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Existing algorithms allow us to infer phylogenetic networks from sequences (DNA, protein or binary), sets of trees, and distance
matrices, but there are no methods to build them using the gene order data as an input. Here we describe several methods to build
split networks from the gene order data, perform simulation studies, and use our methods for analyzing and interpreting different
real gene order datasets. All proposed methods are based on intermediate data, which can be generated from genome structures
under study and used as an input for network construction algorithms.Three intermediates are used: set of jackknife trees, distance
matrix, and binary encoding. According to simulations and case studies, the best intermediates are jackknife trees and distance
matrix (when used with Neighbor-Net algorithm). Binary encoding can also be useful, but only when the methods mentioned
above cannot be used.

1. Introduction

Gene order data gain increasing popularity in the phylo-
genetic community because of several advantages they have,
compared with gene sequences. First, in most cases the
genome structure evolves slower than DNA or protein se-
quence, allowing the inference about ancient events with
less noise level [1]. Second, like all phylogenomic studies,
the analysis of genomic rearrangements is not hampered by
conflicts between gene trees and species tree. One can expect
the rearrangements-based inference and phylogenomics in
general to become more and more widespread as DNA
sequencing cost continues to decline and new computational
tools are developed to deal with this kind of data.

Aswith any analysis, it is based upon several assumptions.
First, every genome is represented as a permutation of homol-
ogousmarkers, which are usually directed. All genomes in the
dataset should contain the same set of markers. Though in
the majority of studies these markers are genes (hereinafter
referred to as “genes”), they can be contiguous parts of a
chromosome of any reasonable length. Such a permutation
is traditionally represented as a sequence of signed numbers
with absolute values being identifiers of elements and a
sign denoting direction. Second, a set of operations on

a permutation is limited to some subset of all actually possible
evolutionary events. Inversions are the most common, but
there can be also translocations, double-cut-and-join oper-
ations, and several other events [1].

In the majority of phylogenetic studies, the evolutionary
relationships of taxa are represented by phylogenetic trees.
Despite their usefulness for biology, a phylogenetic tree
by definition is able to display only one divergence-based
scenario. Real evolution, on the other hand, is not limited to
diverging taxa: recombination and horizontal gene transfer
occur in all major groups of organisms. Even in cases when a
tree-like evolution is safe to assume, sometimes it is useful to
simultaneously visualize all conflicting scenarios supported
by the dataset [2]. Reticulate evolutionary events are currently
beyond the scope of the gene order analysis because a similar
set of genes in all genomes is assumed. On the other hand,
ambiguous data do not often allow the choice of a single
tree. To solve these problems, phylogenetic networks, that is,
nontree graphs describing evolutionary relationships, were
proposed. Many types of phylogenetic networks exist [2], but
in this study we are interested only in split networks [3].

An idea of the split network is based upon one crucial
observation: every branch of the phylogenetic tree defines
a split or bifurcation of taxa set, that is, separates it into
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two parts. Split is called trivial if one of its parts contains
only one taxon. Such a split corresponds to a leaf branch
on the phylogenetic tree. A set of splits is called compatible
if it can be represented by an unrooted phylogenetic tree.
Phylogenetic inference in this framework is reduced to
generating a set of nontrivial splits and representing them as
a graph.

A split network is a generalization of mathematical con-
cept of a phylogenetic tree. It is able to represent both
compatible and incompatible split sets. Unlike unrooted tree,
a split network may use several parallel edges to represent
any given split. Deletion of all edges corresponding to a split
divides the network in exactly two connected components,
one containing all taxa from one part of the split, and another
containing taxa from the other. The edge lengths are defined
by split weight, which can be of different sense depending on
the algorithm used to generate a split set [2].

2. Materials and Methods

2.1. Building Phylogenetic Networks. The main idea of this
work is to apply existing network-building algorithms to
intermediate data, which were generated according to the
structure of studied genomes. We used a set of phyloge-
netic trees (consensus network algorithm), inversion distance
matrix (split decomposition and Neighbor-Net algorithms),
and binary encoding (parsimony-splits algorithm) as inter-
mediate data. In all cases, we considered rearrangements
in unichromosomal genomes consisting of directed markers
and limited the evolutionary process to inversions. The latter
assumption is not applied to binary encoding (see details
below).

We did not filter the splits with any of the algorithms
and intermediates. The aim of the additional filtering is to
obtain a relatively simple set of splits (e.g., cyclic or weakly
compatible). Such a set of splits corresponds to a network
with simple topology, which can be easily drawn on a flat
surface. However, such a simplification causes removal of
some splits from the resulting network, which potentially
leads to loss of important data. We decided to sacrifice
simplicity of the network for the sake of its accuracy.

The data transformations, jackknife analysis, and simu-
lations were done by custom Perl scripts, which are avail-
able upon request. All network construction algorithms are
implemented in SplitsTree4 software by Huson and Bryant
[4]. Computations were done at Irkutsk High-Performance
Computer Center (ISDCT SB RAS, Irkutsk).

2.2. Jackknife Trees. Since the function of split networks is to
represent conflicting trees, the most obvious solution is to
generate a bunch of trees and sum them up into a network.
To obtain a set of trees, we conducted a jackknife procedure:
40% of genes were chosen randomly and removed from all
permutations, preserving the order of the remaining ones.
We generated 100 replicates and built phylogenetic trees using
COGNAC package by Kang et al. [5].

Phylogenetic network was built by consensus network
algorithm [6].This algorithm uses all splits which are present
in all input trees to build a network. The algorithm was set

up to include a split into the network if it is present in at
least 10% of the input trees. In this case, the split weights and
therefore the edge lengths in the resulting network are equal
to a jackknife support of the corresponding bifurcation, that
is, a proportion of input trees that include this bifurcation.

2.3. Distance Matrix. Distance matrix is a common kind
of intermediate data which allows building phylogenetic
trees and networks from different raw data using the same
algorithms. GRAPPA package [7] was used to generate
the matrix of pair-wise inversion distances. This distance
metric designates minimum number of inversion operations
necessary to transform an initial gene permutation into a
target one. Two algorithms were applied to distance matrices:
Neighbor-Net [8] and split decomposition [2].

2.4. Binary Encoding. Binary encoding (BE) represents a set
of permutations as amatrix of binary characters [9].The rows
of this matrix correspond to permutations. Columns are the
pairs of genes in all four relative orientations (+N +M, +M
+N, +N −M, and −N +M). Every element of matrix equals
1 if two genes are adjacent in genome in given directions;
otherwise, it is equal to 0. Such an approach allows us to
promptly analyze large datasets. It can use existing software
and does not make explicit assumption about the nature
of rearrangement process. BE matrices were processed by
parsimony-splits algorithm [10].

The median network algorithm is also popular in the
analysis of binary sequences. However, a crucial step of the
analysis is to reconstruct ancestral states. In case of BE, the
algorithm does not account for actual evolution of under-
lying gene order, therefore the reconstruction of ancestral
sequences will be incorrect. Thus, we did not use this
approach in our work.

2.5. Simulations. For simulations, we generated Yule trees for
10 and 20 taxa with the branch lengths sampled from Poisson
distribution. The expected branch lengths 𝜆 ranged from 1 to
10 inversions. For each combination of the taxa amount and
𝜆, we generated 100 random trees. The gene orders evolved
according to topology of these trees by random inversions
starting from the identity permutation of 100 genes at the root
of the tree. Permutations observed at the tree leaves were used
as an input for methods described above.

The resulting networks were compared with the true
underlying tree. We assessed only a network topology, that
is, a set of splits. We counted nontrivial splits that are either
present in the true tree, but not in the network (false negative
(FN)), or vice versa (false positive (FP)). Obviously, all trivial
splits are always present in both tree and network, therefore
they were excluded from the analysis.

Two values were obtained from the FN and FP counts
to compare performance of the methods. First value is
sensitivity, that is, probability for any split in the true tree
to be included into the phylogenetic network. Another value
is a positive predictive value (PPV), which has an opposite
meaning: probability that a network split belongs to the true
tree. We calculated neither specificity nor negative predictive
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(a) Trees with 10 taxa
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Figure 1: Simulation results.

value because the true negative count, which is the amount of
all possible splits on given taxa set minus the amount of splits
in the true tree, is always several orders of magnitude larger
than that of FN and FP.

Split weights were not taken into account because their
meaning is different in the network-building approaches
used. This is an important flaw of the simulation procedure
because once a split is present in the network, it will increase
sensitivity (or decrease PPV) of themethod, even if theweight
of this split is vanishingly small.

2.6. Case Studies. We used two real datasets in the case stud-
ies. The first is Campanulaceae dataset, which is commonly
used to evaluate performance of the rearrangement-based
phylogenetic inference software [9, 11, 12], provided as test
data with the Badger package [12]. This dataset is poorly
resolved: all trees in the aforementioned papers contain
multifurcations and, in some cases, support values are not
provided (see Figure 3(e) for example).

Another dataset consists of six chloroplast genomes of
diatoms and two genomes of diatom-derived chloroplasts of
dinoflagellates. All these are circular genomes 120–130 kbp
long, containing from 154 to 159 genes, including tRNAs.
Each chloroplast DNA bears a long inverted repeat that
contains genes for rRNAs and several proteins. Phylogenetic
relationships of taxa are quite well established [13], and our
tree inferred from the order of genes in chloroplast genomes
supports the conventional scenario (Figure 2(e)).

We removed one of the copies of inverted repeat from all
diatom genomes, thus transforming sequences from circular
to linear. Then all common genes were assigned numbers

and marked with signs depending on their orientation. The
resulting dataset consisted of eight permutations of 149 genes
each. Both real datasets were analyzed in the same way as the
simulated data.

3. Results and Discussion

3.1. Simulations. According to simulation studies (Figure 1),
the analysis of a set of the jackknife trees with the consensus
network algorithm appeared to be the best way to build
split networks. Networks generated by this method had the
highest sensitivity and PPV in most tests. However, the
reconstruction of a set of trees is significantly more CPU-
intensive than computation of either distance matrix or
binary encoding.

The split decomposition algorithm is slightly outper-
formed by the consensus network approach in terms of both
sensitivity and PPV. The distance matrix can be computed
significantly faster than a set of trees. It took less than aminute
on a desktop computer for all tests performed. Additionally,
this method guarantees to produce a weakly compatible set
of splits, ensuring less complicated network.

PPV of Neighbor-Net algorithm significantly decreases
with increasing lengths of tree branches. On the other hand,
sensitivity is similar to that of other methods.

The parsimony-splits algorithm applied to the binary
encoding is different from other methods. It does not ana-
lyze permutations, but processes binary matrices built from
them. This may be useful, if the evolutionary process is not
assumed to be based mainly on inversions. However, in our
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Figure 2: Split networks and reference tree for the Bacillariophyta dataset.

“inversions-only” simulations, the networks built with this
method have the lowest sensitivity and the second lowest
PPV.

3.2. Case Studies. Obviously, one can never know exactly
which tree is actually true for a real dataset. Therefore, by

analyzing real data: one can only assess relative complexity of
a network, that is, howmany splits are included, and whether
it is congruent with the trees obtained on the same dataset
with other methods.

On Bacillariophyta dataset, we first built a phylogenetic
tree using MGR package (Figure 2(e)) [11]. This tree is
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Figure 3: Split networks and reference tree for the Campanulaceae dataset.

congruent to the trees obtained usingmolecular phylogenetic
analysis of several diatom genes [13]. Therefore, we used
topology of this tree as a reference to assess quality of split
networks.

TheNeighbor-Net algorithmhas produced themost com-
plex network (Figure 2(d)) with the largest number of splits.
Most of these splits, however, have low weights, making

the best scenario clearly visible. Binary encoding-based
network (Figure 2(a)) is smaller in terms of splits. Its topology
is also the closest to the MGR tree. Two other networks
contain significant flaws. Consensus network gives the high-
est support to positions of Synedra, Phaeodactylum, and
Fistulifera that contradict our MGR tree (Figure 2(b)). It is
also the only network that contains a 3-dimensional structure,
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which makes it much harder to read. Network built by split
decomposition algorithm has a small number of additional
splits, but it also lacks a few crucial ones, leaving the
Synedra/Phaeodactylum/Fistulifera relationships completely
unresolved (Figure 2(c)).

Campanulaceae dataset was confirmed to be ambiguous.
All methods support five relatively well-supported mono-
phyletic clusters (marked by colors in Figure 3), but neither
positions of taxa inside them nor relations of the clusters are
resolved.The same conflict is present in consensus trees built
with other algorithms ([10, 12, 13], see Figure 3(e)). Networks
clearly show that some groups can be reliably separated from
each other, yet the complete reconstruction cannot be done
based solely on this dataset.

4. Conclusions

In this study, we propose several methods to build split
networks using the gene order data via generating the inter-
mediate datasets.Weused a set of jackknife trees, an inversion
distance matrix, and a binary encoding of the gene order
as intermediate data. The performance of these methods
is shown to vary depending on input data. Furthermore,
the suggested methods are different in assumptions and
mathematical approaches behind them. Belowwe summarize
pro et contra of every method.

A set of jackknife trees is useful in most cases. In
simulations, it performs well in terms of both sensitivity
and positive predictive value.Moreover, it produces networks
with bifurcation support as a split weight, which is very useful
when comparing the reliability of different scenarios. Since,
in the absence of additional split filtering, consensus network
approach does not limit the produced split set to weakly
compatible or circular, it can create networks of very complex,
hard to read topology.

Networks are computationally cheaper to build with the
distance matrix as an intermediate dataset. This matrix can
be analyzed by Neighbor-Net and split decomposition algo-
rithms.When comparing these two algorithms, it is necessary
to take into account that PPV is much less important than
sensitivity. If the data clearly support only one scenario, it
would not be obscured by addition of several low-weight
splits represented by barely visible edges. On the other
hand, if several contradictory trees are supported, a resulting
networkmust include splits fromall of them. In this case, PPV
will decrease. However, the use of a network instead of a tree
is aimed at representing this contradiction.

Unlike split decomposition algorithm which generates
multifurcations, Neighbor-Net tends to add a lot of low-
weight splits into network. Moreover, it has slightly higher
sensitivity. These two features seem to be advantageous to
apply theNeighbor-Net approach.However, the split network
generated via Neighbor-Net, which is always producing a
circular set of splits, may lack some splits versus the network
derived with split decomposition algorithm. For detailed
example, see archaeal chaperonins dataset [8]. This problem
only appears for very contradictory scenarios, so in the
majority of cases Neighbor-Net is preferable.

Analysis of binary encoded genome structures by par-
simony-splits algorithm has lower sensitivity and PPV than
the rest of methods. Still, it can be useful for very large
datasets, when other approaches are computationally expen-
sive. The fact that evolutionary process is not assumed to
consist of some limited set of operations is also advantageous
when no such set can be proposed. However, in most cases,
the consensus network or Neighbor-Net approach would be
more reliable.
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