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ABSTRACT: Nonsense correlations frequently develop between independ-
ent random variables that evolve with time. Therefore, it is not surprising that
they appear between the components of vectors carrying out multidimen-
sional random walks, such as those describing the trajectories of biomolecules
in molecular dynamics simulations. The existence of these correlations does
not imply in itself a problem. Still, it can present a problem when the
trajectories are analyzed with an algorithm such as the Principal Component
Analysis (PCA) because it seeks to maximize correlations without
discriminating whether they have physical origin or not. In this Article, we
employ random walks occurring on multidimensional harmonic potentials to
evaluate the influence of fortuitous correlations in PCA. We demonstrate
that, because of them, this algorithm affords misleading results when applied
to a single trajectory. The errors do not only affect the directions of the first
eigenvectors and their eigenvalues, but the very definition of the molecule’s “essential space” may be wrong. Additionally, the main
principal component’s probability distributions present artificial structures which do not correspond with the shape of the potential
energy surface. Finally, we show that the PCA of two realistic protein models, human serum albumin and lysozyme, behave similarly
to the simple harmonic models. In all cases, the problems can be mitigated and eventually eliminated by doing PCA on concatenated
trajectories formed from a large enough number of individual simulations.

■ INTRODUCTION
The Principal Component Analysis (PCA) is a procedure
extensively employed in data science with diverse purposes. It
has found widespread use in making sense of data collected
from Molecular Dynamics (MD) simulations of biological
molecules. In this context, its main goal is to define a low-
dimensional vector space, typically with less than twenty
degrees of freedom, where the most extensive and (hopefully)
most relevant deformations of the molecule can be adequately
described. Garciá was the first to propose the implementation
of PCA to analyze MD simulations of proteins after noting that
the atomic fluctuations of Crambin were highly correlated.1

Shortly afterward, Berendsen and co-workers popularized the
procedure by stating it allows the definition of the “essential
space” of proteins: a small subspace that contains the
movements required for their functioning.2 The main point
in these two seminal articles was the realization that just a few
eigenvectors of the covariance matrix account for the vast
majority of the atomic fluctuations observed in a trajectory.
Therefore, only this small set would be required to characterize
the “essential” macromolecule’s dynamics.

The projections of a trajectory onto the PCA eigenvectors
are called the Principal Components (PCs). In an article
published in 2000, Hess demonstrated that the PCs of a

random walker moving on a multidimensional flat potential are
cosine functions whose period equals twice the simulation time
divided by the component index.3 He cited several articles
reporting protein simulations with this behavior and presented
his own examples, suggesting in those cases the simulation
time was so short that the protein could not feel the effect of
the underlying Potential Energy Surface (PES). In addition, he
demonstrated that, for proteins remaining within the same free
energy well for a relatively long time, the cosine-like shapes
disappear. More worrying but less discussed was Hess’s finding
that the PCA eigenvalues of the multidimensional random
walker (on a flat potential) decay rapidly with the PC index,
similar to those computed from protein MD simulations. The
unavoidable conclusion from this result is that the fluctuations
observed in such simulations are also highly correlated.
However, because of the very nature of the model, these
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correlations must be arbitrary. They have no physical cause but
occur just by chance.

The existence of arbitrary correlations in the random walks
of pairs of independent variables is well-known in the field of
applied statistics.4 It was already described by Yule in 1926.5

He called them “nonsense” correlations. Yule’s claims
remained unnoticed until 1974 when computer simulations
provided further proof to the observations he had made by
drawing playing cards from previously shuffled packs.6 Since
then, the analysis of these correlations has constituted an
important topic in econometric and economic modeling,
where it receives the names of “spurious regressions” or
“spurious correlations”.7,8 Recent research was able to
determine the analytical expression for the second moment
of the correlation coefficient for a pair of independent variables
carrying out long random walks; and even for short walks, a
characterization of the expected correlations has been
presented.9 It seems intuitively clear that these spurious
correlations, so well characterized when the random walk
occurs in two dimensions, will also appear when it takes place
in spaces of higher dimensionality. One would expect that the
larger the dimensionality of the simulation space, the greater
the chances of finding spurious correlations between certain
components.

Since MD simulations do not occur on flat potentials,
molecular dynamics practitioners could believe the arbitrary
correlations mentioned above do not present any concerns to
them. The current possibility to afford long-time simulations,
where the system necessarily feels the shape of the PES, could
even reinforce this view. However, an article by Antognini and
Sohl-Dickstein published in 2018 casts doubts on this belief.10

The authors characterized the PCA of multidimensional
random walks on flat potentials and arrived at the same
conclusion as Hess regarding the shape of the PCs. Also, they
estimated that the first PC accounts for ∼60% of the total
fluctuations, the first two components account for ∼80%, and
so on. In other words, just a few PCs explained most of the
global variance. The authors seem to be unaware of Hess’s
articles on the subject. This is not surprising as they do
research in a completely different field (that of neural network
training).

The derivation of Antognini and Sohl-Dickstein, very
concise and elegant, starts from writing the whole random
walk in matrix form. Then, they recognize that some of the
matrices involved are banded Toeplitz matrices which, in the
limit of a very large number of steps, n, approach circulant
matrices.11 The final result stems from the known properties of
circulant matrices. Their derivation is also quite general. There
are just two additional requirements on top of the already
mentioned n ≫ 1. One of them is that the random steps
should be taken from a (any) probability distribution with zero
mean and finite covariance. The other is that the dimension of
the random walkers, d, should be much larger than the number
of steps (d ≫ n). This last assumption is not always fulfilled by
MD simulations of biomolecules, but it is adequate for the
trajectories of neural networks that move on the vector space
of their parameters during the training process. In any case, we
note that if the components of the random walker have zero
covariance (i.e., they are uncorrelated), the d ≫ n condition
can be replaced by d ≫ 1 and the proof is still valid. This
requirement seems more adequate, at least as a first
approximation, for simulations of molecular systems.

The demonstration given by Antognini and Sohl-Dickstein
can be easily extended to a multidimensional random walk
occurring on a harmonic potential. They provided a detailed
discussion of this extension for the case of an isotropic
potential (i.e., when all of the force constants are the same).
They found that, when the number of steps tends to infinity (n
→ ∞), all of the eigenvalues achieve the same limit, which is
determined by the force constant. This is the expected result
for a bound system. Moreover, from statistical thermody-
namics, we know this value equals kBT/k, where k is the
harmonic constant, kB is theBoltzmann constant and T is the
absolute temperature. But the surprising results appear when
the number of steps, even if large, is not infinite. In this case,
the PCA eigenvalues decay very rapidly with the PC index,
similar to what they do in the case of the flat potential or the
MD simulations of proteins. In other words, even though all
directions present the same physical characteristics, when the
trajectory passes through the filter of PCA, there seem to be
some privileged directions along which the system is allowed
to perform large fluctuations, and some other nonimportant
directions where the movements are “near-constrained”. We
emphasize that this occurs in long enough trajectories that in
no way can be assimilated to a random walk on a flat potential.
It is just an artifact created by the PCA algorithm.

In the following sections, we provide examples of the impact
of this artifact in analyzing the dynamics of model systems that
resemble biomolecules in solution. We will argue that it may
affect the very separation of the configurational space into an
essential and a nearly constrained space. Also, we will
demonstrate that the actual characteristics of the models can
be recovered by doing PCA on fictitious trajectories, obtained
by concatenating a large enough number of equivalent
trajectories. We have already proposed this procedure to
attain a reproducible definition of the main PCA eigenvectors
of a protein. Here, we demonstrate that it affords a better
characterization for all of the eigenvalues and eigenvectors and
also provides the correct probability density functions of the
principal components. These results could have noticeable
consequences in the calculation of conformational entropies
based on the quasi-harmonic approximation. Finally, we
present the results of extensive PCAs of serum albumin12

and lysozyme13 that illustrate how the observations made on
simple harmonic models assimilate to those of actual protein
models.

■ SIMULATIONS
We have simulated random walks on simple potential energy
models and analyzed them via PCA. Thus, the knowledge of
the underlying PES allowed us to discriminate the influence of
parameters such as the characteristic frequencies, the
simulation time, or the system’s dimensionality on the PCA
results. In particular, we were interested to see how these
parameters influence the definition of the essential space. We
have also performed extensive MD simulations of serum
albumin and lysozyme in a water solution and analyzed them
with PCA, aiming to evaluate if the insights gained from the
simpler models could help to understand the behavior of more
realistic systems. In the following sections, we describe the
protocols employed in the simulations and provide the
numerical details required for reproducing the results.

Model Systems. Our model systems consist of vectors of
dimension Nd. Each of their components, xi, with i = 1, ..., Nd,
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evolves according to the Langeving equation in the diffusion
limit:

+ =F x F t x( ) ( ) 0i is r
.

(1)

Here, ẋi is the time derivative of component xi, ζ is a friction
coefficient that is the same for all components, Fs(xi) is the
systematic force acting on xi, and Fr(t) is a random force that
fulfills

=F t( ) 0r (2)

=F t F t k T t t( ) ( ) 2 ( )r r B (3)

where δ(t) is Dirac’s delta function and ⟨...⟩ denotes ensemble
average. Note that eq 1 assumes that the systematic force
acting on coordinate xi does not depend on xj ≠ xi. This is
because the potential energy function ruling these coordinates
was chosen as the sum of independent harmonic oscillators:
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so that Fs(xi) = −kixi. Therefore, by construction, our model
systems are just sets of independent coordinates, assembled
into a vector of dimension Nd.

Multiplying eq 1 by the time step, Δt, and reorganizing, one
obtains
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when the systematic forces are calculated from the potential
energy function of eq 4. In our models, we set kBT = ζ = Δt =
1. Therefore, the propagation equation was

+ = +x t t k x t R t( ) (1 ) ( ) ( )i i i r (6)

with ⟨Rr(t) Rr(t′)⟩ = 2δ(t − t′). The trajectories were started
with the coordinates at the minimum of their harmonic
potentials. For these settings, the equipartition theorem states
that, at thermodynamic equilibrium, the ensemble average of
the squared displacement of coordinate xi is

=x ki i
2

eq
1

(7)

where Δxi(t) = xi(t) − xi(0) = xi(t) measures the change of
coordinate xi from its initial value to the current one.

We ran simulations with two alternative models that employ
the potential energy function of eq 4. Both of them have Nd =
100. In the D model (by degenerate) all ki’s equal 0.01. In the
S model (by spectrum), ki = 0.001 × i, with i = 1, ..., Nd. Thus,
the S model’s smallest and largest constants are 10 times
smaller and 10 times larger than those of the D model,
respectively. Between these limits, the constants are equally
spaced. To set an appropriate value for the simulation’s length,
we evaluated the time evolution of the ensemble-averaged
squared displacement:

=
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(8)

where m is a label that identifies the alternative simulations
used in the calculation. Figure S1, in the Supporting
Information, shows the averages computed from Nset = 5000
simulations of a single coordinate that obeys eq 6 with either ki
= 0.001, 0.01, or 0.1. The resulting curves are compared with

the behavior expected for the random walk on a flat potential.
We note that all curves deviate soon from that corresponding
to the flat potential. However, they require a somewhat longer
time to reach their thermodynamic equilibrium values. For ki =
0.1, the expected average is reached in about 15 steps, but it
takes about 250 steps to do that when ki = 0.01 and ∼2500
steps when ki = 0.001. Based on these results, we set the
number of steps, Ns = 1000, for the simulations of the D
model, and Ns = 4000 for the S model. This setting ensures
that, at the end of each simulation, all coordinates have felt the
curvature of the potential energy function acting on them, and
that their ensembles approximate the thermodynamic equili-
brium behavior. We note, however, that these simulation
lengths are not enough to establish ergodicity since the time
average of the square displacements,

=
=

x t
N

x t( ( ))
1

( ( ))i
k

N

i k
2

s 1

2
s

(9)

where Ns is the number of steps of the simulation, tk = k × Δt
and t = Ns × Δt, requires much longer times to approximate
the thermodynamic equilibrium values. This can be seen in
Figure S2, in the Supporting Information, where we plotted

x t( ( ))i
2 for five equivalent trajectories of a single coordinate

propagated using eq 6 with ki = 0.01. In this Article, we will use
brackets to denote ensemble averages and overbars for the
time averages. However, for the sake of simplicity, we will
hereafter not explicitly indicate the time dependence of these
averages. According to the previous discussion, it is clear that
the ensemble averages will be time-independent for the
simulation lengths used in this work while the time averages
will not.

We finally emphasize that the displacements Δxi introduced
above should not be confused with the fluctuations xi − x̅i
employed in the calculation of the covariance matrix. When
evaluating fluctuations, we subtract the average of xi in the
trajectory, x̅i, from its value at a given time. Instead, when
calculating the displacements, we subtract the initial value,
xi(0), which is zero for our simulations. For ergodic trajectories
run on harmonic potentials, x̅i equals the minimum of the
potential. Therefore, if the simulations are started at the
minimum, as we did, fluctuations and displacements should be
the same. However, at intermediate times, these quantities can
differ significantly, as we show in Figure S3, of the Supporting
Information.

Protein MD Simulations. We carried out MD simulations
of Human Serum Albumin (HSA) and lysozyme in their apo
form. HSA is a globular protein with 609 amino acids that
contains 17 disulfide bridges (UniProtKB: P02768). To build
the computational model, we used the structure 1AO6 of the
Protein Data Bank (PDB). It only contains 578 residues, from
Ser29 to Ala606. The PDB file was fed into the LEAP module
of AMBER18.14 Water molecules were then introduced to fill
an octahedral cell whose walls were 15 Å from the nearest
protein atom. The model was neutralized by adding Na+ ions.
The ff14SB force field15 was used for the protein, the TIP3P
for the water molecules,16 and the frcmod.ionsjc_tip3p
parameters for the ions.17 The PMEMD module of
AMBER18 was used to run the simulations.

After model building, the system was minimized. Then, it
was heated at a constant volume for 2 ns to reach a
temperature of 310 K using the Langevin thermostat18 with a
collision frequency of 1.0 ps−1. The SHAKE algorithm was
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used to constrain the bonds involving hydrogen atoms,19 and
the Particle Mesh Ewald method20 with a cutoff radius of 10.0
Å was applied to compute the nonbonded interactions. After
the heating, we changed from NVT to NPT conditions and ran
another 50 ns to allow density to relax and equilibrate. The
pressure was controlled with a Berendsen barostat21 with a
coupling constant of 2.0 ps. The time step was set to 2.0 fs. We
used the last snapshot of the equilibration stage as the starting
point for 100 alternative production runs. All of them lasted for
10 ns, and samples were taken every 0.1 ns. The initial atomic
velocities of the simulations were randomly taken from a
Maxwellian distribution.

We followed the same procedure to conduct simulations of
human lysozyme, an enzyme that has undergone various
computational studies aimed at identifying its functional
modes.22−25 In particular, PCA studies have shown that the
enzyme’s most significant collective coordinate describes a
hinge-bending oscillation that expands or contracts the volume
of the catalytic cleft, a movement involved in substrate binding
and product release.24,25 Human lysozyme has 148 amino acids
and four disulfide bridges (UniProtKB: P61626). We built the
computational model using structure 1REX from the PDB,
which is formed by 130 residues, from Lys19 to Val148.13 The
production stage of this system also consisted of 100
independent trajectories of 10 ns.

■ ANALYSIS
All simulations were analyzed via PCA using the standard
procedure. For the D and S models, the analysis was carried
out on the vectors of dimension Nd = 100, whose components
evolved according to eq 6. For the MD simulations of HSA and
lysozyme, the vectors were built with the Cartesian coordinates
of the Cα atoms, after eliminating the effects of global
translation and rotation.26 Therefore, in these cases, Nd = 3Nat,
where Nat is the number of Cα atoms in the computational
model. Thus, Nd evaluates to 1734 for HSA and 390 for
lysozyme.

The elements of the covariance matrix, of dimension Nd ×
Nd, were calculated as

=
=

C
N

x x x x1
( )( )ij

s k

N

i i j j
1

s

(10)

where Ns is the number of snapshots in the trajectory under
PCA scrutiny. Thus, when the analysis is carried out on data
collected from an individual trajectory, Cij is the time average
of the product between the instantaneous fluctuation of
coordinate xi and that of coordinate xj, x x x x( )( )i i j j , and
the diagonal elements contain the time average of the squared
fluctuations, x x( )i i

2 . We also analyzed fictitious trajectories
obtained by concatenating more than one individual trajectory.
In those cases, the calculation of Cij implies an average on the
set of simulations under consideration, in addition to the time
average.27 In any case, the columns of matrix R that
diagonalizes C,

=R CRT (11)

are the PCA eigenvectors, vi. The projection of the original
vectors onto the vi’s are the principal components, PCi, while
the diagonal elements of matrix Λ, λi, are the square
fluctuations of the PCi’s.

For both simple models and MD simulations of HSA and
lysozyme, we found significant differences between the results
of alternative, individual trajectories. An example of this is
given in Figure S3, which depicts the fluctuations of the
principal components as a function of the PC index, for five
illustrative trajectories of the D model. In the same picture, we
also plotted the mean squared fluctuations of the components
of the original vectors, x x( )i i

2 , and the squared displace-
ments (Δxi)2. In the last two cases, we followed a decreasing
order, instead of the index order, to facilitate the comparison
with the PCA eigenvalues. The displacements reveal that some
of the original components have traveled long distances while
others have, apparently, hardly moved. We note, however, that
the small displacements typically occur when the coordinate
comes back over its steps after traveling some distance. The
calculation of the time-averaged fluctuations levels off the
differences observed in the displacements, while applying the
PCA algorithm exacerbates the moderate disparities observed
in the fluctuations. This is the expected result because PCA
was designed to find the linear combinations of the original
coordinates that maximize the squared fluctuations of the first
components. As the procedure involves a similarity trans-
formation that does not change the trace of the covariance
matrix, the sum of all squared fluctuations remains constant.
Therefore, maximizing the fluctuations along the first
eigenvectors implies reducing those of the highest-order
eigenvectors. Anticipating the arguments provided in the
Discussion section, it seems appropriate here to highlight that
all of the directions of the D model are physically equivalent.
Therefore, the differences among fluctuations and displace-
ments plotted in Figure S3 happened just by chance and were
remarkably enlarged by applying PCA.

The great disparity found between the results of the
individual trajectories indicates that the problem must be
treated statistically. Thus, for the simple models and the MD
simulations of HSA, we ran a large number of trajectories and
carried out a statistical analysis of their PCA results. In
particular, we computed the probability distribution of the
PCA eigenvalues, as well as the minimum, maximum, and
average values observed in these large sets of simulations. We
determined 100 000 trajectories for the simple models, while
100 MD simulations were performed for HSA and lysozyme.
Also, we carried out a statistical analysis of the PCA results
obtained from concatenated trajectories. In a previous article,
we noted that this procedure improves the consistency of the
subspace defined by the first eigenvectors (the so-called
essential space).28 Here, we analyze how it modifies the whole
eigenvalue spectra, as well as the probability density functions
of the first principal components. These modifications have
important implications for the very definition of the essential
space.

■ RESULTS
General Aspects of the Simple Models. In this section,

we discuss the general behavior of the PCA of models D and S.
Figure 1 presents the spectra of the normalized eigenvalues
determined from the D model. The analysis was performed on
the 100 000 individual trajectories and on 10 000, 1000, and
100 concatenated trajectories, formed by combining 10, 100,
or 1000 individual simulations, respectively. However, the
figure only shows the results obtained with the individual
trajectories and the concatenated trajectories formed by 1000
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elements. Plots for the whole data set are provided in Figure S4
of the Supporting Information. Panel a of Figure 1 depicts the
results from the individual trajectories. We see that the
eigenvalue spectra are typical scree plots, as those usually
found when doing PCA on MD simulations of proteins. At first
glance, this result is not surprising because we are used to
those plots. However, it becomes confounding when we note
that all directions of the Nd-dimensional configurational space
should be equivalent. Besides, as we explained above, the
components of the original vectors evolve independently of
one another. In other words, the underlying PES does not
impose correlations between them. Despite that, the shape of
the spectra suggests the existence of significant underlying
correlations that would allow the system to move almost freely
in some selected directions while being mostly constrained in
others. This suggestion is wrong. There are no selected
directions, as can be confirmed by analyzing the first PCA
eigenvectors, v1, calculated with alternative individual

trajectories. As an example, we present in Figure S5 of the
Supporting Information, the squared components for the v1
vectors obtained from five alternative trajectories. It can be
readily seen that components that have important contribu-
tions to this vector in one trajectory have modest contributions
in others. This evidences that the directions of the v1 vectors
are random. This idea is further confirmed by the calculation of
the scalar product between v1 vectors determined from
alternative individual trajectories. Figure 2 depicts the
probability distribution function for the absolute value of
these products. Far from having a peak near 1, the function
becomes negligible for values greater than 0.3, and the most
likely scalar product is zero. We note that the larger the
dimensionality of the system, the higher the peak at zero (data
not shown). As the dimensionality of the degenerate space
increases, obtaining a null scalar product becomes more likely.

Panel b of Figure 1 shows that, by doing PCA on a
concatenated trajectory with a large enough number of
individual simulations, the misleading appearance of the
eigenvalue spectra is corrected. The aspect of a scree plot
disappears, and all eigenvalues tend to the expected value. The
first eigenvalues converge from above and the last ones from
below. The more trajectories are combined, the better the
results are, as can be noted in Figure S4 of the Supporting
Information. This outcome is unsurprising if we consider that
doing PCA on concatenated trajectories is equivalent to
carrying out an ensemble average on top of the time average
one performs in the PCA of individual trajectories. As we
showed above, ensemble averages converge to their equili-
brium values much more rapidly than the time averages. To
further support this appreciation, we show in Figure 3 the
probability distribution function of selected PCA eigenvalues,
for both the individual trajectories and the concatenated
trajectories formed with 1000 elements. We see that the first
eigenvalues of the individual trajectories present broad
distributions, whose maxima are between 5 and 15 times
larger than those expected for an ergodic trajectory. At the
same time, the distributions of the last eigenvalues collapse on
the left side of the plot, having peaks below the expected value.
For the sake of clarity, these data are not shown in Figure 3.
On the other hand, the PCA eigenvalues computed by
concatenating 1000 single trajectories exhibit thin distribu-
tions, just slightly shifted from their expected value of 100. The
peak of the distribution corresponding to the first eigenvalue is
16% larger than expected while that of the last eigenvalue is
20% smaller. To conclude the presentation of the results of the
D model, we note that the directions of the vectors obtained
by concatenating 1000 single trajectories are, nonetheless,
random. This is just a consequence that all the directions of the
100-dimensional space are equivalent.

The situation is different when we analyze the results of the
S model. In this case, each of the original components has a
distinct harmonic constant and therefore a different expect-
ation for its average displacement. Nonetheless, the eigenvalue
spectra from the individual trajectories have a shape similar to
that of the D model, as can be seen in Figure 4a. In particular,
we note that the first eigenvalues present broad distributions
similar to those of Figure 1a. To emphasize this point, Figure 5
shows the probability distribution functions for the eigenvalues
of the first five eigenvectors. The components of selected PCA
eigenvectors, computed from a randomly chosen individual
trajectory of the S model, are shown in Figure 6. It can be seen
that the first eigenvector only has significant contributions

Figure 1. Normalized eigenvalues as a function of the PC index for
the PCA performed on trajectories of the D model with ki = 0.01.
Panel a shows the results obtained with the 100 000 individual
trajectories. Panel b presents the results computed from a set of 100
trajectories, each of them formed by combining 1000 individual
elements. The red lines indicate the minimum and maximum values
observed in the calculation while the blue line corresponds to the
average. The dashed line indicates the value that would be obtained
with an ergodic simulation.
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from the original components with the smallest ∼20 or 30 ki’s.
The following three to four eigenvectors have a similar
appearance (data not shown). On the contrary, the last
eigenvector has contributions from the original components
with the largest harmonic constants. However, in this case, the
number of contributing modes is larger and their contributions

are more evenly distributed than those of the first mode.
Eigenvectors in the middle of the eigenvalue range have
noticeable contributions from the whole range of original
components. A paradigmatic example of this is vector v50, also
shown in Figure 6. In summary, even though, in general, the
PCA eigenvectors are random mixtures of the original

Figure 2. Probability distribution functions (solid lines) and cumulative probability (dashed lines) for the absolute value of the scalar product
between the first PCA eigenvectors, v1, computed from different individual trajectories. Red lines are used for the results obtained with the D
model, green lines for the S model, and blue lines for the MD simulations of HSA. For the simple models, the analysis was carried out with the
499 500 alternative pairs of vectors that can be obtained from 1000 individual trajectories. For HSA, we used the 4950 products formed from 100
individual trajectories.

Figure 3. Probability distribution functions for selected PCA eigenvalues obtained with the D model. Panel a shows the results obtained with the
100 000 individual trajectories. Panel b presents the results computed from a set of concatenated trajectories, each of them formed by combining
1000 individual simulations. The dashed black lines indicate the expected value. The vertical red lines of panel a indicate the limits of the x-range of
panel b so that the differences between their scales can be better appreciated.
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components, the first eigenvectors only have contributions
from the modes with the largest amplitudes. This scenario is
more appropriate for the definition of an essential space than
the one found with the D model.

Panel b of Figure 4 demonstrates that, by concatenating a
large enough number of trajectories, the eigenvalue spectra of
the S model get pretty close to the expected one. The
distributions of the eigenvalues get thinner and their maxima
closer to the correct values (see Figure 5). The more
trajectories are combined, the better the results are, as can
be seen in Figure S6 of the Supporting Information. Of course,
this improvement in the eigenvalues is caused by a better
definition of the eigenvectors. In Figure 7, we present the
contribution of the original components to selected
eigenvectors determined from a concatenated trajectory
constructed with 1000 individual simulations. It can be seen
that the first eigenvector almost agrees with the original
component with the smallest ki. Eigenvectors with higher
indexes have noticeable contributions from several of the

original modes. However, in all cases, there is a perfect
correspondence between the eigenvector index and the order
of the component that makes the largest contribution. For
example, the largest contribution to vector v50 comes from the
component with ki = k50 = 0.001 × 50.

General Aspects of Protein Models. We have observed
that the simulations of HSA and lysozyme display comparable
behavior in their general aspects. Accordingly, to be brief, we
present here the results of HSA and provide those
corresponding to lysozyme in the Supporting Information.
Instead, these proteins differ in the probability distributions of
their main principal components. We discussed these features
in the next section.

Panel a of Figure 8 shows the eigenvalue spectra determined
from the 100 individual trajectories of HSA. The similarity
with the spectra derived from the simple models is
considerable. In particular, we call attention to the broad
range of possible values of the first eigenvectors, a feature that
manifests its randomness. To further confirm this impression,
we calculated the absolute value of the scalar product between
the first PCA eigenvectors, determined from different
individual simulations. We carried out this computation for
the 4950 putative pairs that can be formed from 100
trajectories. Then, we evaluated its probability distribution
function. The results are shown in Figure 2, where they can be
compared with those of models D and S. We see that the
results from HSA are somewhat better than those of the S
model, which in turn are the best among the simple models.
Nevertheless, the chances of obtaining low values of the scalar
product are high. For example, the probability of getting a
scalar product smaller than 0.5 is 65%. Panel b of Figure 8
contains the spectra obtained from two concatenated
trajectories each formed with 50 individual simulations. We
remark that there are no common elements between the two
sets. The simulations included in one of them are excluded
from the other. Therefore, the agreement between the two
curves indicates that a fairly good convergence is already
achieved with 50 individual trajectories. Figure S7, in the
Supporting Information, depicts the curves of eigenvalues
computed from individual and concatenated trajectories of
lysozyme. The similarities with the curves of Figure 8 can be
readily appreciated.

In contrast with the analysis of the simple models, for these
realistic protein models, we a priori ignore the shape of the
underlying PES. Accordingly, evaluating the convergence of
the eigenvectors with plots such as those of Figures 6 and 7
requires some assumptions. We, therefore, considered the
eigenvectors derived from the concatenated trajectory formed
with 100 elements as the reference basis set. Then, we
determined the components of the first five PCA eigenvectors
of an individual simulation on this basis. We present the results
in Figure 9, which reveals that these PCA eigenvectors are
rather ill-defined. In addition, we projected the first five
eigenvectors of one of the concatenated trajectories with 50
elements into the basis set of eigenvectors of the other. The
results are presented in Figure 10. It can be readily noted that
the convergence is much better in this case, although there
seems to be some mixing between eigenvectors 1 and 2. This
finding is not surprising because these vectors are almost
degenerate. The first and second eigenvectors explain ∼20%
and ∼18% of the total fluctuations, respectively, while the
following one accounts for less than ∼10%. We recall
degenerate vectors cannot be univocally defined. In any case,

Figure 4. Normalized eigenvalues as a function of the PC index for
the PCA performed on trajectories of the S model. Panel a shows the
results obtained with the 100 000 individual trajectories. Panel b
presents the results computed from a set of 100 concatenated
trajectories, each of them formed with 1000 individual elements. The
red lines indicate the minimum and maximum values observed in the
calculation, while the blue line corresponds to the average. The
dashed line depicts the value that would be obtained with an ergodic
simulation.
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the convergence of the PCA computed by concatenating 100
simulations would be even better than that of 50, giving
support to the assumption made to create Figure 9.

Plot analogous to those of Figures 9 and 10, but computed
from the simulations of lysozyme, are provided in Figures S8
and S9 of the Supporting Information. They are qualitatively
similar to those of HSA, although there are differences in the
details, as expected. In particular, for lysozyme, modes v3 and
v4 of the concatenated trajectories are almost degenerate. For
this reason, they get mixed up: v3 of one of them is v4 of the
other one, and vice versa.

Finally, we believe an illustrative idea of how misleading the
PCA of individual trajectories can be is obtained by comparing
movies S1 and S2 of the Supporting Information. They show
the animation of the first PCA eigenvector computed from an
individual simulation (movie S1) and the concatenated
trajectory with 100 elements (movie S2) of HSA. The
difference between the two collective motions is readily
noticeable. An analogous comparison can be done between
movies S3 and S4, which correspond to lysozyme.

Effect on the Essential Space. As stated previously, one
of the most extended applications of PCA in the analysis of
MD simulations consists of determining the essential space of
biomolecules: the small subspace whose directions describe the
largest, and hopefully functional, molecule’s deformations. One
of the criteria followed to build such space is to include the
first PCA eigenvectors until the sum of their eigenvalues
reaches a certain fraction of the total fluctuations observed in
the trajectory. As demonstrated by the results of Figures 1 and
4, the procedure can afford misleading results. The problem is
particularly severe if the motions with the largest fluctuations
are degenerate or near degenerate. In that case, the PCA
algorithm can create the illusion that some directions of the

degenerate space allow large fluctuations while others are
almost restrained, producing an ill-defined essential space.

Another criterion consists of computing the first principal
components for all the snapshots sampled from the simulation
and then evaluating the probability density function of these
components. Finally, the essential space is built with the modes
whose components present non-Gaussian distributions. Panel a
of Figure 11 shows the distributions of selected principal
components computed from one of the trajectories of the S
model. All the individual trajectories we analyzed afford
qualitatively similar results but differ in the particular shapes of
the curves. We can see that the first PCs have non-Gaussian
distributions, typically showing more than one peak while, as
the principal component’s index increases, they assume an
approximated Gaussian shape. In contrast, panel b of Figure 11
shows that the distributions calculated from a concatenated
trajectory with a large enough number of elements present
Gaussian shapes. Not only does the form of the distributions
agree with the expectations, but also their standard deviations
do. In other words, these distributions fully agree with the
predicted ones.

We carried out the same analysis for HSA and lysozyme and
found significant differences between them. Figure 12 shows
the distributions for selected principal components obtained
with one of the individual simulations of HSA (panel a) and
the concatenated trajectory formed with 100 elements (panel
b). We can see that the behavior of this realistic protein model
almost replicates the one observed in the extremely simple S
model. In particular, the first eigenvalue, which is highly
anharmonic when computed from a single trajectory becomes
almost a Gaussian function when evaluated with the
concatenated trajectory. In turn, this result reveals that the
PES of this protein can be adjusted to a sum of harmonic

Figure 5. Probability distribution function for selected PCA eigenvalues obtained with the S model. Panel a shows the results obtained with the
100 000 individual trajectories. Panel b presents the results computed from a set of concatenated trajectories, each of them formed by combining
1000 individual simulations. In both panels, the dashed lines indicate the expected value.
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functions (at least the fraction of the PES sampled with our set
of simulations).

Figure 13, on the other hand, shows the distributions for
selected principal components obtained with one of the
individual simulations of lysozyme (panel a) and the
concatenated trajectory formed with 100 elements (panel b).
The results corresponding to a single trajectory are similar to
those of HSA. However, something different occurs with the
concatenated trajectory. In this case, PC1 does not acquire a
Gaussian shape. Instead, it presents a broad multimodal
distribution with the largest maximum at ∼7.0 Å, another one
with a small shoulder at the origin, and a long tail that extends
to −16.0 Å. The distributions of PC1 computed from two
alternative concatenated trajectories, each consisting of 50
elements, are highly comparable to one another and also to the
concatenated trajectory formed with 100 elements. This
implies that running 50 individual simulations is adequate to
attain convergence of this function. We note that the
probability distribution of PC2 also somewhat deviates from
the Gaussian shape. Figure S10, in the Supporting Information,
shows the free energy landscape (FEL) of lysozyme as a
function of PC1 and PC2. These coordinates describe the well-
known hinge bending motion of this enzyme.24,25 The
observation of the structures at the alternative regions of the
FEL reveals that the closed structure is the most stable.

Nevertheless, the system only needs to surmount barriers of
∼1−2 kBT to reach the widest open conformation.

■ DISCUSSION
PCA is a procedure extensively employed in the analysis of
MD simulations of proteins, to separate collective movements
that carry out the largest fluctuations from those that are nearly
restrained. It is believed the amplitude of these motions is
dictated by the underlying potential energy surface and that
their directions span a subspace that contains the functional
movements of the molecule. This is the so-called essential
space of the protein. The essential space is built with the
directions of the PCA eigenvectors with the largest eigenvalues
so that they account for a given (large) fraction of the total
fluctuations observed in the simulation. Typical values are
around ∼80%. Alternatively, the snapshots collected from the
simulation are projected onto the first PCA eigenvectors to
determine the principal components. Then, the probability
density functions of these components are determined, and all
directions with non-Gaussian distributions are considered to
belong to the essential space.

In this work, we scrutinized the assumptions that guide the
use of PCA in the analysis of MD simulations and the practices
employed to determine the essential space. With that aim, we
applied the PCA algorithm to random walks that occur on very

Figure 6. Squared components of selected PCA eigenvectors derived
from an individual trajectory of the S model. To facilitate the
comparison, all plots employ the same scale on the y axis.

Figure 7. Squared components of selected PCA eigenvectors obtained
from a concatenated trajectory formed with 1000 individual
trajectories of the S model.
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simple multidimensional PESs. We built the D model as a 100-
dimensional degenerate harmonic well and the S model as a
100-dimensional harmonic well with all different, equally
spaced harmonic constants. The movement of the walkers was
determined with the Langevin equation in the diffusion limit.
The values of the harmonic constants and the simulation times
were selected so that the walkers experience the curvature of
the PES during a single trajectory, but the trajectories are far
from ergodic. Nonetheless, the average displacement observed
in a large enough ensemble of walkers approximates the
expected value at thermodynamic equilibrium.

The results of the D model demonstrate that there are
serious difficulties in defining the essential space from the
results of a single MD trajectory if the underlying PES has
many directions with the same or similar constants. In this
case, the PCA algorithm creates the illusion of a few directions
where large fluctuations are allowed, while other equally
important motions appear as completely irrelevant. Thus, if
one builds the essential space from the first eigenvectors until
they add up a given amount of the total fluctuations, important
directions of movement can be left aside. This is a serious
drawback that, to the best of our knowledge, has not been

discussed before. The S model performs better than the D
model, as the first eigenvectors are linear combinations of the
directions of movement with the smaller harmonic constants.
However, the coefficients of these combinations are also
random, to a good extent. This finding is consistent with the
results of Hess, who ran 100 simulations using a harmonic
model with 30 degrees of freedom, which was slightly more
complex than the S model examined here. Hess discovered
that, for simulations that were not too short and not extremely
long, the first PCA eigenvectors were a combination of the
original coordinates with the lowest harmonic constants.29

Additionally, we found that individual trajectories corre-
sponding to the simple models typically afford non-Gaussian
probability distributions for their first PCs, despite the fact that
the underlying PES is harmonic. These non-Gaussian shapes
are, therefore, an artifact of the algorithm when applied to a
single nonergodic trajectory. For the two models, all artifacts
can be gradually attenuated by including more and more
individual trajectories in a concatenated one, which is then
subjected to a PCA. Eventually, the procedure affords
eigenvectors with the correct directions and eigenvalues.

Figure 8. Normalized eigenvalues as a function of the PC index
calculated from MD simulations of HSA. Panel a shows the results
obtained from the individual trajectories. The red lines indicate the
minimum and maximum observed in the 100 trajectories, while the
blue line depicts their average. Panel b presents the results obtained
from concatenated trajectories with 50 elements.

Figure 9. Squared components of selected PCA eigenvectors
computed from a single trajectory of HSA. The components were
determined by projecting the eigenvectors of the individual trajectory
onto the basis set of the eigenvectors of the concatenated trajectory
with 100 elements. To facilitate the comparison, all plots employ the
same scale on the y axis. Only the first 50 components are shown. The
total amount is 1728.
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Furthermore, the probability distributions of their PCs become
almost perfect Gaussians with the correct standard deviations.

We tested if the observations made on the simple models
also apply to realistic protein models. To that aim, we
performed MD simulations of HSA and lysozyme and analyzed
them with analogous procedures. We found the behavior of
both proteins very much resembles that of the simple models.
In particular, if a large enough number of individual
simulations is employed to build a concatenated trajectory,
the PCA algorithm affords consistent eigenvectors and
eigenvalues, a result we have already presented elsewhere.28

However, in this case, we also analyzed what occurs with the
probability distributions of the first PCs, an aspect that has not
been discussed before. For HSA, we found that, while the
distributions computed from individual trajectories have non-
Gaussian shapes, those obtained from large enough con-
catenated trajectories are almost perfect Gaussians. The
situation is different for lysozyme, an enzyme characterized
for having a large domain motion that opens/closes its catalytic
cleft. In this case, while most of the PC distributions acquire a
Gaussian shape by increasing the number of individual
trajectories in the concatenated one, the distribution of the

first mode remains multimodal and that of the second mode
slightly deviates from Gaussian.

A critical examination of the results of the simple models,
and in particular of the D model, allowed determining that the
problem with the PCA applied to single trajectories stems from
the fact they are plagued with spurious correlations. This
conclusion is implicit in the article Hess published more than
20 years ago3 where he showed that the PCA eigenvalue
spectra of multidimensional random walks occurring on flat
potentials are the typical “scree plots”. Hess’s result was
recently rederived by Antognini and Sohl-Dickstein using a
completely different formalism.10 The interesting point about
this newer approach is that it could be extended to random
walks on degenerate harmonic potentials. The analysis showed
that, for those cases, too, the eigenvalue spectra are scree plots,
so that a few of the first PCA eigenvectors account for the vast
majority of the fluctuations observed in the trajectory.
However, since there is nothing in the underlying PES that
causes the observed correlations, the inexorable conclusion is
that they must be random. After recognizing that the
trajectories of multidimensional random walkers present
random/fortuitous correlations, even for bound systems, the
problem of analyzing them via PCA becomes clear. PCA is a
linear transformation designed to maximize the fluctuations of

Figure 10. Squared components of selected PCA eigenvectors
computed from a concatenated trajectory of HSA with 50 elements.
The components were determined by projecting those eigenvectors
onto the basis set of eigenvectors obtained from the alternative
concatenated trajectory with 50 elements. Only the first 50
components are shown. The total amount is 1728.

Figure 11. Probability distribution functions for selected principal
components computed from the trajectories of the S model. Panel a
depicts the results obtained with one individual trajectory. Panel b
shows the distributions obtained with a concatenated trajectory
formed with 1000 elements.
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the new variables. Thus, it detects all correlations in the
original set, without discriminating if they have a physical
meaning or are fortuitous. Then, it combines the original
coordinates to produce the directions of larger fluctuations.

It is not possible to eliminate spurious correlations from
single trajectories of multidimensional random walks occurring
on flat potentials. However, for bound systems such as the
computational models of biological macromolecules, the
situation differs. In those cases, the available configurational
space has a finite volume. Accordingly, the structures sampled
from a long enough simulation eventually fill that volume and
the simulation becomes ergodic. Under such conditions, the
density of samples within any small volume element of
configurational space occurs in proportion to the equilibrium
probabilities. Therefore, the underlying PES determines the
values of the covariance matrix elements, and all correlations
detected by PCA are actual correlations between the
molecule’s constituents. The problem is that the time
demanded to reach this condition is extremely long. In
particular, it is much longer than the total time multiple
trajectories require to fill the same volume. This conclusion is
well-known by MD practitioners.30−32 Applying the PCA
algorithm to a concatenated trajectory is equivalent to carrying
out an ensemble average on top of the time average used to

obtain the covariance matrix from a single simulation. For this
reason, it affords much better converged results for the same
total simulation time.

There has been a lot of discussion around the convergence
and consistency of the eigenvalues and eigenvectors obtained
from the PCA of MD simulations of biomolecules.28,29,33,34

However, not much attention has been given to how it impacts
the probability distributions of the principal components. This
is surprising because these distributions provide valuable
insights into the thermodynamic properties of the molecular
system. An important conclusion of our study is that the
shapes of these curves are likely to be wrong if the PCA is
carried out with a unique MD trajectory. Typically, they appear
structured and multimodal despite the fact that they should be
simple Gaussians according to the underlying PES. Regardless
of their actual shapes, we have shown that concatenation
washes out the false correlations present in individual
trajectories. As a result, the final distributions faithfully depict
the form of the underlying PES, allowing an accurate
evaluation of the molecule’s free energy landscape. Determin-
ing the correct distributions is also crucial for the calculation of
the configurational entropy. Cases such as human serum
albumin, with fully harmonic PC distributions, support the use
of the quasi-harmonic approximation (QHA).35 But even for

Figure 12. Probability distribution functions for selected principal
components computed from the MD simulations of HSA. Panel a
depicts the results obtained with one individual trajectory. Panel b
shows the distributions obtained with a concatenated trajectory
formed with 100 elements.

Figure 13. Probability distribution functions for selected principal
components computed from the MD simulations of lysozyme. Panel a
depicts the results of an individual trajectory. Panel b shows the
distributions from a concatenated trajectory formed with 100
elements.
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more complicated systems, with one or a few anharmonic
modes such as lysozyme, the entropy could be accurately
determined by applying QHA to the harmonic modes and
computing the required integrals for the few anharmonic ones.

■ CONCLUSIONS
By employing simple models, we demonstrated that PCA can
afford fallacious results when applied to a single trajectory. The
directions of the eigenvectors can be ill-defined, and their
eigenvalues bear no relation with the actual amplitudes of the
underlying modes. We noted that these drawbacks can lead to
a poor definition of the essential space. Additionally, we
showed that they lead to incorrect probability distribution
functions for the main principal components, which then
translates into misleading free energy landscapes and
inaccurate configurational entropies.

We argued that these limitations stem from fortuitous
correlations that typically show up in trajectories of
independent random variables, even for bound systems. PCA
maximizes the squared fluctuations of the new collective
variables by combining the original coordinates with the
highest correlations. However, PCA cannot discriminate
whether those correlations are spurious or have a physical
meaning. In addition, we illustrated how all of these problems
are mitigated and, eventually, eliminated by doing PCA on a
concatenated trajectory built by combining several individual
simulations.

We also analyzed via PCA the simulations of two realistic
protein models. We found that they behave very much like the
simple harmonic models. From this observation, we infer that
the lessons learned from the harmonic models also apply to
MD simulations of other globular proteins. It remains to be
tested to what extent they are also valid for more flexible
biomolecules such as RNA or intrinsically disordered proteins.

To conclude, we note that many procedures used in the
analysis of MD simulations of biomolecules employ PCA in
some of their intermediate stages. The examples and
discussions presented in this Article suggest that they would
also be affected by the presence of fortuitous correlations
between the many degrees of freedom considered in the
analysis. We did not prove this hypothesis, but it seems the
most plausible. Thus, we believe that the PCA algorithm
should always be applied to concatenated trajectories, as this
procedure eliminates fortuitous correlations revealing those
with a physical origin.
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