because there are more onsets than priority tags, a random subset
of onsets (the priority set) is tagged and searched. This first stage
is represented in the first expression in the right of equation 1,
which multiplies the probability of the target being in the priority
set (c/x) by the expected number of comparisons required to find
the target in that set (c + 1)/2. When the target is not in the pri-
ority set, search continues to scan through the remaining items
(the non-priority set) in random order, irrespective of whether
these are onset or no-onset items. This second stage is represented
in the second expression of Equation 1, where the probability of
the target being in the non-priority set (1 − c/x) is multiplied by
the expected number of comparisons required to find the target
when it is in that set. This latter number comprises searching the
entire priority set (c) and finding the target in the non-priority set
(n − c + 1)/2. Equation 1 can be simplified to Equation 1a.

y(c; n, x) = x + 1

2
, for c ≥ x, t = onset (2)

However, for simplicity we assume here that only a limited number of onsets
is selected and that the estimated value will be equivalent to the number of
onsets that can be searched before the tags fade away.
4The model also assumes that search efficiency (i.e., the time required to
inspect one item) is constant. Search performance only varies as a function
of inspection order, which is determined by the model parameters and the
display factors.

Equation 2 gives y for when the target is an onset (t = onset) and
when the priority set capacity is greater than or equal to the num-
ber of onsets (c = x). Because there are fewer onsets than priority
tags, all onsets are tagged, and because the target is an onset only
the priority set needs to be searched. Hence, the expected number
of comparisons required to find the target depends only on the
number of onsets (x).

y(c; n, x) = c + n − c + 1

2
, for c < x, t = no-onset (3)

y(c; n, x) = n + c + 1

2
, for c < x, t = no-onset (3a)

Equation 3 gives y for when the target is a no-onset (t = no-
onset) and the priority set is smaller than the number of onsets
(c < x). Because there are more onsets than priority tags, a ran-
dom subset of onsets is tagged. Moreover, because the target is a
no-onset item, the entire priority set (of onsets) must be searched
first, what is represented by c in the first expression of Equation 3.
The second expression of the equation shows the expected num-
ber of comparisons required to find the target in the non-priority
set (n − c + 1)/2. Equation 3 can be simplified to Equation 3a.

y(c; n, x) = x + n − x + 1

2
, for c ≥ x, t = no-onset (4)

y(c; n, x) = x + n + 1

2
, for c ≥ x, t = no-onset (4a)

Finally, Equation 4 gives y for when the target is a no-onset item
(t = no-onset) and the priority set capacity is greater than or is
equal to the number of onsets (c ≥ x). Because there are fewer or
equal numbers of onsets than priority tags, all onsets are tagged,
and because the target is a no-onset the entire priority set (of
onsets) needs to be searched first, what is represented by x in the
first expression of Equation 4. The second expression of the equa-
tion represents the expected number of comparisons required to
find the target in the non-priority set (n − x + 1)/2. Equation 4
can be simplified to Equation 4a.

Figure 1 shows the expected number of comparisons for a
fixed display size of eight items (n = 8). Each graph shows the
expected number of comparisons for a given capacity (c = 0, 1,
2, 4, 6, and 8) as a function of number of onsets (x = 0 to 8),
with separate lines for when the target is an onset or a no-onset
item. As can be seen, when no onset is tagged (c = 0) then the
number of onsets has no effect on RT, whereas when all onsets are
tagged, (c = 8) then RTs increase linearly with number of onsets,
at the same rate for onsets and no-onset targets (even though
onset targets require on average four comparisons less than no-
onset targets). For all intermediate levels of c the model predicts
some form of interaction between the target type and the number
of onsets.

In order to estimate the best fitting value of y in the pro-
posed model above, behavioral data was collected and fitted
against the different model predictions. In a first experiment,
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FIGURE 1 | Expected number of comparisons y as a function of number of onsets x with separate lines for onset and no-onset targets. Each graph
represents a different capacity c.

the display size was fixed at eight while target type (onset, no-
onset) and number of onsets (x = 0, 1, 2, 4, 6, or 8) were
systematically varied. The aim of the experiment was to deter-
mine the value of c that provides the best fit between the
model and the data. This value would determine the maximum
number of onsets that would be processed automatically with
priority.

EXPERIMENT 1
Experiment 1 used a placeholder search paradigm where the
number of onsets was systematically varied between zero and
eight. The display size was fixed at eight items so that changes to

the number of onsets was the only factor determining changes in
attentional prioritization, avoiding possible confounds between
the number of onsets and the display size.

METHODS
Participants
In this and in all subsequent experiments, students from the
University of Warwick participated in return for course credit.
They all reported normal or corrected to normal visual acuity,
they were naïve to the purpose of the experiment, and they par-
ticipated only once. The present experiment had 22 participants
(8 males, 14 females, mean age 19.4 years).
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Apparatus and stimuli
The participants were seated in a dimly lit sound attenuated
room in front of a 19′′ CRT monitor at a distance of approx-
imately 57 cm. The monitor was driven at 100 Hz at a resolu-
tion of 1024 × 786 pixels. The experiment was controlled by an
IBM-PC compatible computer using custom written software.
Participants’ responses were recorded using the left and right
arrow keys on a standard keyboard. Stimuli consisted of a fixation
cross, figure-8 placeholders, and letters, presented in gray (lumi-
nance 8.5 cd/m2) drawn on black background (0.02 cd/m2). The
fixation-cross subtended a visual angle of 0.6 × 0.6◦ and was pre-
sented at the center of the screen. The figure-8 placeholders and
letters subtended 1 × 2◦ and were made of seven line segments
(length 1.0◦, thickness 0.13◦). The letters “H” and “U” served as
targets and, “S,” “E,” “F,” “O,” “C,” “P,” and “A” as distractors. The
letters were made by removing the corresponding line segments
from the figure-8. The stimuli were placed on the circumference
of an imaginary circle (radius 12.5◦) centered on fixation, such
that the letters were equidistant from each other (see Figure 2).

Procedure and design
A trial started with the presentation of a preview display that
consisted of a fixation cross and figure-8 placeholders presented
for 1000 ms (see Figure 2). The number of placeholders was sys-
tematically varied between 8, 7, 6, 4, 2, and 0. The preview
display was followed by the search display, which always contained
eight letters. Hence, depending on the number of placeholders,
the search display had 0, 1, 2, 4, 6, or 8 onset items, respec-
tively. The no-onset letters were revealed by deleting the irrelevant
line segments from the corresponding placeholders, whereas the
onset letters always appeared at previously unoccupied locations
(see Figure 2). The target was equally likely to be an onset or a
no-onset.

FIGURE 2 | An example display showing the sequence of events in

Experiment 1 with four onsets and four no-onset items (preceded by

figure-8 placeholders). Display size was fixed at 8, but the number of
onsets varied systematically from 0, 1, 2, 4, 6, to 8.

Participants were asked to search for the target and to respond
with the left or right arrow keys. Half of participants pressed the
left key for “H” and the right key for “U,” and vice versa for
the other half. They were instructed to respond to the target as
quickly as possible whilst trying not to make more than 5% errors.
They were also told that the preceding placeholders were not task-
relevant and that the target would appear with equal likelihood at
any of the eight possible locations. The search display stayed on
until the participant responded or 10 s had elapsed. Trials with
no response within 10 s were marked as an error. In the instance
of wrong responses, immediate feedback was displayed on the
screen saying “error” and participants had to press the space bar to
continue with the next trial. The inter-trial interval was 1 s. The
proportion of trials where the target was an onset was inversely
related to the number of onsets in the display, in order to ensure
that the target was not more likely to be an onset than a no-
onset item. For example, when the display contained one onset,
the target was the onset in 1/8 of the trials and a no-onset in the
remaining 7/8 of the trials, but when the display contained four
onsets, the target was an onset in half the trials or a no-onset in
the other half of trials (the number of trials in each condition is
also given in Table 1).

Each participant completed 20 practice trials followed by 400
experimental trials. The experimental trials were divided into
eight blocks of 50 trials each, with short enforced breaks between
blocks. The experiment systematically varied three factors: target
identity (H or U), target type (no-onset, onset), and number of
onsets (0, 1, 2, 4, 6, or 8). All possible factor combinations were
presented in random order. In the analysis, target identity was not
considered.

RESULTS
RTs
Mean correct RTs were calculated separately for each participant
and factor combination, excluding outlier trials with RTs smaller
than 200 ms or larger than 2000 ms (1.1% of all trials). Figure 3
shows the averaged RTs as a function of number of onsets with
separate lines for each target type. A 2 × 4 Repeated Measures
ANOVA with the factors target type (no-onset or onset) and
number of onsets (1, 2, 4, or 6, excluding 0 and 8 onsets in

Table 1 | Number of trials (N) and percentage errors (%) for different

target type and number of onsets in Experiment 1.

Number of onsets Target type

No-Onset Onset

N Error (%) N Error (%)

0 20 4.1 0 −
1 140 4.3 20 2.4

2 60 4.6 20 2.2

4 20 4.8 20 2.8

6 20 4.3 60 3.0

8 0 − 20 3.9

Total (Mean) 260 (4.4) 140 (2.9)
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order to have a fully factorial design) was calculated. Greenhouse-
Geisser corrections were used in this and all subsequent ANOVAs.
There was a significant main effect of target type F(1, 21) = 96.51,
p < 0.001: onset targets were found on average 113 ms faster than
no-onset targets. The main effect of number of onsets was also
significant F(3, 63) = 6.79, p < 0.005: RTs increased in total by
46 ms from one onset to six onsets. Moreover, there was a sig-
nificant 2-way interaction, F(3, 63) = 8.23, p < 0.001, which was
further explored with two separate 1-way ANOVAs with the fac-
tor number of onsets (including 0 and 8 onsets where available).
There was no significant effect when the target was a no-onset
item, F < 1, but a highly significant effect when the target was
an onset, F(4, 84) = 16.18, p < 0.001: RTs increased on average by
103 ms from one onset to six onsets.

Errors
Mean percentage errors were calculated separately for each par-
ticipant and factor combination (see Table 1). Error rates were
relatively low (on average 3.7%), suggesting that participants had
no problems following the instruction to keep the error rate below
5%. A 2 × 4 repeated measures ANOVA with the factors target
type (no-onset, onset) and number of onsets (1, 2, 4, or 6 items)
revealed a significant main effect for target type, F(1, 21) = 6.03,
p < 0.05, due to the somewhat higher error rate for no-onset than
for onset targets (4.4 vs. 2.9%, respectively). Although the other
effects were not significant (both F < 1), errors showed overall
a very similar pattern to the RTs, suggesting that RTs were not
confounded by speed-accuracy trade-offs.

Model fitting
Eight multiple regressions were calculated to determine the model
parameter c that provided the best fit for the RTs observed in
Experiment 1. The expected number of comparisons, y (as pre-
dicted by Equations 1–4), are taken as a direct estimate for the

FIGURE 3 | The symbols show the mean correct RTs for onset and

no-onset targets in Experiment 1. The lines and the R2 show the result of
a multiple regression analysis, predicting RT based on the 1-tag model,
which provided the best fit.

RT (see also Figure 1). Previous studies have shown that RTs
are generally faster when a search display contains only onset as
compared to when it contains only no-onset items (e.g., Gibson,
1996a). However, our model does not account for such a differ-
ence, as can be seen from Figure 1, where the expected number
of comparison in these two cases is always 4.5, irrespective of the
priority set capacity. In order to allow a better fit of our data, we
have incorporated this difference by adding the predictor target
type t(0, 1) to the regression, which will add the weight b to the
RT when the target is an onset (t = 1).

RT(c) = a · y(c; n, x) + b · t + d (5)

The regression weight (a) represents the search rate (ms/item) as
it stands for the expected number of comparisons as predicted by
the c- tag model (see Equations 1–4); the regression weight (b)
represents the onset advantage as it stands for target type (0 =
onset, 1 = no-onset); finally the constant (d) represents the time
taken for all other processes involved in making the visuo-motor
response. The results of the regressions analyses are presented in
Table 2, separately for each value of number of priority tags (c =
1, 2, 3, 4, 5, 6, 7, or 8). As can be seen in the last column, the 1-tag
model provides the best fit (r2 = 0.977), with the goodness of fit
continuously decreasing as the number of tags increase.

In order to allow a statistical test comparing the goodness of fit
for the various tag-models, the regressions were calculated indi-
vidually for each participant and each number of priority tags
(c). A one-way ANOVA on these resulting R2 values with the fac-
tor number of priority tags showed a significant effect, F(5, 105) =
6.78, p < 0.01. Post-hoc LSD comparisons revealed that the differ-
ence between each level pair was significant (all p < 0.05), except
the difference between the 1-tag model and the 2-tag model (p =
0.34). In other words, the 1–2 tag models provide a significantly
better fit than the 3–8 tag models. Also, the 3-tag model provides
a better fit than the 4–8 tag models, the 4-tag model than the 5–8
tag models, and the 5-tag than the 6–8 tag models.

DISCUSSION
In Experiment 1, we tested the effect of simultaneous multiple
onsets on attention capture. We used search displays with eight
items, while systematically varying the number of onsets. The

Table 2 | Summary of eight separate regression analyses predicting

RT in Experiment 1 for the various priority tag models.

C a (SE ) b (SE ) d (SE ) R2

0 −a −a −a −a

1 31.6 (4.2) −74.1 (10.3) 764 (21.7) 0.977

2 27.7 (4.0) −59.5 (12.4) 774 (21.8) 0.974

3 26.7 (4.7) −52.9 (16.0) 774 (26.8) 0.963

4 23.6 (5.8) −53.1 (21.3) 786 (33.8) 0.939

5 21.4 (6.4) −56.8 (24.6) 797 (38.3) 0.920

6/7/8b 18.8 (6.9) −62.4 (27.5) 810 (41.7) 0.900

aThe 0-priority tag model predicts no variation.
bThe 6-, 7-, and 8-priority-tag models make the same prediction for this data set.
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results showed a RT pattern that was most similar to the pat-
tern of expected number of comparisons as predicted by the 1-tag
model (cf. Figures 1, 2). For example, the finding that RTs for
onset targets increased most between one onset and two onsets
was predicted only by the 1-tag model. Also, the fact that RTs
did not change much for no-onset targets also fits best with the
1-tag model. This interpretation was further confirmed by mul-
tiple regression analyses, which showed the best fit for the 1-tag
model. The fit for the 1-tag model was significantly better than the
fit for all the other models, except for the 2-tag model. However,
even though the data is equally well fitted by the 2-tag and the
1-tag model, we would argue that the 1-tag model provides a
better explanation of the data, as it won’t rely on a tagging mech-
anism, in order to explain onset capture. Other simpler accounts
(e.g., Gibson, 1996a, or Donk and van Zoest, 2008) could explain
capture by onsets in the absence of capture by multiple onsets.

The present findings, however, are in stark contrast to pre-
vious studies showing that up to four onsets are automatically
prioritized in search (Yantis and Johnson, 1990; Yantis and Jones,
1991). While we fixed display size at eight and varied only num-
ber of onsets, Yantis and colleagues varied both display size (4–16
items) and number of onsets (2–8 onsets) together. One possible
explanation for the difference between their and our study could
be that in their study the deflection point in the RT slope was
skewed by a commonly observed flattening of the RT slope at the
larger display sizes (e.g., Wolfe et al., 2010). In other words, the
gradual flattening of the RT slope in Yantis and Johnson (1990)
third experiment might have been wrongly interpreted as a deflec-
tion point occurring at display size eight (as was predicted by the
four-tag model).

The present results can be better explained by a purely bottom-
up account of attention capture. Searching for a letter among
other letters is only a moderately difficult task, and we would
expect that after the initial capture, search becomes more guided
by the target identity than by the target type, as the latter is
entirely task irrelevant. Hence we would expect that only one
onset (if present) is inspected with priority. This corresponds to a
purely bottom up model of attention capture, which suggest that
capture is triggered by an increased saliency signal that accom-
panies abrupt display changes (Theeuwes, 2010). Recent studies
have shown that such salience signals can be very short-lived
(e.g., Donk and van Zoest, 2008). Re-entrant processes take over
after the initial feed forward sweep, and the identity of the letters
could be actively prioritized over its onset status (Di Lollo et al.,
2000). Capture by a single onset fits well with models according to
which the initial boost enjoyed by abrupt onsets is not sustained
beyond the inspection of the first element. The present experi-
ment therefore suggests that attention capture is better explained
by a bottom-up, salience based model than an automatic priority
tagging model.

EXPERIMENT 2
Experiment 1 suggests that, in a display with multiple simulta-
neous onsets, only one onset is automatically prioritized. This
result fits well with bottom-up theories of capture where the onset
advantage is short lived and search quickly turns to object identity
rather than onset status in order to find the target. One possible

reason for a short-lived onset advantage might be that it was not
possible to distinguish between onset and no-onset items once the
letters were revealed. Maybe capture by multiple onsets would be
facilitated if the onsets were in some way distinguishable from the
other items for the duration of the search. In Experiment 2, the
onset items were therefore presented in red, distinguishing them
from the no-onset items (which remained gray). This distinctive
feature marked the onsets throughout the entire search process,
preventing the decay of the onset information. In Experiment 2 it
was thus expected that the color difference would help to tag and
prioritize more than one onset item. Moreover, in Experiment 2,
two additional levels for number of onsets (3 and 5 onsets) were
included in order to allow for better fit of the various tag models.

METHODS
Twelve participants (3 male, 9 female, mean age 19.5 years) took
part in this experiment. The apparatus, stimuli and procedure
were the same as in Experiment 1, except that all onset letters were
presented in red (luminance 6.4 cd/m2). The design was similar to
that of Experiment 1, except that number of onsets had two addi-
tional levels (3 and 5 onsets), increasing the total number of trials
to 560 (see also Table 3).

RESULTS
RTs
Mean correct RTs were calculated separately for each partici-
pant and factor combination, excluding 1.9% outlier trials (see
Figure 4). A 2 × 6 ANOVA with the factors target type (no-onset
or onset) and number of onsets (1, 2, 3, 4, 5, or 6, excluding 0
and 8 to have a fully factorial design) showed a significant main
effect of target type F(1, 11) = 24.44, p < 0.001: onset targets were
found on average 139 ms faster than no-onset targets. The main
effect of the number of onsets was also significant F(5, 55) = 3.68,
p < 0.05: RTs increased on average by 25 ms from one onset to six
onsets. The two-way interaction between target type and number
of onsets did not reach significance F(5, 55) = 1.39, p = 0.27. Two
separate 1-way ANOVAs were calculated with the factor number
of onsets, in order to include the level 0 onset (no-onset target)
and the level 8 onsets (onset-target). There was no significant

Table 3 | Number of trials (N) and mean percentage errors (%) for

different target type and number of onsets in Experiment 2.

Number of onsets Target type

No-onset Onset

N Error (%) N Error (%)

0 20 2.5 0 −
1 140 3.5 20 2.1

2 60 4.6 20 1.4

3 50 4.4 30 3.3

4 20 3.6 20 1.8

5 30 3.6 50 3.9

6 20 3.9 60 4.2

8 0 − 20 2.1

Total (Mean) 340 (3.7) 220 (2.7)
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FIGURE 4 | The symbols show the mean correct RTs for no-onset and

onset targets in Experiment 2. The lines and R2 show the best fit from a
multiple regression analysis, predicting RT based on the 1-tag model, which
provided the best fit.

effect when the target was a no-onset item, F < 1, but a highly
significant effect when the target was an onset, F(6, 66) = 4.99,
p < 0.005, due to an RT increase of 122 ms from 1–8 onsets.

Errors
Mean percentage errors were calculated separately for each par-
ticipant and factor combination (see Table 3). Overall error rates
were relatively low (on average 3.2%). A 2 × 6 repeated mea-
sures ANOVA with the factors target type (no-onset, onset) and
number of onsets (1, 2, 3, 4, 5, or 6 items) revealed a marginally
significant main effect for target type, F(1, 11) = 4.78, p = 0.051,
due to the somewhat higher error rate with no-onset targets
than with onset targets (3.7 vs. 2.7%, respectively). Again, there
was no indication that RTs were confounded by speed-accuracy
trade-offs.

Model fitting
As in Experiment 1, eight multiple regression analyses using
Equation 5 were used to determine the model parameter c that
provides the best fit for the RTs observed in Experiment 1. As can
be seen from the last column in Table 4, again, the 1-tag model
and 2-tag model provide the best fit (R2 = 0.979 and 0.980,
respectively), with the goodness of fit continuously decreasing as
the number of tags increase. Note that although the values provid-
ing the best fits were of similar magnitude, the R2 range was much
smaller in this experiment (0.955–0.980) than in the previous
experiment (0.900–0.977). This observation was also confirmed
in a one-way ANOVA on the individual R2, which failed to show a
significant effect for number of priority tags, F < 1. Thus, despite
this range of R2 values, statistically, all models provide an equally
good fit for the RT data in Experiment 2.

DISCUSSION
Experiment 2 tested whether adding a distinctive feature to all
onsets changed their attentional priority. As in Experiment 1,

Table 4 | Summary of eight separate regression analyses predicting

RT in Experiment 2 for the various models.

C a (SE ) b (SE ) c (SE ) R2

0 −a −a −a −a

1 34.7 (3.8) −77.9 (8.0) 797 (19.0) 0.979

2 30.5 (3.2) −58.4 (9.4) 806 (17.7) 0.980

3 29.1 (3.4) −45.8 (11.4) 805 (19.5) 0.976

4 27.2 (3.9) −41.2 (14.4) 810 (23.2) 0.966

5 25.6 (4.1) −41.1 (16.1) 816 (25.2) 0.959

6/7/8b 24.4 (4.2) −42.8 (17.0) 821 (26.1) 0.955

aThe 0-priority tag models predicts no variation.
bThe 6-, 7-, and 8-priority-tag models make all the same prediction.

the best fit seemed to come from a model where only one or
two onsets capture attention. A comparison of the RT pattern in
Figure 3 with the model predictions in Figure 1, suggests that the
RT data is best predicted by a model in which only one onset cap-
tures attention. For example, the RT increase for onset targets was
again at its peak between one and two onsets; and RTs did not
change much for no-onset targets, except from zero onset to one
onset (p = 0.07), corresponding to the predictions of the 1-tag
model. However, in comparison to Experiment 1, these differ-
ences between the 1–2-tag and the 2–8-tag models did not reach
statistical significance. A possible explanation for this smaller
range of R2 could be based on individual differences in the dis-
tribution of best-fit R2 values across participants. In Experiment
1, the data from the majority of the participants (18 out of 22)
seemed to fit with a 1–2-tag model, whereas in Experiment 2 only
half of the participants’ data (6 out of 12) seemed to fit with a 1–
2-tag model. This indicates that when the onsets were red, more
participants were using a multi-tag strategy, where they paid par-
ticular attention to the colored onset items. This can be taken as
preliminary evidence that the color difference might have affected
at least some of the participants.

Nevertheless, it is important to note that at least half of the par-
ticipants appeared to have used a 1–2-tag model. This suggests
that increasing the saliency of the onsets by coloring those red
did not change the capture effect in these participants. Because,
the red color (like target type) did not predict the target loca-
tion, participants had no incentive to attend more to the onset
than to the no-onset items. That is, it seems that after an initial
reflexive capture of attention by one or two abrupt onset, partic-
ipants were subsequently able to overcome capture and to exert
top-down control in order to focus on the task at hand. The find-
ing that automatic capture is limited to one or two onsets (at least
in half the participants), is again not in line with the findings of
Yantis and colleagues (Yantis and Johnson, 1990; Yantis and Jones,
1991) who reported that up to four onsets can capture attention.
The next experiment will further explore the limits for automatic
attentional allocation to more than one item.

EXPERIMENT 3
The results of Experiment 1 suggest that the majority of par-
ticipants (82%) automatically prioritized and searched one or
two abrupt onset. The final experiment investigates whether it is
possible to prioritize multiple onsets when participants knew in

Frontiers in Psychology | Cognition December 2013 | Volume 4 | Article 958 | 8

http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition
http://www.frontiersin.org/Cognition/archive


Sunny and von Mühlenen Attention capture by multiple onsets

advance what the target type was going to be. Moreover, it also
tests whether the same prioritizing occurs with no-onset items
(when it is known that the target is amongst them). Top-down
prioritization by onsets was tested by presenting the factor target
type in separate blocks so that in each block participants knew
whether the target was an onset or a no-onset item. This means
adopting a top-down set for selectively processing either onsets
or no-onsets in different blocks of the experiment. Being able
to tag multiple onsets (or no-onsets) becomes now beneficial to
the task, as it allows prioritizing potential target letters. Although
selectively searching through no-onsets could be beneficial to the
task, participants would first have to overcome the processing
advantage that is typically associated with abrupt onsets.

For modeling purpose, this means that the first assumption
needs to be changed, such that both target types (not only onset)
can be tagged. That is, either onset or no-onset items are automat-
ically priority tagged, depending on which target type is (in the
current block) relevant for the task; when the number of search
relevant items exceeds the number of priority tags, a random sub-
set of them is tagged. However, we can still operate by the second
assumption (division into priority and non-priority set) and the
third assumption (random order within each subset).

METHODS
Twelve participants (3 males, 9 females, mean age 18.5 years) par-
ticipated in this experiment. The apparatus, stimuli, procedure
and design were the same as in Experiment 1, with the following
differences: Target type (onset, no-onset) was blocked and pre-
sented in two consecutive sessions. Half the participants started
with onset followed by no-onset targets, and vice-versa for the
other half. At the beginning of each session participants were
told that the target was either always an onset item (with no
placeholder) or always a no-onset item (with placeholder). The
number of onsets was systematically varied from 0, 1, 2, 3, 4, 5, 6,
7, to 8 onsets, with a fixed number 32 trials for each combination
of target type and number of onsets. Thus, the experiment had a
total of 512 trials (see also Table 5).

Table 5 | Number of trials (N) and mean percentage errors (%) for

different target type and number of search-relevant items in

Experiment 3.

Number of search-relevant items Target type

No-Onset Onset

N Error (%) N Error (%)

1 32 4.2 32 2.9

2 32 2.6 32 6.0

3 32 3.4 32 2.6

4 32 4.2 32 3.9

5 32 4.7 32 2.3

6 32 5.2 32 4.2

7 32 4.7 32 3.4

8 32 2.1 32 4.7

Total (Mean) 256 (3.9) 256 (3.8)

RESULTS
RTs
Mean correct RTs were calculated separately for each target type
and number of onsets combination, excluding 0.9% outlier trials.
In order to allow better comparison between onset and no-onset
target types, Figure 5 plots RTs as a function of number of search
relevant items (instead of number of onsets). A 2 × 8 ANOVA
with the factors target type (no-onset or onset) and number of
search-relevant items (1, 2, 3, 4, 5, 6, 7, or 8) showed a significant
interaction, F(7, 77) = 3.61, p < 0.05. This interaction was due to
the absence of a target type effect when the number of search rel-
evant items was one, t(11) = 1.91, p = 0.083. We assume that this
was because the target location was always 100% accurately pre-
dicted when the search relevant item was one, either by the one
placeholder that was present in the preview display or by the one
placeholder that was missing. We therefore calculated a separate
2 × 7 ANOVA which was excluding this one level. This ANOVA
showed a significant main effect of target type F(1,11) = 32.09,
p < 0.001: Onset targets were found on average 108 ms faster
than no-onset targets. And it showed a significant main effect of
number of search-relevant items F(6,66) = 54.70, p < 0.001: RTs
increased on average by 298 ms from 2–8 search-relevant items.
However, there was no significant interaction, F(6, 66) = 1.61, p =
0.20, indicating that the two main effects were independent of
each other5 .

FIGURE 5 | The symbols show the mean correct RTs for no-onset and

onset targets in Experiment 3. The lines and R2 show the best fit from a
multiple regression analysis (excluding the level with one search relevant
item), predicting RT based on the 3-tag model.

5Because onset and no-onset targets were presented in separate blocks in two
consecutive sessions the data was also analyzed including the additional fac-
tor Block Order. There was no effect involving Block Order, apart from its
interaction with target type, F(1, 10) = 45.46, p < 0.05, which can easily be
explained by the amount of practice participant had when they started the
second block. Thus, participants who searched through onset items first did
not have more difficulties in ignoring them in the consecutive session.
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Errors
Mean percentage errors were calculated separately for each par-
ticipant and factor combination (see Table 5). Overall error rates
were relatively low (on average 3.8%). A 3 × 7 repeated mea-
sures ANOVA with the factors target type (no-onset, onset) and
number of search-relevant items (2–7) revealed no significant
effects (all p > 0.17). Again there was no indication that RTs were
confounded by speed-accuracy trade-offs.

Model fitting
Similar to Experiments 1 and 2, regression analyses were used to
determine the model parameters that made the best predictions
for the RTs observed in Experiment 3. Participant always knew
the relevant target type because of the blocked design. To account
for this knowledge, we applied Equations 1 and 2 (which used
to be for onset target only) to both the onset and the no-onset
conditions. Furthermore, because of the blocked design, separate
regressions were calculated for onset- and for no-onset targets.
This also accounts for any difference in the strategies that the
participants might have adapted for the different target type con-
ditions. The new regression in Equation 6 had therefore only one
factor (a), representing the search rate.

RT(c) = a · y(c; n, x) + d (6)

The results of eight regression analyses calculated separately for
no-onset targets and each number of priority tags (c) are given in
the top half of Table 6, and the corresponding regression analyses
for onset targets are given in the bottom half of Table 6. Looking
at the R2 in the last column, it can be seen that the 3-tag model
provides the best fit for no-onset targets, whereas the 8-tag model
provides the best fit for onset targets. This was also confirmed

Table 6 | Summary of 16 regression analyses predicting RT in

Experiment 3 separately for onset and no-onset targets for various

priority tag models.

C a (SE ) d (SE ) R2

NO-ONSET

1 191.7 (21.3) 158 (86.6) 0.941

2 95.8 (10.6) 589 (39.2) 0.942

3 89.2 (7.7) 637 (26.5) 0.964

4 87.6 (11.7) 655 (38.6) 0.918

5 89.9 (12.1) 654 (38.9) 0.917

6 91.5 (13.1) 653 (41.7) 0.906

7/8a 92.6 (13.1) 650 (41.4) 0.909

ONSET

1 190 (23.2) 42 (93.9) 0.931

2 95 (11.6) 471 (42.5) 0.931

3 88 (8.4) 517 (29.0) 0.957

4 89 (8.1) 528 (26.8) 0.960

5 91 (8.6) 528 (27.8) 0.957

6 94 (7.8) 523 (24.9) 0.967

7/8a 95 (7.5) 521 (23.9) 0.970

aThe 7- and 8-priority-tag models make the same prediction.

in two separate one-way ANOVA on the individual R2, which
both showed a significant effect for number of task-relevant items
(both p < 0.01).

DISCUSSION
Experiment 3 tested whether participants can prioritize a subset
of items when they had prior knowledge of the target type. The
results showed that when the target was an onset, RTs linearly
increased with each additional onset, indicating that participants
were able to priority tag multiple—possibly even all—onset items.
The results showed a similar pattern for when the target was a no-
onset item, with a similar increase in RTs with increasing number
of no-onset items. However, the regression analyses suggested that
participants were able to priority tag only up to three no-onset
items. Moreover, RTs for onset and no-onset targets were the same
when only one of its types was present in the display.

The RTs for the onset items were overall 120 ms faster as com-
pared to the RTs for the no-onset items. This suggests that to
an extent, an onset obtained some processing advantage, lead-
ing to an RT benefit for the onset target and cost to a no-onset
target. The results, however do not dissociate between these two
effects. One possible way by which multiple onsets are prioritized
during search can be explained by theories of visual marking. In
visual marking, participants actively inhibit preview location in
order to selectively process the relevant set of distractors (Watson
and Humphreys, 1997). In the present study, participants could
thus inhibit the object locations in which the placeholders appear,
resulting in selective processing of the new items. Note that other
studies have previously suggested that the preview effect described
above was not due to the inhibition of old stimuli already in the
field, but due to the fact that new items capture attention auto-
matically simply because they generate luminance onset signals
(e.g., Donk and Theeuwes, 2001, 2003).

The inability to select more than 3 no-onsets suggests that a
different mechanism might work in selectively searching through
the no-onset items. A possible explanation for this difficulty
in selecting multiple items might come from the visual index-
ing theory—also known as FINST [for “fingers of instantiation,”
Pylyshyn (1989)]. According to FINST, it is possible to index
or tag a small numbers of items in the visual field and these
indexes can be used to track changes to these object. This indexing
mechanism is controlled in a top-down manner and is limited to
about 4 items. The present results with no-onset targets are more
or less consistent with this prediction of FINST. Moreover, it is
assumed that this indexing is object-based, making it impossible
to index empty locations. So, this visual indexing would not work
in the same way when searching for an onset target. One pos-
sibility could be that selective search through onsets proceed by
inhibiting all the no-onset items, whereas search through the no-
onsets proceed by indexing a subset of the no-onsets and tracking
them.

The results of Experiment 3 also show that the overall onset
advantage discussed above was absent when there was only one
search-relevant item. In these conditions, given the specific design
of the experiment, the target position was always known in
advance (i.e., the target location was indicated by the presence
or absence of one placeholder). In this sense the placeholder or
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empty location acted like a spatial cue that was always valid. It
is interesting that in this condition, both onset and no-onset tar-
gets were detected with equal speed, thus providing another case
where an onset item had no advantage over a no-onset item. This
is in line with findings that under focused attention conditions,
abrupt onsets do not always capture attention (Gibson, 1996a).

GENERAL DISCUSSION
The present study describes three experiments testing the auto-
matic nature of attention capture by multiple simultaneous
abrupt onsets. Experiments 1 and 2 showed that when the onset
information is irrelevant to the task, only one or two onsets cap-
ture attention automatically. Experiment 2 further showed that
this is the case even when the onsets are readily distinguishable
from the no-onset items. Experiment 3 showed that when the tar-
get type (i.e., onset or no-onset target) was known, participants
were able to selectively search through all the onsets and up to
four no-onset items.

These findings, especially in Experiment 1 and 2, are not in line
with Yantis and Jones (1991) priority tag model. They proposed
three possible models of capture, depending on whether none,
one, or many onsets are prioritized. Models 2 and 3 where either
one or multiple onsets respectively are automatically prioritized
are particularly relevant to the present study According to Model
2, only one onset is prioritized during search and the RT to an
onset target in a multiple onset display is mediated by the proba-
bility of the target being an onset. Such a model argues for the role
of salience in attention capture and would include “abrupt onsets”
in a category of features that capture attention. On the contrary,
according to Model 3 all onsets are priority-tagged and searched
before searching through the no-onset items. Priority tagging is
assumed to be automatic and additional resources are required
for their maintenance. This model emphasizes the special status
of abrupt onsets in attention capture because onsets are the only
features whose ability to capture attention extends beyond one
object.

However, the findings in the present study prompts a re-
evaluation of the role of higher-order mechanism like priority
tags in attention capture by abrupt onsets. The three experiments
presented here suggest that only one onset captures attention in
a purely bottom-up automatic manner. The importance of this
finding can be attributed to further confine and differentiate the
role of onsets in attention capture. Overall, the finding suggests
that a purely bottom up model of attention capture, which sug-
gest that capture is triggered by an increased saliency signal, is
sufficient to explain attention capture by abrupt onsets.
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