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Abstract

Background and Aims: Breast cancer is a multifactorial malignancy with different

clinicopathological and molecular characteristics. It is the most frequent cancer in

women in terms of both incidence and mortality. Matrix metallopeptidase 1 or

MMP1 is a zinc‐dependent endopeptidase associated with several physiological

processes through the modification of the extracellular matrix and tumor

microenvironment. However, previous results did not suggest any concluding

remarks on the correlation between MMP1 gene polymorphisms and the risk of

breast cancer.

Methods: A comprehensive literature search was performed in PubMed database to

retrieve relevant articles and extract data from suitable ones. The literature written

only in English was selected for this review.

Results: A total of 26 articles were included in the present narrative review. From

the available studies, it is observed that MMP1 is upregulated in breast cancer

tissues and found to be correlated with metastasis and invasion. The expression of

MMP1 gene is mediated by numerous factors, including polymorphisms which act as

a potential risk factor for the progression of breast cancer. To establish the

correlation between genetic polymorphisms in MMP1 and the risk of breast cancer,

several case‐control studies, as well as genetic analyses, have been carried out in

different ethnicities. The association of genetic polymorphisms in MMP1 with the

risk and survival of breast cancer in different populations has been reviewed in this

study. Moreover, the structural domain of MMP1 and the role of MMP1 in breast

cancer metastasis and invasion are also discussed which will help to understand the

potential impact of MMP1 as a genetic biomarker.

Conclusions: This review provides an overview of the MMP1 gene polymor-

phisms in breast cancer. However, we recommend future studies concentrating

on combined analysis of multiple SNPs, gene‐gene interactions, and analysis of
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epigenetics, proteomics, and posttranscriptional modifications that will provide

the best outcome.
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1 | INTRODUCTION

Breast cancer (BC) is the most frequent type of malignancy in females

throughout the world and is also the leading reason of mortality

among them.1 Approximately 1.6 million new cases of BC patients

are reported every year and the incidence is worryingly increasing

during the last few years. Besides, the incidence of mortality due to

BC has been the highest among women. According to the report from

2018, almost 626,679 patients (6.6% of all cancer‐associated deaths)

died globally because of BC.2,3 In spite of substantial improvements

in treatment strategies, BC has been the major cause of mortality in

women over the past few decades, making it a global health burden.4

BC is considered a multifactorial and heterogenous malignancy

with different clinicopathological and molecular characteristics. A

combined effect of various potential risk factors including genetic,

epigenetic, population structure, environmental, and sedentary life-

style results in BC.5,6 Some common factors are physical inactivity,

high‐fat diet, hormonal imbalance, early or late menstrual cycle, late

pregnancy, dense breasts, old age, high‐stress level, radiation, or

environmental carcinogens.7 BC is a polygenic malignancy and

hereditary BC accounts for around 5%–10% of all diagnosed cases.8

The microenvironment of breasts consists of an extracellular matrix

(ECM) and different stromal cells such as endothelial cells, fibroblasts,

immune cells, and adipocytes which play a crucial part in the

morphogenesis of mammary duct.9

Matrix metalloproteinases (MMPs), also called matrixins, are

metal‐dependent endopeptidases.10 MMPs are a family of multigene

that commonly associate with diverse physiological and pathological

mechanisms in the human body required for development and

morphogenesis.11 Typically, MMPs consist of a secretory amino

terminal, a cysteine‐switched latency‐mediating pro‐domain, and a

Zn2+‐dependent enzymatic domain. Most of the members of the

MMPs family also possess a substrate‐specific hemopexin domain‐

containing C‐terminal.12–14 MMPs play a catalytic role during ECM

degradation and remodeling.15 Besides, the activity of some growth

factors, proteases, chemokines, cytokines, ligands, proteases, and

receptors are also regulated by them. However, loss of MMPs

activities leads to angiogenesis, metastasis, cell adhesion, cell

migration, differentiation, proliferation, and inflammation, which

ultimately develops cancers.16–21

Based on the structural domains and specificity to particular

substrates, MMPs are broadly classified into five major groups

namely, collagenases, stromelysins, matrilysins, gelatinases, and

membrane‐associated MMPs. MMP1 is from the collagenases group

and is one of the most commonly expressed MMPs. It is responsible

for the breakdown of collagen type I, II, and III.22,23 Impaired

expression of MMP1 has been reported in multiple cancers including

breast,24 lung,25 prostate,26 and colon.27

The present review focuses on the association of MMP1 gene

polymorphisms with BC susceptibility, which has not been compre-

hensively studied or reviewed before. MMP1 genetic polymorphisms

have been implicated in various malignancies according to previous

studies, but the findings have been inconclusive. The review aims to

shed light on the potential role of MMP1 gene polymorphisms in BC

by discussing their association with BC risk. It also delves into the

structure of the MMP1 and explores its potential role in the

development and progression of BC.

2 | STRUCTURAL DOMAINS OF MMP1

Generally, MMPs comprise a propeptide domain of around 80

amino acids, an essential metalloproteinase domain (catalytic

domain) of around 170 amino acids, a linker (hinge region) peptide

of variable lengths (typically 15–65 amino acids), and a hemopexin

(Hpx) domain of about 200 amino acids.28–30 For the activity of a

typical MMP, requires a zinc ion (Zn2+) in the catalytic domain

beside the proteolytic activation.31 The human MMP1 structural

domains (Figure 1) are mainly an N‐terminal catalytic domain, a

linker peptide region, and a C‐terminal Hpx domain in which the

catalytic domain of one monomer connects the Hpx domain of

another monomer.32,33

The catalytic domain or metalloproteinase domain of a typical

MMP1 contains a conserved sequence of three histidine residues

necessary for Zn2+ chelation. The structure of MMP1 catalytic

region is almost analogous to other members of MMPs. In length, it

is almost 170 amino acid residues long with a catalytic Zn2+ residing

in the C‐terminal site. The catalytic domain is connected to the

hemopexin domain through a short hinge region. Moreover, the

MMP1 metalloproteinase domain carries three calcium‐binding sites

in its structure.31

The catalytic domain of MMP1 is followed by the linker or the

hinge region consists of a stretch of about 15–65 amino acid

residues. Proline residues commonly construct hinge regions, and

the presence of the appropriate hinge structure is vital for the

process of collagenolysis. These amino acid residues possess an

extensive connection with both the catalytic domain and the Hpx

domain of MMP1. This close connection is necessary for the

stabilization and the concerted action between the domains in

MMP1. Mutations in the hinge region drastically reduce the
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collagenolytic activity of MMP1 as a result of the movement

restrictions between the catalytic and the Hpx domain.

The hemopexin (Hpx) domain of MMP1 begins with Cys259

residue and makes a complete circular structure by connecting to

Cys447. The Hpx domain shows the dramatic effect through a

significant displacement to the metalloproteinase domain, which

widens the cleft located between these domains arranged on the

active site face in this enzyme. This attenuated configuration

produces residues of the active site as well as the RWTNNFREY

(residues 183 to residues 191) segment crucial for collagenolytic

activity. The Hpx domain consists of a β‐propeller (4‐bladed)

structure and a linking disulfide bond (S‐S) between the first and

the fourth blades. Typically, the center of this propeller structure

contains a chloride ion and a calcium ion.21,33 This domain is

necessary for the interactions between other MMPs.31

3 | SOURCES AND DISTRIBUTION
OF MMP1

MMP1 is produced and secreted by several cells in the human

body (Table 1). Connective tissues, proinflammatory cells, and

different uteroplacental cells such as endothelial cells, platelets,

fibroblasts, osteoblasts, chondrocytes, lymphocytes, smooth

muscle cells (SMCs), neutrophils, macrophages, cytotrophoblasts,

etc. produce and distribute MMP1. MMP1 has a key function in

tissue remodeling via increasing the turnover of multiple ECM

proteins such as collagens, gelatin, elastin, proteoglycans, and

glycoproteins. Collagen and elastin are two prominent proteins

necessary for maintaining the vascular wall's structural integrity.

MMP1 breaks down collagen substrates I, II, III, IV, VII, VIII, X, and

gelatin with variable efficacies. It also breaks down noncollagen

ECM substrates including aggrecan, perlecan, versican, proteo-

glycan link protein, serpins, nidogen, fibronectin, and tenascin. It

also degrades casein, antichymotrypsin, IL1β, pro‐tumor necro-

sis factor‐α, SDF1, antitrypsin, proteinase inhibitor, IGF‐BP3

and 5.29,34–36

4 | FUNCTION OF MMP1 IN BC
PROGRESSION

Metastasis and invasion of cancer cells happen as a result of several

key steps like malignant cell detachment at the main origin,

angiogenesis, cellular proliferation, invasion in local regions, intrava-

sation of tumors into the vasculature system, and extravasation of

tumors at the distant region. Metastasis and invasion also need

different physical barriers, for example, the basement membrane and

the surrounding connective tissues.37 MMP1 is a calcium‐dependent

zinc‐containing collagenase that is upregulated in a variety of cancers

and involves tumor metastasis and invasion as well as cell

proliferation, differentiation, migration, angiogenesis, apoptosis, and

immune defense. Moreover, studies showed an inverse correlation

between MMP1 overexpression and survival in cancer patients.38–40

The activity of MMP1 is tightly controlled in normal tissues by

proteolytic cleavage, including the negative regulation of TIMPs

(tissue inhibitors of metalloproteinases), which is less expressed in

malignant tissues. Again, the lower transcription level of MMP1 in

normal epithelia is increased in response to various stimuli, for

instance, cytokines, chemokines, growth factors, and several hor-

mones.41 In breast carcinoma, particularly basal‐type cancers, MMP1

is upregulated and shows extensive metastatic properties. It is also

associated with progression and relapse‐free survival leading to poor

prognosis of BC. There is also a statistically significant difference

between stromal cells MMP1 positivity and luminal A, B, and TNBC

(triple‐negative BC). Most importantly, MMP1 expression at the BC

level carries an independent prognostic value.42

A recent study by Wang et al.43 reported that the MMP1 protein

expression level is significantly higher (p<0.05) in TNBC tissues than in

estrogen receptor‐positive (ER+) and epidermal growth factor 2 receptor‐

positive (EGF2R3+) BC tissues. Moreover, the MMP1 level was

significantly elevated in the stromal cells of metastatic lymph node

tissues than that of the nonmetastatic tissues in BC. They showed that

MMP1 small hairpin RNA in MDA‐MB‐231 and MCF‐7 cells drastically

reduced migration, proliferation, and invasion knocking down MMP1

expression, and suggested that MMP1 is differentially regulated in BC.

F IGURE 1 Structural domains of MMP1. MMP, matrix metalloproteinase.
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Another study by Shen et al.38 demonstrated that upregulated

MMP1 leads to the activation of paracrine protease‐activated

receptor 1 (PAR1) and promotes growth and distant metastasis of

BC tissues. Moreover, the high expression level of MMP1 is

correlated with worse survival in all BC patients including ER+

patients. Furthermore, MMP1 increased invasiveness in BC tissues

through vascular endothelial growth factor as well as bone

morphogenetic protein 2/4. Some recent studies also explicated

that MMP1 enhanced tumor cell migration via degrading specific

cell adhesion and cell‐matrix adhesion regulatory substrates. This

interaction ultimately leads to tumor metastasis and invasion.44 A

previous study by Eiró et al.45 described that MMP1 expression in

host defense cells is linked with the sequential metastasis in the

lymphatic system (sentinel lymph nodes, SLN) of BC tissues. An

updated analysis by Eiró et al.46 reported a significant correlation

of enhanced MMP1 expression with tumor size and histological

grade in BC.

MMP1 upregulation has been identified and confirmed as an

important factor for BC metastasis. It has been described that

expression of MMP1 is greater in invasive ductal carcinoma (both

nonspecific and lymph node metastatic nonspecific) than the normal

tissues and lymph node tissues in BC.47 Cierna et al.48 also reported

that elevated MMP1 expression is correlated with evolution,

dissemination, worse prognosis, and shortened survival rate in breast

tumor. Moreover, MMP1 induces epithelial to mesenchymal transi-

tion promoting the invasiveness of BC cells. The expression of MMP1

in BC samples based on the sample types, individual cancer stages,

patient's race, patient's gender, patient's age, BC subclass, meno-

pause status, and nodal metastasis status is depicted in Figure 2A–H.

The expression data were retrieved from the publicly available

ULCAN database (https://ualcan.path.uab.edu/index.html).

5 | ASSOCIATION OF GENETIC
POLYMORPHISMS IN MMP1 WITH BC

Almost 90%–95% of BC cases are thought to be sporadic types and

result from the combination of both genetic and environmental

factors. According to the polygenic models, a combination of

numerous low‐risk genes with polymorphisms in the genome

sequence can enhance several diseases' vulnerability.49 The MMP1

expression level might be greatly influenced by polymorphisms,

especially single nucleotide polymorphisms (SNPs) that are positioned

within or near the promoter site of the MMP1 gene. The association

of different genetic polymorphisms of MMP1 has been studied for

cancers, especially in BC (Table 2).

Recent research showed that due to the differences in

ethnicity, the susceptibility, incidence, and survival rate of BC

varies among different populations. Besides, genetic differences

also contribute to racial or ethnic variations in BC patients. To

evaluate the effect of genes and their variants, a collaborative

case‐control investigation in Hispanic and non‐Hispanic white

females was carried out by Slattery et al.22 They carried out a

large study on 3592 BC cases and 4183 healthy controls from the

United States and Mexico to examine the association of nine

genetic variants including rs5854 (C/T), rs17293823 (G/A),

rs996999 (C/T), rs17293761 (C/T), rs7945189 (C/T), rs7125062

(T/C), rs470358 (C/T), rs475007 (A/T), rs1144393 (T/C) in MMP1

gene with BC risk. Among them, 4 SNPs, namely, rs5854 (C/T),

rs996999 (C/T), rs7125062 (T/C), and rs1144393 (T/C) were

found to be significantly (p < 0.05) correlated with overall BC risk.

SNP rs996999 (C/T) in the MMP1 gene showed the strongest

association in females with the most Native American ancestry

(odds ratio [OR] = 1.61; 95% confidence interval [CI] = 1.09–2.40;

p = 0.039).

Accumulating evidence revealed that insertion of a single guanine

base (1G/2G polymorphism) in the MMP1 gene promoter area

generates a new binding region for the AP1 transcription factor, which

attenuates the transcription level of MMP1.61 The influence of

rs1799750 1G/2G polymorphism on the MMP1 expression level,

incidence, and progression of BC was investigated in a case‐control

study. In that study, the genotypes and alleles distribution of the 1G/2G

variant in MMP1 on 270 BC patients and 300 healthy women in

the Polish population were examined. The study showed that the

2G/2G genotype and the 2G allele carriers (OR = 2.14; 95%

CI = 1.24–3.69 and OR=1.68; 95% CI = 1.19–2.39, respectively) are

significantly associated (p< 0.001) with a higher possibility of axillary

lymph node metastasis among BC patients. They also suggested the

contribution of MMP1 to the local invasion and therefore, established

MMP1 as a BC progression marker.50 To evaluate the association of

rs1799750 1G/2G variant in the progression of BC, Przybylowska

et al.62 also conducted a case‐control study on 135 subjects. They

reported that 2G allele percentage was significantly greater in lymph

node‐metastasis cases than in the nonmetastasis subjects (p < 0.001).

Again, a case‐control study by Padala et al.54 showed that the

promoter site genetic polymorphism of the MMP1 gene (rs1799750

TABLE 1 Location, tissue distribution and substrates of MMP1 gene.

Name
Chromosomal
location

MW pro/
active Distribution

Collagen
substrates Noncollagen substrates Other targets and substrates

MMP1 11q22.3 55/45 KDa Endothelium, intima,
fibroblasts, SMCs,
vascular adventitia,
platelets, varicose
veins

I, II, III, IV, VII,
VIII, X, and
gelatin

Aggrecan, perlecan,
versican, proteoglycan
link protein, serpins,
nidogen, tenascin

Casein, antichymotrypsin, IL1β,
pro‐TNFα, SDF1, antitrypsin,
proteinase inhibitor, IGF‐BP3
and 5

Abbreviations: IL, interleukin; MMP, matrix metalloproteinase; SMC, smooth muscle cell; TNF, tumor necrosis factor.
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1G/2G) is correlated with the development of breast carcinoma in

the South Indian population. The study reported that the 2G allele of

MMP1 rs1799750 had enhanced transcriptional activity. The

frequency of 2G allele was also reported to be linked with twofolds

enhanced risk in the patients with BC than the controls suggesting

that MMP1‐1607 1G/2G gene polymorphism might have a greater

association with BC.

However, a controversial relationship between MMP1 and BC

risks has also been reported in different populations. The association

between rs1799750 in MMP1 (1G/2G) and the risk of BC is recently

investigated in a study of 598 subjects (299 BC cases and 299 healthy

controls) from Poland. In this study, the results did not show any

significant correlation between 1G/2G polymorphism and BC progres-

sion.16 The 2G allele of the rs1799750 SNP in the MMP1 gene

promotes the transcriptional activity of MMP1 by creating a binding

region for Ets transcription factors. A study on 959 BC cases and 952

controls in the Swedish population evaluated the linkage between the

MMP1 gene rs1799750 and BC. However, no statistically significant

association of this polymorphism was observed with BC risk.51 Biondi

et al.52 also observed a lack of association between MMP1 rs1799750

and BC in an Italian case‐control investigation on 43 BC cases and 164

healthy volunteers.

Notably, the MMP1 level in serum has been found to be reduced

in patients with BC than the healthy subjects. Again, the 1G/2G

promoter polymorphic site of MMP1 determines the levels of MMP1

influencing the susceptibility of an individual to BC. A case‐control

study by Hsiao et al.53 investigated the relationship of rs1799750

polymorphism in MMP1 to BC among the Taiwanese population. In

the study, the rs1799705 polymorphic genotypes were evaluated on

1232 patients and 1232 controls but did not find any statistically

significant correlation with the development of BC. The study

concluded that rs1799750 may not contribute to the susceptibility

of BC in the Taiwanese.

Emerging evidence showed that MMP1 is the most abundant

MMP located under the control of the AP1 transcriptional factor

which binds to the promoter site of mitogen‐activated protein kinase

via polyomavirus enhancer activator 3 (Pea3) protein. The MMP1

expression level was found to be significantly elevated in the atypical

ductal hyperplasia compared to that of the benign BC as well as in

the invasive BC than that of the in situ BC. MMP1 gene rs1799750

(1G/2G) polymorphism was investigated in 1232 BC cases and 1232

healthy women from Taiwan. However, the study indicated no

significant association between the 1G/2G or 1G/1G genotypes with

BC susceptibility.55

No statistically significant correlations were observed in a study

in 86 BC patients and 110 controls in Italy by Ghilardi et al.56 with the

tumor, node, metastasis (TNM) stage during diagnosis of BC and

between the MMP1 gene rs1799750 (1G/2G) polymorphism. The

distribution of the MMP1 promoter allelic variant also demonstrated

no statistically significant variations between metastatic cases and

controls or between metastatic and nonmetastatic cases or between

nonmetastatic cases and controls. However, they failed to establish

any statistically significant link between 1G/2G polymorphism in the

MMP1 gene and BC.

Another study by Balkhi7 and colleagues examined the

association between circulating levels of rs1799750 polymorphism

and BC in a sample of 200 subjects. In the study, the frequencies of

different genotypes for rs1799750 were observed. Among the BC

cases, the frequencies were reported as 74% for the 2G/2G

genotype, 2% for the 1G/2G genotype, and 24% for the 1G/1G

F IGURE 2 MMP1 expression based on the sample types (A), individual cancer stages (B), patient's race (C), patient's gender (D), patient's age
(E), breast cancer subclass (F), menopause status (G), and nodal metastasis status (H). Expression data was retrieved from the publicly available
ULCAN database (https://ualcan.path.uab.edu/index.html). MMP, matrix metalloproteinase.
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TABLE 2 MMP1 gene polymorphisms and their association with breast cancer.

SNPs Major/minor allele MAF Population
Cases/
controls OR 95% CI p value References

rs5854 C/T 0.60 United States and Mexico 3592/4183 0.82 0.69–0.97 0.018 Slattery et al.22

rs17293823 G/A 0.21 United States and Mexico 3592/4183 N/A N/A N/A Slattery et al.22

rs996999 C/T 0.45 United States and Mexico 3592/4183 1.23 1.01–1.50 0.039 Slattery et al.22

rs17293761 C/T 0.15 United States and Mexico 3592/4183 N/A N/A N/A Slattery et al.22

rs7945189 C/T 0.15 United States and Mexico 3592/4183 N/A N/A N/A Slattery et al.22

rs7125062 T/C 0.70 United States and Mexico 3592/4183 1.15 1.01–1.32 0.03 Slattery et al.22

rs470358 C/T 0.84 United States and Mexico 3592/4183 N/A N/A N/A Slattery et al.22

rs475007 A/T 0.90 United States and Mexico 3592/4183 N/A N/A N/A Slattery et al.22

rs1144393 T/C 0.60 United States and Mexico 3592/4183 0.94 0.85–1.04 0.03 Slattery et al.22

rs1799750 1G/2G 0.49 Poland 270/300 1.68 1.19–2.39 <0.05 Przybylowska et al.50

rs1799750 1G/2G 0.76 Poland 299/299 1.08 0.70–1.67 >0.05 Białkowska et al.16

rs1799750 1G/2G N/A Sweden 959/952 N/A N/A >0.05 Lei et al.51

rs1799750 1G/2G 0.19 Italy 43/164 1.51 0.65–3.50 >0.05 Biondi et al.52

rs1799750 1G/2G 0.44 Taiwan 1232/1232 1.03 0.91–1.18 >0.05 Hsiao et al.53

rs1799750 1G/2G 0.58 South India 300/300 2.01 1.57–2.59 <0.05 Padala et al.54

rs1799750 1G/2G 0.44 Taiwan 1232/1232 0.99 0.89–1.11 >0.05 Su et al.55

rs1799750 1G/2G 0.53 Italy 86/110 0.97 0.65–1.45 >0.05 Ghilardi et al.56

rs1799750 1G/2G 0.25 Iran 100/100 0.21 0.14–0.33 <0.05 Balkhi et al.7

rs1799750 2G/1G 0.35 China 3016/3007 1.0 0.8–1.30 0.45 Beeghly‐Fadiel et al.57

rs484915 A/T 0.34 China 3016/3007 1.1 0.9–1.50 0.76 Beeghly‐Fadiel et al.57

rs1155764 T/G 0.20 China 3016/3007 0.8 0.5–1.30 0.90 Beeghly‐Fadiel et al.57

rs509332 A/G 0.13 China 3016/3007 1.4 0.8–2.70 0.54 Beeghly‐Fadiel et al.57

rs470206 G/A 0.13 China 3016/3007 1.3 0.7–2.50 0.46 Beeghly‐Fadiel et al.57

rs2075847 T/C 0.24 China 3016/3007 1.1 0.7–1.50 0.71 Beeghly‐Fadiel et al.57

rs498186 A/C 0.46 China 3016/3007 1.0 0.8–1.20 0.73 Beeghly‐Fadiel et al.57

rs475007 T/A 0.36 China 3016/3007 0.9 0.7–1.20 0.77 Beeghly‐Fadiel et al.57

rs996999 T/C 0.49 China 3016/3007 1.0 0.8–1.30 0.79 Beeghly‐Fadiel et al.57

rs470558 G/A 0.11 China 3016/3007 1.0 0.5–2.00 0.58 Beeghly‐Fadiel et al.57

rs2071232 C/T 0.50 China 3016/3007 1.0 0.8–1.20 0.69 Beeghly‐Fadiel et al.57

rs7125062 C/T 0.30 China 3016/3007 1.0 0.7–1.30 0.74 Beeghly‐Fadiel et al.57

rs1938901 T/C 0.44 China 3016/3007 1.0 0.8–1.20 0.63 Beeghly‐Fadiel et al.57

rs470747 T/C 0.09 China 3016/3007 0.9 0.3–2.10 0.77 Beeghly‐Fadiel et al.57

rs2071231 T/G 0.21 China 3016/3007 0.7 0.5–1.10 0.98 Beeghly‐Fadiel et al.57

rs470215 A/G 0.09 China 3016/3007 0.9 0.4–2.10 0.38 Beeghly‐Fadiel et al.57

rs5854 C/T 0.08 China 3016/3007 0.7 0.2–2.10 0.67 Beeghly‐Fadiel et al.57

rs7945189 C/T 0.07 China 3016/3007 0.7 0.3–1.80 0.64 Beeghly‐Fadiel et al.57

rs470504 C/T 0.13 China 3016/3007 1.0 0.6–2.00 0.52 Beeghly‐Fadiel et al.57

rs1939008 A/G 0.43 China 3016/3007 1.0 0.8–1.20 0.77 Beeghly‐Fadiel et al.57
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genotype. In comparison, among the healthy volunteers, the frequen-

cies were 38% for the 2G/2G genotype, 2% for the 1G/2G genotype,

and 60% for the 1G/1G genotype. The observed differences in

genotype frequencies between the two groups were found to be

statistically significant (p < 0.05). Furthermore, they found that

individuals with the 2G/2G genotype had a significantly increased

risk of developing BC compared to those with the 1G/1G genotype

(OR = 4.86; p < 0.001). They also found a significantly increased

serum level of MMP1 in BC patients compared to healthy

volunteers.

The study conducted by Beeghly‐Fadiel et al.57 focused on

evaluating the association between individual genetic polymorphisms

across theMMP1 gene and BC risk in a two‐phase case‐control study.

The study specifically included women from the Shanghai Breast

Cancer Study, with a total sample size of 6023 participants. In their

study, the authors investigated 23 SNPs from the MMP1 gene.

However, their analysis did not find any significant correlation

between these SNPs and BC risk among the participants.

In a study investigating the association between rs1799750

polymorphism of the MMP1 gene and the metastatic spread of BC,

researchers evaluated 126 lymph node‐negative and 92 lymph node‐

positive patients. The findings demonstrated a significant and

independent association between the 2G/2G genotype and lymph

node‐positive disease. For mixed ethnicities, the odds ratio was 3.9

(95% CI = 1.7–9.4), while for Caucasians, it was 2.6 (95% CI = 1.0–6.9).

This suggests that individuals with the 2G/2G genotype are at an

increased risk of lymph node metastasis. The study also revealed that

the 2G/2G genotype was linked to reduced survival, with a hazard

ratio of 3.1 (95% CI = 1.1–8.7). However, the impact on survival was

dependent on lymph node status, indicating that the genotype's effect

may vary depending on whether the patient has lymph node‐positive

or lymph node‐negative disease. Additionally, two haplotypes of

the MMP1 2G allele were significantly linked to lymph node‐positive

disease and survival outcomes.58

In a case‐control study conducted among Caucasian women in

Russia, Pavlova et al.59 investigated the association between MMP

gene polymorphisms and BC risk. The study included a total of 358

affected women with BC and 746 controls. The researchers focused

on 10 SNPs in five different MMP genes, including MMP1, MMP2,

MMP3, MMP8, andMMP9 based on their relevance to BC from earlier

studies. Although the findings of the study demonstrated a significant

association between MMP gene polymorphisms and BC susceptibility

in the Caucasian women of Russia, no statistically significant link was

reported for MMP1 rs1799750 polymorphism. Another study

published by Pavlova and others60 in the same year (2022) explored

the potential modifying effect of obesity on the association between

these 10 polymorphisms and BC risk. In this study, the authors

categorized the same samples (n = 1104) into two groups based on

their body mass index (BMI): BMI ≥ 30 (119 BC and 190 control) and

BMI < 30 (239 BC and 556 control). The findings of the study

revealed an overall significant modifying effect of obesity on the

association between MMP genes and BC risk in postmenopausal

women. However, the authors did not find any significant link

between rs1799750 and BC risk.

Some meta‐analyses63–67 were also performed to evaluate the

correlation between MMP1 genetic variation and the risk of BC.

However, these studies failed to establish any statistically significant

link betweenMMP1 polymorphism and BC risk,63–66 except the study

by Sui et al.67 where they showed a reduced risk of BC in the

heterozygous model in the overall population.

6 | LITERATURE SEARCH STRATEGIES

This narrative review was conducted by following Preferred Report-

ing Items for Systematic Reviews and Meta‐Analyses (PRISMA)

guidelines for systematic review.68 We carried out a comprehensive

literature search in PubMed database (https://pubmed.ncbi.nlm.nih.

gov/) as summarized in Figure 3. We have used the following search

keywords: “MMP1,” “matrix metalloproteinase 1,” “MMP1 and breast

cancer,” “MMP1 and carcinogenesis or malignancy,” “polymorphisms

in MMP1,” “MMP1 metastasis and invasion.” We have also reviewed

TABLE 2 (Continued)

SNPs Major/minor allele MAF Population
Cases/
controls OR 95% CI p value References

rs11225422 A/G 0.20 China 3016/3007 1.1 0.8–1.50 0.63 Beeghly‐Fadiel et al.57

rs470226 G/A 0.12 China 3016/3007 0.7 0.4–1.30 0.52 Beeghly‐Fadiel et al.57

rs7127735 A/G 0.21 China 3016/3007 1.1 0.8–1.40 0.41 Beeghly‐Fadiel et al.57

rs1799750 1G/2G 0.42 United Kingdom 126a/92b 1.84 1.25–2.70 <0.05 Hughes et al.58

rs1799750 1G/2G 0.47 Russia 358/746 1.02 0.85–1.22 0.83 Pavlova et al.59

rs1799750 2G/1G 0.46 Russia 239/556 1.00 0.80–1.24 0.99 Pavlova et al.60

rs1799750 2G/1G 0.46 Russia 119/190 1.05 0.75–1.45 0.78 Pavlova et al.60

Abbreviations: CI, confidence interval; MAF, minor allele frequency; MMP, matrix metalloproteinase; N/A, not available; OR, odds ratio.
aNode positive.
bNode negative.
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the bibliographic list of relevant articles to extract data from suitable

ones. The literature written only in English was retrieved for our

review.

A total of 567 studies were collected from searching the PubMed

database. After the removal of 151 duplicates, 416 articles remained

for analyzing the title and abstracts. 102 articles were removed after

the title and abstract screening. Excluding reviews, commentaries,

not relating to MMP1 and not studying cancers except BC, a total of

122 articles remained. Due to a lack of full‐text access and

inappropriate data, 95 articles were removed. One article was further

excluded due to being written in other than English. Finally, 26

articles were included in the present systematic review.

7 | FUTURE PERSPECTIVES

It is already established that the role of genetic polymorphism as a

risk factor for cancer development is largely influenced by the

ethnicity, geographical, and biological diversity of the population.69,70

Moreover, the findings of genome‐wide association studies are also

markedly affected by the small sample size. As a result, inconsistent

results have been observed from the genetic association studies

aimed to establish the correlation between MMP1 gene variants and

the risk of progression of BC. In most of the studies, the published

results must be validated using a larger sample size, appropriate

matching between cases and controls, and unbiased investigations.

Besides, a comparatively greater sample size may substantially

decrease the amount of false‐positive data.60

However, the recent advances in high‐throughput technology

have permitted fast, accurate, and efficient profiling of SNPs making

them appropriate choices as biomarkers for screening BC. Further-

more, understanding the effect of SNPs of a particular gene

individually or in combination is very important to get the proper

outcome from genetic studies.71 Individual SNP markers alone cannot

effectively provide an accurate assessment of BC risk. A combination

of multiple SNPs analysis (haplotype analysis), gene‐gene interac-

tions, understanding molecular pathways, and study with other

factors including epigenetics, proteomics, posttranscriptional modifi-

cations, and others may provide the best output in future studies.

8 | CONCLUSION

MMP1 is a zinc‐dependent endopeptidase that is upregulated in BC

tissues and is associated with BC metastasis and invasion. The

expression of MMP1 is mediated by numerous factors, including

polymorphisms which act as a prominent risk factor in the

progression of breast carcinogenesis. The correlation between

F IGURE 3 Flow diagram of literature search and selection for systemic review.
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genetic polymorphisms in MMP1 and BC risk has been analyzed in

various case‐control studies in different ethnicities which is

inconsistent. This is the first review concentrating on the correlation

of different genetic polymorphisms in MMP1 with the risk and

survival of BC as well as the structural domain ofMMP1 and the role

of MMP1 in BC metastasis and invasion. Our present review

provides an overview of the MMP1 gene polymorphisms in BC.

However, further studies are needed focusing on combined analysis

of multiple SNPs, gene‐gene interactions, and analysis of epige-

netics, proteomics, and posttranscriptional modifications that will

provide the best outcome.
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