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Abstract. We have isolated and sequenced genes from 
Saccharomyces cerevisiae (SRP54 ~) and Schizosac- 
charomyces pombe (SRP54"p) encoding proteins homol- 
ogous to both the 54-kD protein subunit (SRP54 re'm) of 
the mammalian signal recognition particle (SRP) and 
the product of a gene of unknown function in Esche- 
richia coli, flh (Rtmisch, K., J. Webb, J. Herz, 
S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 
1989. Nature (Lond.). 340:478--482; Bernstein H. D., 
M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, 
P. Walter. 1989. Nature (Lond.). 340:482-486). To ac- 
complish this we took advantage of short stretches of 
conserved sequence between fill and SRP54 n~m and 
used the polymerase chain reaction (PCR) to amplify 
fragments of the homologous yeast genes. The DNA 
sequences predict proteins for SRP54 ~ and SRP54 sp 

that are 47 % and 52 % identical to SRP54 m'm, re- 
spectively. Like SRP54 m~ and ffh, both predicted 
yeast proteins contain a GTP binding consensus se- 
quence in their NH2-terminal half (G-domain), and 
methionine-rich sequences in their COOH-terminal 
half (M-domain). In contrast to SRP54 mm and tfh 
the yeast proteins contain additional Met-rich se- 
quences inserted at the COOH-terminal portion of the 
M-domain. SRP54 sp contains a 480-nucleotide intron 
located 78 nucleotides from the 5' end of the open 
reading frame. Although the function of the yeast 
homologues is unknown, gene disruption experiments 
in S. cerevisiae show that the gene is essential for 
growth. The identification of SRP54 ̀c and SRP54 sp pro- 
vides the first evidence for SRP related proteins in 
yeast. 

T 
HE signal recognition particle (SRP) ~ was originally 
defined by in vitro assays as a soluble factor present 
in mammalian cells that is required for the targeting 

of nascent secretory proteins to the endoplasmic reticulurn 
(Walter and Blobel, 1980). SRP, purified on the basis of this 
assay, is a small ribonucleoprotein containing six polypep- 
tides and one RNA (7SL RNA) (Walter and Blobel, 1982). 
It functions as an adapter between secretory protein transla- 
tion and secretory protein translocation across the mem- 
brane. Although protein translocation can occur after termi- 
nation of protein synthesis in certain systems, SRP-promoted 
translocation is obligatorily cotranslational (Garcia and Wal- 
ter, 1988). 

Several groups have reconstituted translation and translo- 
cation of yeast proteins in vitro using cell extracts from the 
yeast S. cerevisiae (Hansen et al., 1986; Rothblatt and 
Meyer, 1986; Waters and Blobel, 1986). As yet there is no 
evidence for a component of this system that has the physical 
or mechanistic properties indicative of SRP, nor have at- 
tempts to reconstitute the yeast system with canine SRP 
1. Abbreviations used in this paper: SRP, signal recognition particle; PCR, 
polymerase chain reaction. 

proven fruitful. The strongest indication that an SRP-related 
machinery exists in yeast comes from the identification of 
RNAs in two species of yeast, Yarrowia lipolytica and S. 
pombe, which share strong secondary structure homology 
with higher eukaryotic 7SL RNA (Brennwald et al., 1988; 
Poritz et al., 1988; Ribes et al., 1988). However, no convinc- 
ingly homologous RNA has been described in S. cerevisiae. 
While the gene for the S. pombe RNA (SRP7) is essential 
(Brennwald et al., 1988; Ribes et al., 1988), its function re- 
mains unknown. 

Photochemical cross-linking experiments have shown that 
the 54-kD protein subunit ofSRP (SRP54) binds to the signal 
sequence of nascent secretory proteins during their synthesis 
(Krieg et al., 1986; Kurzchalia et al., 1986). A cDNA clone 
for this protein has recently been isolated (Bernstein et al., 
1989; Rtmisch et al., 1989). Its predicted amino acid se- 
quence contains a putative GTP-binding site in the NH2- 
terminal half (G-domain) and an unusually methionine-rich 
COOH-terminal half (M-domain). The G-domain shares ho- 
mology with the c~-subunit of the SRP receptor (SRc~, a 
known GTP binding protein [Connolly and Gilmore, 1989]) 
as well as with two previously uncharacterized E. coil pro- 
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teins: the gene products of the ffh and ftsY genes (Bystrtm 
et al., 1983; Gill et al., 1986). Ffh is highly similar over its 
entire length to SRP54 m'm while ftsY is more similar to 
SRc~. 

The nature of these similarities has led to a model in which 
GTP hydrolysis is involved in regulating sequential steps of 
the targeting pathway (Bernstein et al., 1989; Rtmisch et al., 
1989). GTP could be used to give unidirectionality to certain 
steps in signal recognition or targeting and/or to improve the 
fidelity of the reaction. We have proposed that the M-domain 
is involved in signal sequence binding (Bernstein et al., 
1989). This hypothesis is based on the conserved abundance 
of Met residues in mouse SRP54 and ffh and the fact that 
many of the methionine residues are found on one face of 
predicted c~-helices. According to this hypothesis, the flexi- 
ble methionine side chains form or contribute to a hydropho- 
bic pocket and provide the necessary plasticity to accommo- 
date different signal sequences. Thus, specific binding of 
signal sequences could occur despite their lack of primary 
sequence conservation. 

One of the recent applications of the polymerase chain 
reaction (PCR) is to use degenerate oligonucleotides coding 
for conserved regions of proteins to identify homologous 
genes in organisms in which the gene has not previously been 
described (Kamb et al., 1989). We have used this technique 
to isolate SRP54 homologues in S. pombe and S. cerevisiae. 
These genes represent a second entry point, in addition to 
the 7SL RNA in S. pombe and Y. lipolytica, into the molecu- 
lar genetics of SRP. Furthermore the yeast protein sequences 
allow a phylogenetic analysis of the structure of the G- and 
M-domains. 

Materials and Methods 

Identification of  SRP54 ~ and SRP54,p 

PCR was performed using either genomie DNA or eDNA as previously de- 
scribed (Kamb et al., 1989; Saiki et al., 1988). Reactions (20 #1) containing 
10 ng of yeast genomic DNA isolated according to Davis et al. (1980) were 
primed with degenerate synthetic oligonucleotides (synthesized by the Bio- 
molecular Resource Center, University of California, San Francisco) 
(20mers, 10 ~M) (see Fig. 1) and 0.5 U Taq polymerase (Cetus Corp., 
Emeryville, CA). Canine eDNA prepared from polyA + RNA as described 
by Frohrnan et al. (1988) was used in the reaction and was a gift of Harris 
Bernstein (University of California, San Francisco, CA). After 40 cycles of 
denaturation, (94"C, 1 min), annealing (45*C, 1 min), and extension (55°C, 
3 rain), (thermocyeler, Perkin-Elmer Corp., Norwalk, CT, and Cetus 
Corp.), the reaction products were separated by electrophoresis on 6 % poly- 
acrylamide gels and visualized by ethidium bromide staining. Yeast PCR 
products that comigrated with the PCR product from the canine eDNA were 
eluted from the gel and sequenced directly as follows. Single stranded tem- 
plates were generated by an additional forty cycles of P eR  (conditions as 
above), using half of the eluted DNA and in the presence of only one of 
the primers used during the initial amplification. Reactions were extracted 
with phenol, precipitated twice with ethanol in the presence of 2 M N-l-t, Obx 
to remove unincorporated dNTPs and one third of the sample was used for 
sequencing. The opposite primer was end-labeled with 132P]q~-ATP and 
used for sequencing with Sequenase (United States Biochemical Corp.) ac- 
cording to manufacturer's instructions but omitting the "labeling" step (J. 
LaBaer, personal communication). 

To isolate genomic clones of the S. cerevisiae and S. pombe SRP54 
homologues the respective PCR fragments were radiolabeled by primer ex- 
tension (Maniatis et al., 1982) and used to screen genomic libraries. The 
SRP54 sp gene was isolated from a plasmid library of S. pombe strain 
sp972h- (provided by M. Yanngida, Kyoto University, Japan). Based on re- 
striction mapping and Southern analysis a 3-kb Sac I fragment was sub- 
cloned into the Sac I site of pBluescript II SK+ (Stratngene, La JoUa, CA) 
to generate the plasmid pSP54-01. The SRP54 s¢ gene was isolated from a 

plasmid library ofS. cerevisiae strain $288C (Carlson and Botstein, 1982). 
A 2.3-kb Spe I-Hind Ill partial digest fragment was subcloned into the 
equivalent sites in pBluescript II SK + generating the plasmid pSC54-01. 

Both genes were sequenced by the dideoxy method (Sanger et al., 1977) 
using Sequenase. Internal oligonucleotide primers were used as necessary 
to facilitate sequencing. To confirm the putative splice site in SRP54SP, a 
PCR reaction was performed using S. pombe eDNA prepared from total 
RNA as described above and the oligonucleotides 5'-ACTCTGCGTTAG- 
GC~AC-3' (sense, bases 31-47) and 5'-TGTTTCCAAAAGTCrCCGTAC-3' 
(antisense, bases 606-587) as primers. The major amplified band of 95 
nucleotides was sequenced directly as described above. 

Disruption of  SRP54x 

A 4.8-kb Hind HI-Eco RI fragment containing the LYS2 gene from pBR328 
(Barnes and Thorner, 1986) was inserted between the Hind m and F, co RI 
sites of the SRP54 sc coding sequence in pSC54-01, thereby deleting 258 bp 
of coding sequence from SRP54 s~ (see Fig. 4A). The resulting plasmid 
(pSC54-L2) was cut with Xba I and Cla I to generate an 8-kb fragment con- 
taining SRP54Se::LYS2 with 0.6-kb 5' and 1.4-kb 3' of S. cerevisiae DNA 
flanking the LYS2 gene. This fragment was introduced into a lys2- diploid 
S. cerevisiae strain TR1 (a/a, trpl/trpl, lys2/lys2, his3/his3, ura3/ura3, 
ade2/ade2; obtained from E. Schuster and C. Guthrie, University of Cali- 
fornia, San Francisco [Parker et al., 1988]) by one-step gene replacement 
(Orr-Weaver et al., 1981) using the LiOAc transformation method (Ito et al., 
1983). After selecting for growth on Lys- plates surviving colonies were 
sporulated. Tetrad dissection and genetic analysis were performed by stan- 
dard procedures (Sherman et al., 1974). 

Southern analysis was performed as follows. DNA was prepared from 
the parent and transformant (Davis et al., 1980) and digested with either 
Ase I or Nsi I. The resulting fragments were separated by electrophoresis 
in 0.8% agarose then transfered to Gene Screen (New England Nuclear, 
Boston, MA). A 32p-labeled probe was prepared covering a region of the 
SRP54 ~c from bases 584-1,288, roughly corresponding to the M-domain. 
Hybridization was performed as described (Church and Gilbert, 1984) but 
at moderate stringency (42°C in 30% formamide, 7% SDS, 200 mM 
NaPO4, pH 7.5, 300 mM NaC1, 1 mM EDTA). 

Results 

To isolate yeast genes encoding homologues of S R P 5 4  ram, 
we took advantage of regions within the G-domains that are 
highly conserved between SRP54 ~'~ and ffh. (We refer to 
the mammalian proteins as SRP54 mare since canine and 
mouse SRP54 sequences differ in only 3 out of 504 amino 
acids.) Specifically, we chose two short, closely spaced se- 
quence stretches, the first including part of the first con- 
sensus sequence (box I) characteristic of GTP binding pro- 
teins (Dever et al., 1987); the second, a highly conserved 
motif between consensus boxes I and II. Degenerate oligonu- 
cleotides encoding these amino acids sequences ("A S Fig. 1 
A) or their antisense ("B," Fig. 1 A) were synthesized and 
used in PCR to amplify DNA sequences using canine eDNA 
or S. pombe genomic DNA as template. The data presented 
in Fig. 1 B (lane 2) show that amplification of S. pombe 
DNA-generated multiple products. However, a major band 
comigrated with the amplification product of the canine 
cDNA template (Fig. 1 B, lanes I and 2, arrow). These prod- 
ucts were in the expected size range of 104-107 nucleotides, 
predicted on the basis of the conserved spacing between the 
two primers in SRP54 mm and ffh. The analogous PCR reac- 
tion using genomic DNA from S. cerevisiae, however, result- 
ed in a complex banding pattern in the relevant size range 
(data not shown). Many of these products were likely to be 
unrelated to the desired product since they were also gener- 
ated if only oligonucleotide "B" was present in the reactions. 

The 104 nucleotide PCR product of S. pombe genomic 
DNA was eluted from the gel and sequenced directly (see 
Materials and Methods). We found an open reading frame 
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Figure 1. PCR strategy and reaction products. A, 
The PCR strategy is schematized showing the 
amino acid sequences (one-letter code) from 
SRP54 m~, fill, and SRP54 ~p which were used to 
generate synthetic oligonucleotides "A" (l,536-fold 
degenerate), "B" (4,096-fold degenerate), and "C" 
(64-fold degenerate). The mixed bases are repre- 
sented as follows: R = A or G; K = Gor T; Y =C 
or ~ M = C o r G ; Q = A , T ,  o r C ; a n d N =  G, 
A, T, or C. The arrows point 5' to 3'. Amino acids 
encoded by the oligonucleotides ("A') or their re- 
verse complement ("13" and "C') are indicated in 
brackets. B, PCR products from reactions using 
oligonucleotides '~" and "B" to amplify mammalian 
(canine) cDNA (lane 1) or S. pombe (lane 2) 
genomic DNA. The arrow marks the predicted 
size product, present in both lanes. C, PCR prod- 
ucts using oligonucleotides '~," and "C" to amplify 
S. cerevisiae (lane 3) or mammalian (lane 1 ) tem- 
plate DNA are shown. Lanes 2 and 4 show the 
products of the control reactions using S. cere- 
visiae DNA and oligonucleotides ~" or "C" alone. 
The arrow shows the predicted size product, pres- 
ent in both lanes 1 and 3. 

that predicted an amino acid sequence with 66% identity 
with SRP54 mare over a stretch of 18 amino acids. These 
results indicated that we had indeed amplified DNA from a 
S. pombe gene homologous to SRP54 m'm. No conclusive se- 
quence data, however, could be gathered from the various 
products generated from S. cerevisiae template DNA. Using 
the sequenced S. pombe PCR product as a probe, we isolated 
clones containing genomic DNA fragments from a plasmid 
library. Sequence analysis revealed an open reading frame 
(Fig. 2 A) with extensive homology to SRP54 m'm (Fig. 3 A). 
Towards the amino terminus, the reading frame lacked an ini- 
tiating methionine; however, the presence of consensus se- 
quences for 5' and 3' splice sites as well as for a splice branch 
point (boxed in Fig. 2 A) (Mertins and Gallwitz, 1987) pre- 
dicted the existence of a 480-nucleotide intron that separates 
an exon encoding the NH2-terminus from the rest of the 
coding sequence. The 26 amino acids encoded by this exon 
were homologous to the NH2-terminus of SRP54 "~m (Fig. 3 
A). Two oligonucleotides flanking the putative splice site 
were used in PCR to amplify cDNA prepared from S. pombe 

RNA (see Materials and Methods). The major product was 
sequenced directly and confirmed the use of the proposed 
splice site in vivo (data not shown). The predicted translation 
product (Fig. 2 A) contains 522 amino acids with a predicted 
molecular mass of 57-kD and a pI of 9.9. Henceforth we refer 
to this gene as SRP54~p. 

The alignment of SRP54 sp with SRP54 mm revealed ad- 
ditional regions of identity that are not present between 
SRP54 "~  and ffh. Under the assumption that these new 
identities are characteristic of eukaryotic SRP54, we de- 
signed an additional oligonucleotide ("C; Fig. 1 A) to am- 
plify a homologous gene fragment from S. cerevisiae DNA. 
The results of PCR using oligonucleotides A and C are 
shown in Fig. 1 C. A major product of the anticipated length 
of 125 nucleotides was obtained (Fig. 1 C, lane 3), comigrat- 
ing precisely with a product obtained using mammalian 
cDNA as template (Fig. 1 C, lane /). Direct sequencing 
confirmed its identity as an SRP54 homologue. We proceed- 
ed to isolate and sequence a genomic clone containing the 
complete gene. The primary sequence, depicted in Fig. 2 B, 
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A 
1 . 20 
M V F A D L G R R L N S A L G D F S K A T S V N E E  

-48: ACA~TTGACG~CTTCAAATTGCCTGGTTG~GTTTT~TCTGACAAAATGGTTTTTGCAGATTTAGGGCGTCGTTTG~CTCTGcGTTAGGGGACTTTTCT~GGcCACTTCAGTG~TG~GAG~TT 

88: ATTCTATCGAAAATTTGTTCTCATACGGAGAGTGAGCCATGTCATTTATAAAAATATTT~TACATCTTTGCTTGATTTCTT~AAAAATTTTGCATTTGCCATGTTTTACACGCTGTATATG~CATCGTTTCAT 
223: GCTTTACGA~TTTGTCGAT~GAAAAATCATCTACCACAGATATGCTTTTCTAGTTGCGTAGCTGGTTTATCC~TCTCTTATATATATATATCTTGATTGCATATTGGGATTATCTTCGTTTACATCGACGTT 
358: ACCTTGACATGAAAATTTAAAACCCTTTTT~TAATGC~TGTTAGATTTTGGTTTCAAGTTACTAAAAGGGTTTACTTACC~GC~CTTTTAGGCAGCTG~GATTTTTTT~TGACCTCTAGTTTGTTTTCC 

4O 

L V D T L L K N I C T A L L E T D V N V R L V  
493: C~TGTTCTGTTTTGATTAGGATATCTATCGTTTT~TAcG~CCTTT~%ATTTTAT~TTGTCGATACTCTGCTGAAAAATATATGTACGGcACTTTTGGAAAcAGATGTT~TGTGCGATTGGTT 

60 80 

6 " " E L R S N I K K K I N V S T L P Q G I N G K R I V Q K A V F D E L C S L V D P K V D A F  
628: C~G~TTACGTTCAAATATT~GAAAAAAATC~TGTATCAACTTTGCCTCAGGGTATAAATGGG~GCG~TCGTC~AG~GGCTGTCTTTGATG~CTTTGCAGTTTGGTTGACCCTAAAGTTGATGCTTTT 

i00 120 
T P K K G R P S V I M M V G L  G S G K T T T C S K L A L H Y Q R R G L K S C L V A A D T  

763: ACTCCTAA~GGGAGACCTTCAGTGATCATGATGGTAGGTTTACAAGGCAGTGGTAAAACGAC~CATGCTCAAAGCTTGCTCTGCACTAC~AAAGGAGAGGTTTGAAATCGTGTTTGGTTGCTG~CGATACT 

140 160 180 ; • 
F R A G A F D Q L K  N A I K A R V P Y F G S Y T E T D P V V I A K ~ G V D K F K N D R F  

898: TTCCGAGCTGGTGCTTTTGATC~TT~AGCAG~TGCTATCAAAGCACGTGTTCCTTACTTTGGTAGTTACACCGAGACTGACCCAGTCGTTATTGCCAAGG~GGTGTTGAT~GTTCAAAAACGATAGATTT 

200 220 ; . 
D V I I V  T S G R H Q Q E Q E L F A E M V E I S D A I R F D Q T I M I L D A S I G Q A A  

1033: GACGTTATCATCGTTGATACATCTGGTAGGCATCAGCAGGAG~AGGAGTTGTTTGCTGAGATGGTGGAAATTTCAGA~GCTATTCGCCCAGATCAAAC~TTATGATTTTAGATGCTAGCATTGGTCAAGCTGCC 

240 260 
E S Q S K A F K E T A D F G A V I I T K L D G H A K G G G A L S A V A A T K T P I V F I G  

1168: G~TCTCAAAGCAAAGCGTTTAAAGAGACTGCTGACTTTGGCGCTGTAATAATCACAAAATTGGACGGACATGCCA~GGTGGTGGTGCTTTATCCGCCGTGGCTGCGACT~GACACCCATCGTGTTCATTGGT 

280 300 ~ - 
T G E H I N D L E R F S P R S  I S K L L G L G D L E G L M E H V Q S L D F D K K N M V K  

1303: ACCGGTG~CATATTAATGATTTGGAGCGCTTTTC~CCACGTTCTTTTATCTCA~G~ACTCGGACTCGGTGATCTTG~GGTCTGATGG~CACGTTCAGTCTTTAGATTTTGATAAAAAGAATATGGTTAAA 

320 . 340 . 360 
N L E Q G K F T V R D F R D Q L G N I M K L G P L S K M A S M I P G M S N M M N G M N D E  

1438: ~TCTTGAGC~GGAAAGTTTACGGTCCGAGACTTTCGAGATC~CTCGGAAATATTATGAAATTGGGACCACTTAGTAAAATGGCTAGTATGATTCCAGGCATGAGT~TATGATG~CGGTATGAATGATGAG 

• 380 . 400 
E G S L R M K R M L Y I V D S M T E Q E L D S D G L L F V E Q P S R V L R V A R G S G T S  

1573: GAGGGATCTTTG~GTATG~GCGTATGCTCTACATCGTTGATTC~TGACCG~C~GAGTTAGATTCGGATGGTCTTCTATTTGTTG~C~C~CTCTCGTGTTTTACGTGTTGC~GGGGTAGTGGTACAAGc 

420 440 " ~ " 
V L E V E E T I S Q V R V F A Q M A K K  G G K D G I L G K L G G N P A A A L K K D P R Q  

1708: GTTTTAGAGGTAG~GAAACCA~TTCTCAGGTCCGAGTATTTGCGCA~TGGCGAAAAAGATAGGAGGAAAAGATGG~TTTTGGGTAAA~TTGGTGGAAATCCAGCCGCAGCTCTCAAAAAAGACCCTCGTC~ 

460 . 480 
L A A M Q K R M Q A M G M G G G M P G L N P G S M N F G D I S K M A N M L M G G G G P G G  

1843: CTTGCAGCTATGCAGAAAAG~TGC~GCCATGGGTATGGGGGGAGG~TG~CTGGCCTC~TCCAGGTTCTATG~cTTTGGTGATATTTCAAAAATGGCT~CATGTTGATGGGAGGCGGAGGTCCCGGAGGG 

500 . 528 
A G G M D F S G M L N Q F Q N M Q K P P R R R  

1978: G~AGGTGGTATGGATTTCAGCGGTATGCTC~TC~TTTCAAAATATGCAAAAGCCTCCTCG~GACGTTAGTTTACTTCCCTCGTTATTAT~TGTACTCAcATATGGCATATTTTACTCT~TACCTTATTTA 

2113: CTGTTTTATAAAAATATATGCATTAAAAATTCATCGTCCTTCTCGTTTTCCTTTTTCTTTCCCT~TTACTT~CGTTTGCTTTTAT~TTGTGTAAAATTTGTTTCTATTTCTACTG~GAGCTAGCAAAGTTT 
2248: GCTAAACCGTAAACGTG~GCATCCTTGTATGATTGCTCTCGACAATTATTTGCAGATTTCTT~GAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTT~TTGG 

Figu~ 2. Nucleotide sequence and deduced amino acid sequence of SRP54m and SRP54 ~. A, The nucleotide and ~e deduced amino acid 
sequence of SRP54 sp are shown. Ba~s a~ numbered sm~ing at ~e  ~" of the initiating ATG. Regions matching the con~nsus sequences 
(Me,ins and G~lwi~, 1987) ~r  ~e splice branch point and 5' and 3' splice si~s a~ boxed. B, The nucleotide and the deduced amino 
acid sequence of SRP54 ~ a~ shown. Bases a~ numbered sm~ing at the "A" of the initiating ATG. A charac~ristic tripeptide ~poat, dis- 
cussed in ~e text, is underlined. 

encodes a basic protein (pI = 9.5) of 541 amino acids and 
a predicted molecular mass of 60 kD. We refer to this gene 
as SRP54 so. 

Fig. 3 A shows the alignment of SRP54 m~m, SRP54 sp, 
SRP54 ~, and ffh. The overall sequence similarity between 
the four gene products is notable. The conservation is most 
striking between the three eukaryotes and especially in the 
G-domain ( S R P 5 4 ~  residues 1-295). In this region, the 
pairwise sequence identity among the eukaryotes varies from 
59-63 % and pairwise sequence similarity ranges from 78- 
85 % (based on the rules given in Fig. 3 A). Each of the four 
sequences contains the GTP-binding site consensus (indi- 
cated in Fig. 3 A). 

As a first step towards characterizing the function of 
SRP54 ~, we determined whether the gene is essential for 
viability. We replaced one chromosomal copy of the wild- 
type SRP54 ~ gene in a diploid cell with a disrupted copy in 
which 258 nucleotides of coding sequence was replaced by 
a DNA fragment encoding the LYS2 gene (Fig. 4 A). We 
used Southern analysis (Fig. 4 B) to confirm that the dis- 
rupted copy had replaced one of the wild-type alleles. DNA 

was prepared from the parent (Fig. 4 B, lanes 1 and 3) and 
transformant (Fig. 4 B, lanes 2 and 4) and digested with two 
different restriction enzymes that cut at sites flanking the 
chromosomal locus. With each enzyme digest, hybridization 
of the parent strain with a probe specific to the COOH- 
terminal region of SRP54 ~ revealed a single band corre- 
sponding to the intact gene (Fig. 4 B, lanes 1 and 3, aster- 
isks). In the transformant, an additional band was present, 
indicative of the disrupted gene (Fig. 4 B, lanes 2 and 4, ar- 
rows), and, in each case, was of the expected size. 

After sporulation of the heterozygous diploid, tetrads were 
dissected and the haploid segregants were scored for viabil- 
ity. Out of nine tetrads, eight gave rise to a viable to nonvia- 
ble spore ratio of 2:2. In one case, only a single spore was 
viable. Additional evidence that the disrupted copy of the 
SRP54 ~ gene cosegregated with nonviability came from the 
observation that none of the surviving daughter ceils were 
able to grow on lys- media. Furthermore, Southern analysis 
of DNA from the viable segregants resulted in the hybridiza- 
tion pattern of the wild-type gene (data not shown). Taken 
together, these results indicate that the SRP54 ~ gene is 
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B 
1 
M V L A D L  

-117: ATAAAGA~ATC~CAAAGTGAAAAAAATAGTGGTAAAAC~GAT~TGAAAAGTGGTTG~cAGC~GGATGCAG~GAG~GGGAAAGAAAAcACAGCATCGAGTCT~CTAAAGGATGGTTTTGGcTGATTTG 

20 . 40 
G K R I N S A V N N A I S N T Q D D F T T S V D V M L K G I V T A L L E S D V N I A L V S  

19: GGG~GCGGATT~TTCTGCTGTG~T~CGCGATTTCc~TACACAGGATGACTTTACTACATCCGTAGATGT~TGTTAAAGGGCATCGTGACTGCGTTGTTAG~TCGGATGTG~TATTGCCCTGGTTTCT 

60 80 
K L R N N I R S Q L L S E N R S E K S T T N A Q T K K L I Q K T V F D E L C K L V T C E G  

154: ~GTTACGAAAT~TAT~GGTCACAGCTGCTGAGTGAG~CCGTAGTGAG~GTCCAC~CAAACGCACAAACT~G~GCTTATTCAGAAAACGGTGTTTGATG~CTGTGT~GTTGGTCACCTGCG~GGT 

100 120 . 140 
S E E K A F V P K K R K T N I I M F V G L Q G S G K T T S C T K L A V Y Y S K R G F K V G  

289: AGTG~GAG~GGCCTTTGTGCCC~G~GAGAAAGACAAACATCATCATGTTTGTTGGGCTGC~GGTTCAGGTAAAACTACTTCCTGTACCAAGTTAGCAGTTTACTACTCG~GAGAGGTTTCAAAGTGGGT 

160 180 
L V C A D T F R A G A F D Q L K Q N A I R A R I P F Y G S Y T E T D P A K V A E E G I N K  

424: TTGGTATGTGCGGATACTTTCCGTGCTGGTGCATTTGACC~TTGAAACAAAACGCTAT~GAGC~G~TTCCATTTTATGGGTCATATACGGAGACTGACCCTGCCAAAGTTGCAG~G~GGTATT~C~G 

200 220 
F K K E K F D I I I V D T S G R H H Q E E E L F Q E M I E I S N V I K P N Q T I M V L D A  

559: TTT~GAAAGAG~GTTTGATATCATCATCGTTGATACTTCAGGTAGGCATCATC~G~G~GAGTTGTTCC~GAAATGATTGAAATATCC~TGTCATC~GCCT~TCAAACTATCATGGTTTTAGATGCT 

240 260 
S I G Q A A E Q Q S K A F K E S S D  G A I I L T K M D G H A R G G G A I S A V A A T N T  

694: TCcATTGGTC~GCTGCAGAGC~C~TCC~GGCTTTCAAAG~TCGTCCGATTTTGGTGCCATTATATT~CC~GATGGACGGCCACGCTAGAGGGGGTGGGGC~TTTCGGCCGTTGCAGCCACAAACACT 

280 300 320 
P I I F I G T G E H I H D L E K F S P K S F I S K L L G I G D I E S L F E Q L Q T V S N K  

829: CCGATTATCTTTATTGGTACAGGTGAGCACATTCATGATTTGG~GTTCTCGCCT~GTCATTCATATCTAAACTGTTGGGTATTGGTGATATAGAGAGTCTCTTTGAGC~TTAcAAACCGTTTCC~C~G 

340 360 
E D A K A T M E N I Q K G K F T L L D F K K Q M Q T I M K M G P L S N I A Q M I P G M S N  

964: G~GATGcAAAAcccA~TGGAAAAcATccAAAAG~GT~GTTcAccTTGcTAGATTTc~GAAAcAGATGcAAAc~T~TGAAAATGGGTc~ATTATcAAATATAG~GcAGATGATTccT~GTATGA~T~T 

380 . 400 
M M N Q V G E E E T S Q K M K K M V Y V L D S M T K E E L E S D G R M F I E E P T R M V R  

1099: ATGATG~TC~GTAGGGGAGGAGGAAAcCTCTCAAAAGATG~GAAAATGGTTTACGTTTTGGATTCTATGACTAAAG~G~CTAG~TCTGATGGTAG~TGTTCATTG~GAGCCTAC~G~TGGTTCGT 

420 . 440 
V A K G S G T S V F E V E M I L M Q Q Q M M A R M A Q T A T Q Q Q P G A P G A N A R M P G  

2234: GTAGCTAAAGGTTCAGGTACTTCTGTGTTCGAGGTAGAAATGATATTGATGC~CAGCAGATGATGGC~G~TGGCACAAACCGC~CCCAGC~C~CCAGGAGCCCCTGGTGCC~TGCTAGGATG~CTGGC 

460 . 480 . 5 0 0  

M P N M P G M P N M P G M P N M P G M P K V T P Q M M Q Q A Q Q K L K Q N P G L M Q N M M  
1369: ATGCCAAACATGCCGGGTATGCCAAACATGCCTGGTATGCCG~TATGCCTGGTATGCCAAAAGTGACTCCACAAATGATGCAGCAGGCAC~CAAAAGCTG~GCAAAATCCAGGTCT~TGCAAAATATGATG 

- 520 540 
N M F G G G M G G G M G G G M P D M N E M M K M M Q D P Q M Q Q M A K Q F G M G  

1504: ~CATGTTTGGTGGCGG~TGGGCGGAGG~TGGGCGGAGG~TGCCTGATATG~CGAAATGATGAAAATGATGC~GATCCACA~TGC~CAAATGGCAAAAC~TTCGGTATGGGCTAAAGGCCACCATTT 

1639: G~TATACACAGTATATATATATATGTATGTATGCATATTTCAAAT~CTTGTTTAGCTTTCATCCTTTCG~TACCTCcTTC~TAAAAAAAAAAAGAAAAATCTTGTTAAATTATAAAGTGTTCATTCTATTT 
1774: TTTTG~TTGTAAAAT~CAAAATAAATATTCGATTG~CTGCCATGGAAAAGGTTCTACCCTCT~CACGAGTACCCGTGCTTCTTGTTCCTAT~TTTACTGTTTTATCACTTCATTATTT~TTTTC~CGCC 
1909: CGGT~GTTATCCAAAGACACTACACCATTAGC~T~GCTGCGGATCCAC~GCTT 

present in single copy in the haploid genome and is essential 
for growth. 

D i s c u s s i o n  

We have isolated genes encoding proteins homologous to 
SRP54 "~ from both the budding yeast S. cerevisiae and the 
fission yeast S. pombe. The cloning was accomplished using 
regions of homology between SRP54 m'" and ffh as a start- 
ing point for PCR. The yeast protein sequences reveal ex- 
tended regions of conservation between one another and with 
SRP54 "~ and ffh that cover the previously described G- and 
M-domains. We have also shown that SRP54 ,c is an essential 
gene. This together with the fact that SRP54 homologues 
have been found in evolutionarily distant species suggests 
that these proteins are likely to fulfill similar and essential 
function(s) in all cells. In this regard, the nomenclature 
"SRP54 ~" and "SRP54 ~p" reflects our conjecture that, based 
on the structural information we have obtained, the function 
of these gene products will be related to that characterized 
for SRP54 m"m. 

This conjecture is further supported by the fact that homol- 
ogy in the G-domain is not limited to the sequences directly 
involved in GTP binding. This is consistent with the idea that 
the entire domain is under evolutionary pressure to maintain 
interactions with other components of the cell, again sug- 
gesting a very similar function for the protein in different 

species. As noted before, SRP54 is a member of a new sub- 
family of GTP binding proteins that also includes SRot and 
its putative E. coli homologue ftsY (Bernstein et al., 1989; 
Rfmisch et al., 1989). For all proteins of this subfamily, the 
third of three sequence motifs defining GTP binding pro- 
teins, box III, deviates from the consensus at a single amino 
acid (TKXD rather than NKXD). 

Within this subfamily, SRP54 homologues are distin- 
guished from SRot and ftsY by the amino acids comprising 
GTP-binding consensus box I. Among the SRP54 homo- 
logues there is almost no variation between species (GLQG- 
SGKT in eukaryotic SRP54 and GLQGAGKT in ffh; con- 
sensus: GXXXXGKS/T). SRo~ and ftsY also share homology 
in this consensus box but with a different sequence in the four 
nonconserved positions (GVNGVGKS/T). In the crystal 
structure of EF-Tu and ras this region forms a loop over the 
~-3' phosphate bond of bound GTP (Jurnak, 1985; LaCour 
et al., 1985; Pai et al., 1989; Tong et al., 1989). The position 
of these residues with respect to the bound GTP and the 
phenotype of point mutations of these amino acids (Gibbs et 
al., 1984; McGrath et al., 1984) implicate their involvement 
in the regulation of the rate of catalysis (i.e., GTP hydroly- 
sis). In addition, the rate of GTP hydrolysis is known to be 
an important aspect of the function of GTP binding proteins 
as molecular clocks. The G-domains of SRP54 and SRP 
receptor homologues may, therefore, be distinct in this regard. 

The M-domains of both yeast proteins are characterized by 
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Figure  3. Alignment of SRP54 
homologues. A, The deduced 
amino acid sequences (one- 
letter code) are aligned for 
SRP54 n~m (mouse) (Bern- 
stein et al., 1989)', SRP54 sp, 
SRP54 ~, and ffh (Bystr6m et 
al., 1983). (In the canine 
SRP54 R[205], S[209] and 
P[344] are replaced by 
M[205], A[209], and L[344], 
respectively [R6misch et al., 
1989].) Two or more identical 
amino acids in one position 
are indicated by capital letters. 
Amino acids of similar chemi- 
cal properties are boxed, using 
the following similarity rules: 
L = I = M = V = F = F ~ , K  

= R = H; D = E = Q = N; 
G = A = S; T = V; A = V; 

F = Y =  H = W; T =  S (Day-  

hoff et al., 1972). Note that 
some positions are boxed be- 
cause of two independent pair- 
wise similarities. Gaps are in- 
dicated by dashes. The posi- 
tions of the regions matching 
the GTP-binding consensus se- 
quences are indicated above 
the alignment. The consensus 
sequences are box I: GXX- 
XXGKS/T; box H; DXXG; 
box IH: NKXD (Dever et al., 
1987). The division between 
the G- and M-domains (as 
defined from the alignment 
with SRc~ and ftsY by Bern- 
stein et al., 1989), is indicated. 
B, Aligned as in A, the M- 
domains of the four proteins 
are shown schematically. A 
secondary structure prediction 
was performed according to 
established methods (Gamier 
et al., 1978). Regions that are 

very likely to form c~-helices are shaded in dark. The position MPG/N tripeptide repeat in SRP54 ~ is checkered. Above the alignment 
putative helices previously designated by Bernstein et al. (1989) are indicated. 

an abundance of Met residues: 8% SRP54 ~p and 18% for 
SRP54 ~c (13% for ffh and 11% for SRP54m~m). We have pro- 
posed that this domain contains a flexible signal sequence 
binding pocket composed, in part, of  a number of  am- 
phipathic helices that bear clusters of methionines on one 
face (Bernstein et al., 1989). Secondary structure predictions 
of the M-domains of  the yeast proteins suggest that helices 
of  comparable length are likely to form in corresponding po- 
sitions (see Fig. 3 B) (Finer-Moore and Stroud, 1984; Gar- 
nier et al., 1978). Although the putative helices in yeast are 
less amphipathic in character than their mammalian or bac- 
terial counterparts, many of  the Met residues are found 
clustered on one face of  the predicted helices 2 and 3a (not 
shown). COOH terminal to helix 3a, the primary structures 
are more divergent from one another. Nevertheless, the 

structural motif  is conserved in the case of SRP54 sp (helix 
3b in Fig. 3 B). Curiously, in the corresponding position, 
SRP54 ~ contains a tripeptide (MPG/N) repeated eight times 
(undedined in Fig. 2 B) in which Gly and Asn are found in 
an alternating pattern. Because of its Pro and Gly content, 
this sequence is unlikely to form a stable c~-helix. The tripep- 
tide repeats, however, resemble sequences found in collagen 
and related proteins where they form tight left-handed helices 
known as collagen helices (Traub and Piez, 1971). Since col- 
lagen helices have three residues per turn, the eight methio- 
nine residues would be found clustered on one face of  the he- 
lix. While such helices are normally found oligomerized in 
triple-stranded helices, it is conceivable that this secondary 
structure element is present in SRP54 ~ as a single helix sta- 
bilized by other features in the M-domain. Structural analy- 
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Figure 4. Gene disruption of SRP54 so. A, The construction of plasmid pSC54-L2 containing SRP54sc::LYS2 is shown schematically. The 
open box indicates the coding sequence of SRP54 sc reading from left to right; the shaded boxes correspond to vector sequences. Restric- 
tion sites referred to in the text are shown. The position of the probe used for the Southern analysis shown in panel B is indicated. Note 
that the fragment containing the LYS2 gene is depicted in a different scale. B, Southern blot analyses showing genomic DNA from the 
parent (lanes 1 and 3) or transformants containing the SRP54"c::LYS2 disruption (lanes 2 and 4) are shown. DNA was digested with Ase 
I (lanes 1 and 2) or Nsi I 0anes 3 and 4). Fragments corresponding to the intact gene are marked by asterisks; fragments corresponding 
to the disrupted gene are marked by arrows. 

ses will be required to elucidate the organization of the 
M-domain, however, the phylogenetic evidence has already 
suggested that an abundance of Met residues is important. 

The isolation of yeast homologues to SRP54 will allow 
detailed analyses of  the function of this protein in vivo. Ma- 
jor questions remain to be answered. For example, is yeast 
SRP54 part of  a ribonucleoprotein with similar properties to 
that of  mammalian SRP, and, if so, does its RNA component 
contain the conserved motifs found in other SRP RNAs 
(Poritz et al., 1988; Struck et al., 1988)? In particular, does 
SRP54~ associate with the previously described SRF7 RNA? 
Most importantly, it remains to be determined that functional 
features of an SRP-dependent pathway are conserved in yeast. 
If an SRP-dependent, strictly co-translational targeting path- 
way exists in parallel to the posttranslational mode of translo- 
cation, it is unclear how different proteins would choose 
which route to follow. A distinction may be required between 
signal sequences that at present are considered to be more 
or less interchangeable. Alternatively, yeast SRP54 could 
function either alone or as part of  a ribonucleoprotein in a 
posttranslational pathway to help maintain preproteins in a 
translocation competent state after they have been released 
from the ribosome. 
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