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Abstract: Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papil-
lomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have
been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally
include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+)
and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with
cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and
response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were
high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased
viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein
levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2
in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor
CX-4945 could improve cisplatin response in HNSCC.

Keywords: head and neck cancer; HNSCC; human papillomavirus; HPV; CK2; NFκB; cisplatin;
PDCD4; p21

1. Introduction

Investigations over the past half century have shown that protein kinase CK2 is a
multifaceted master regulator of cell function in both normal and disease states [1–4]. CK2
has enzymatic activity as a monomer (CK2α or CK2α’) or as a tetramer with two α and/or
α’ catalytic subunits linked via two β subunits, which serve a regulatory role. This highly
conserved kinase phosphorylates primarily serine and threonine amino acids. Phosphosites
for CK2 number close to one thousand (phosphositeplus website [5]) and these substrate
proteins are found in nuclear and cytoplasmic compartments, organelles, and subdomains;
thus, the abundance of CK2 targets underpins its involvement in a large number of cellular
activities [6]. In the context of cancer cells, CK2 functions in a global sense to promote cell
growth and proliferation and suppress apoptosis [7]. In the majority of cancers, increased
CK2 activity and expression relative to normal tissue is well documented [8,9]. In head
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and neck squamous cell carcinoma (HNSCC), data indicate that elevated CK2 is associated
with aggressive tumor behavior and poor clinical outcome [9–11].

Human papillomavirus infection is a causative agent for HNSCC, and HNSCC is
currently categorized into HPV(+) or HPV(−) disease in part due to differential survival
prognoses [12–16]. CK2 is known to phosphorylate numerous viral proteins [17]. In the
case of HPV, CK2 substrates include the replication factor E1 and the transforming protein
E7, which inactivates the tumor suppressor pRb [18–22]. In addition, CK2 phosphorylation
of the chromatin-associated bromodomain-containing protein 4 (Brd4) influences HPV and
cellular transcription [23,24].

Given CK2 influence over the HPV lifecycle and the general lack of data on the efficacy
of targeting CK2 in HPV(+) HNSCC, we investigated the potential effect of reducing
CK2 activity or protein levels on the viability of HPV(+) vs. HPV(−) HNSCC cell lines.
Further, due to the common use of cisplatin in HNSCC patient therapy, we also examined
the response of multiple HPV(+) and HPV(+) cell lines to combined CK2 targeting and
cisplatin treatment. Our data demonstrated that CK2 expression levels and NFκB p65-
directed phosphorylation are higher in HPV(+) compared to HPV(−) HNSCC. Further,
inhibition of CK2 with CX-4945 (Silmitasertib) effectively reduced the viability of both types
of HNSCC cell lines, decreased the IC50 for cisplatin in all cell lines, and demonstrated
synergy with cisplatin in 2 cell lines. Our results suggest that, despite additional roles
for CK2 in the biology of HPV(+) HNSCC, blocking CK2 activity has good potential as a
therapeutic strategy to improve cisplatin response in HNSCC.

2. Materials and Methods
2.1. Cell Lines, Culture, and Drugs

The cell lines UM-SCC-47 and 93-Vu-147T were from the stocks of Dr. Emiro Caicedo-
Granados (UM-SCC-47 originally from Dr. Thomas Carey, University of Michigan, USA;
93-Vu-147T originally from Dr. John Lee, previously Sanford Health, South Dakota, USA;
now Avera Cancer Institute, South Dakota, USA). UPCI-SCC-90 cells were obtained from
Dr. John Lee (Avera Cancer Institute, South Dakota, USA). UM-SCC-6 cells were purchased
from EMD Millipore (Temecula, CA, USA). UM-SCC-47, UM-SCC-6, 93-Vu-147T, and
UPCI-SCC-90 sells were cultured in Hyclone Dulbecco’s modified Eagle’s medium—high
glucose with sodium pyruvate (SH30243.01, Cytiva Lifesciences, Marlborough, MA, USA),
10% fetal bovine serum (FBS, Atlanta Biologicals, R&D Systems, Minneapolis, MN, USA),
1X non-essential amino acids (Specialty Media, ThermoFisher Scientific, Waltham, MA,
USA), and 1% penicillin/streptomycin (ThermoFisher Scientific, Waltham, MA, USA).
Detroit-562 and Fadu cells were purchased from ATCC (Manassas, VA, USA) and grown in
Eagle’s minimum essential medium (SH30024.01, GE Healthcare, Chicago, IL, USA) with
10% FBS and 1% penicillin/streptomycin. Human epidermal keratinocytes (HEKn pooled)
were purchased from ThermoFisher Scientific (A13401) and grown as recommended by
the manufacturer. All cell lines were grown in an incubator at 37 ◦C with 5% CO2. All
transformed cells were tested for mycoplasma and were maintained in culture for up
to 2 months. CX-4945 was made up as a 40 mM stock in DMSO (AdooQ Bioscience,
Irvine, CA, USA). Cisplatin was obtained from the Minneapolis VA hospital pharmacy at a
concentration of 1 mg/mL.

2.2. siRNA Transfections

Standard chemistry siRNAs were obtained from Dharmacon (ThermoFisher Scientific,
Waltham, MA, USA). The siCK2α sense strand sequence is 5′-auacaacccaaacuccacauuu-
3′ [25]. The CK2α’ sense strand sequence is 5′-auacagcccaaacuccacauuu-3′ [25]. The CK2α
and CK2α’ siRNAs were cotransfected in a ratio of 3:1. The control siRNA (siControl)
used was siNon-targeting #2 (Dharmacon; D-001810-02). Transfections of siRNA were
performed on 60 mm plates with cells at 40–50% confluence using Dharmafect 1 and 2
reagents using 10 µL of Dharmafect and 20 nM siRNA total concentration [26].
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2.3. Combination Treatments and Viability Assays

For siRNA/cisplatin experiments, cells were trypsinized from 60 mm plates after
24 h of transfection, and transferred into 96-well plates (Primaria, Thermo Fisher Scientific;
Detroit-562 3500 cells; Fadu 2500 cells). Cisplatin was added at 48 h of transfection in
a 2-fold dilution series from 20 to 0.62 µM. Viability assays were performed at 96 h of
siRNA transfection and 48 h of cisplatin treatment. Success of transfection was judged by
visual confirmation on 96-well plates that siCK2 transfected cells (without cisplatin) were
2–4-fold less confluent with predominantly apoptotic morphology compared to siControl
transfected cells, which were not apoptotic. Calculation of IC50 values used siControl as
the comparator control treatment. For CX-4945/cisplatin experiments, cells were plated
into 96-well Primaria plates (Detroit-562 4000 cells; Fadu 3000 cells; UM-SCC-6 6000 cells;
UM-SCC-47 6000 cells; 93-Vu-147T 6000 cells). CX-4945 was added in a 2-fold dilution
series from 50 to 0.39 µM for Detroit-562 and Fadu and from 100 to 0.78 µM in UM-SCC-6,
UM-SCC-47, and 93-Vu-147T. Cisplatin was added in a 2-fold dilution series from 80 to
0.62 µM. DMSO was added to cisplatin treated cells at the same concentration as used for
CX-4945 single treatments to control for DMSO effects. Viability was measured at 72 h of
CX-4945 and 48 h of cisplatin treatment. Calculation of IC50 values used untreated cells as
the comparator control treatment. CellTiter 96® Aqueous One or CellTiter-Blue® Assays
(Promega Corp., Fitchburg, WI, USA) were used to assess cell viability following treatments.
Assays were performed according to the manufacturer instructions [27]. Absorbance was
measured at 490 nm for Aqueous One and at 560 nm excitation/590 nm emission for
CellTiter Blue using a Molecular Devices 5 plate reader with absorbance values for media
alone subtracted from the experimental values.

2.4. Cell Treatments and Immunoblot Analysis

Detroit-562 and Fadu cells were transfected as described above. After 24 h of transfec-
tion, cisplatin was added to cells to a final concentration of 1 µM for an additional 24 h. For
CX-4945/cisplatin treatments, CX-4945 was added to cells for a total of 48 h and cisplatin
for a total of 24 h. The drug concentrations (µM) for CX-4945/cisplatin for each cell line
were as follows: Detroit-562 1.5/5; Fadu 2.5/5; all others 5/5. Cell pellets were processed
in radioimmunoprecipitation assay (RIPA) buffer, and 20 µg of each lysate was subjected
to electrophoresis using TGX 5–15% midi gel system (BioRad, Hercules, CA, USA) and wet
tank transfer to nitrocellulose membrane, as described [28]. After transfer, the membranes
were fully dried, rehydrated in nano-pure water, and blocked for 30 min with 5% nonfat
milk (Bio-Rad 170-6404) or 5% bovine serum albumin (Sigma A-9647) in Tris buffered
saline (TBS, pH 7.4) with 0.1% Tween 20 (TBS-T) at room temperature. Antibodies were
diluted into fresh blocking buffer according to the manufacturer’s recommendations, and
the membranes processed as described [28]. Antibodies used: CK2α (A300-197A) and
CK2α’ (A300-199A) from Bethyl Laboratories (Montgomery, TX, USA); CK2α’ (CSNK2A2)
from ABclonal (A1616; Woburn, MA, USA); CK2β (sc-46666), NFκB p65 P-S529 (sc-101751),
RB (sc-102), and actin (sc-1616) from Santa Cruz Biotechnology (Santa Cruz, CA, USA);
NFκB p65 (6956), Bax (2772), Bak (121505), p21 (2947), PDCD4 (9535), p53 (48818), AKT-1
(2967), and AKT-1 P-S129 (13461) from Cell Signaling (Danvers, MA, USA). Proteins were
detected by enhanced chemiluminescence using Pierce SuperSignal West Pico Plus and
Dura substrates (Pierce 34580, 34076). Chemiluminescent signal was detected using the
LiCor Odyssey Fc instrument, with quantitation performed using Image Studio 5.2.

2.5. Statistical Analysis

Table 2 includes descriptive statistics. PDCD4 immunoblot data was analyzed by the
Mann–Whitney U test (2-sided). Viability curves and IC50 calculations were performed
using GraphPad Prism 9. Synergy calculations for combination index were performed
using Compusyn [29].
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3. Results
3.1. CK2 Expression and Activity in HPV+ and HPV- HNSCC Cell Lines

We evaluated CK2 levels and surrogate activity in representative HPV(+) and HPV(-)
cell lines. In order to evaluate CK2 subunit expression in HNSCC cell lines, we employed
3 HPV+ and 3 HPV- cell lines and a non-transformed human epithelial keratinocyte cell
line (Table 1). Under standard growth conditions, CK2 subunit protein expression was
examined by immunoblot analysis. The three subunits of CK2 were well expressed in
all cell lines (Figure 1), and steady-state expression levels were 1.4–1.9-fold higher in
HPV+ cell lines compared to HPV- (Table 2; Table S1). We also investigated markers of
CK2 activity; specifically, phosphorylation of the CK2-specific sites on NFκB p65 (S529)
and AKT-1 (S129) [30,31]. CK2 phosphorylation of NFκB p65 at S529 was dramatically
higher in HPV(+) compared to HPV(−) cell lines (Figure 1, Table 2). In contrast, AKT-1
phosphorylation at the CK2 site was roughly equivalent in both types of HNSCC cells.
Expression of p53 was detected in all cell lines, with much higher levels in the cells with
mutant p53. Overall levels of pRb were similar in all cell lines, with higher molecular
weight species evident in the HPV(−) cell lines.

3.2. HNSCC Cell Viability Following Cisplatin Treatment and Reduced CK2 Activity or Expression

Given the widespread clinical use of cisplatin therapy for both HPV(+) and HPV(−)
HNSCC cases and the general reliance of HNSCC cells on CK2 activity, we investigated
the potential utility of combined CX-4945 treatment with cisplatin treatment [32,33]. Specif-
ically, we evaluated the viability of HNSCC cells after cisplatin, CX-4945, and combined
CX-4945 followed by cisplatin treatment. Adding CX-4945 to cisplatin treatment further
reduced cell viability over cisplatin alone and significantly decreased the IC50 for cisplatin
for all cell lines but UM-SCC-47. The fold decrease with the addition of CX-4945 ranged
from 1.7 to 7.9 (Table 3 and Figure 2A). In reverse analysis, when we determined the effect
of cisplatin addition to CX-4945, the effect was to slightly reduce the IC50 for CX-4945,
from 1.1 to 2.0-fold (Table 3). These results suggest that under the treatment conditions that
we used, CX-4945 treatment was the dominant effect reducing cell viability in both HPV(+)
and HPV(−) cells. We analyzed this data for synergy and found that CX-4945 and cisplatin
combined treatment was synergistic in the HPV(+) cell line UM-SCC-47 and the HPV(−)
cell line Fadu (Figure 2A). CX-4945 and cisplatin combined treatment was additive in the
HPV(−) cell line SCC-6 (Figure 2A).

Table 1. Characteristics of head and neck cell lines.

Cell Lines Tissue Origin Age (yr) Sex HPV Status CDKN2A Status 1 TP53 Status 1

HEKn 2 Foreskin <1 Male - ND 3 ND 3

Detroit 562 Pharynx (metastatic
pleural effusion) ND 3 Female - Homozygous mutant Homozygous

mutant

Fadu Hypopharynx 56 Male - Homozygous mutant Heterozygous
mutant, both alleles

UM-SCC-6 Base of tongue 32 Male - Homozygous
deletion Wild-type

UM-SCC-47 Lateral tongue 53 Male + Wild-type Wild-type
UPCI-SCC-90 Base of tongue 46 Male + Wild-type Wild-type
VU-SCC-147T
(93-Vu-147T) Floor of mouth 58 Male + Wild-type Mutant

1 As determined from: ATCC.org; Expasy.org; broadinstitute.org/ccle; cancer.sanger.ac.uk/cosmic. 2 Primary human epidermal ker-
atinocytes from neonatal foreskin. 3 ND—not determined or known.

We also examined the viability of Detroit-562 and Fadu cells following siRNA-mediated
CK2 downregulation and cisplatin treatment. Cells were transfected with a constant
amount of either CK2-targeting or control siRNAs and treated 2 days later with cisplatin
for an additional 48 h. Similar to the combined effects of CX-4945 with cisplatin, the
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viability curve was shifted to the left with significantly reduced IC50s for cisplatin when
CK2 expression was inhibited by 4 to 21-fold (Figure 2B).

Figure 1. Expression of CK2 subunits and key markers in untransformed cells and HNSCC cell lines.
Immunoblot analysis of cultured cell lines, as indicated above the blots. CK2α and CK2α’ antibodies
were combined for simultaneous detection of these 2 proteins. Proteins detected are indicated on the
right side of the blots. Molecular mass markers are indicated on the left side of the blots. Actin signal
was used as the loading control.

Table 2. Comparison of CK2 abundance and CK2-related activity immunoblot signals between HPV(+) and HPV(−).

Status CK2α CK2α’ CK2β NFκB p65
total

NFκB p65
P-S529

p65
P-S529/Total AKT-1 Total AKT-1

P-S129
AKT-1

P-S129/Total

HPV+ 1.00 ± 0.49 0.62 ± 0.14 2.92 ± 0.86 0.02 ± 0.01 2.18 ± 0.59 145.97 ± 44.79 0.56 ± 0.04 1.12 ±0.23 2.02 ± 0.31
HPV- 0.55 ± 0.10 0.423 ± 0.02 1.96 ± 0.23 0.03 ± 0.02 0.33 ± 0.51 35.52 ± 67.14 0.51 ± 0.19 1.10 ± 0.56 2.07 ± 0.29

HPV+/HPV- 1.82 1.450 1.49 0.48 6.65 3.69 1.08 1.02 0.97

Mean signal, expressed relative to actin, for 3 each HPV(+) and HPV(−) cell lines ± standard deviation.

Table 3. IC50 calculations from single and combined treatments.

IC50 (µM) IC50 (µM)
Cisplatin Anchored Analysis CX-4945 Anchored Analysis

Cell Line Cisplatin Cisplatin with CX-4945 CX-4945 CX-4945 with Cisplatin

Detroit 562
8.03 2.42 1.92 1.46

(5.49, 11.97) (1.72, 3.46) (1.51, 2.45) (1.03, 2.09)

Fadu
7.35 3.41 4.36 2.13

(5.06, 10.82) (2.51, 4.67) (2.88, 6.78) (1.54, 2.98)

UM-SCC-6
31.37 3.95 5.58 4.94

(18.99, 55.56) (3.00, 5.24) (4.24, 7.40) (3.75, 6.56)

UM-SCC-47
5.12 2.94 4.77 3.67

(2.20, 12.19) (2.39, 3.63) (3.82, 5.99) (2.98, 4.53)

93-Vu-147T
9.52 4.05 5.7 5.07

(6.37, 14.23) (3.18, 5.19) (4.43, 7.37) (3.98, 6.48)
N = 4. 95% confidence intervals in parentheses.
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Figure 2. Viability curves for cisplatin treatment alone or combined with reduced CK2 activity or expression in HPV(+)
and HPV(−) HNSCC. Cells were treated and viability measured using MTT-related assays as described in Materials and
Methods. Log10 cisplatin dosing is indicated on the X-axis and viability relative to control is indicated on the Y-axis.
(A) Cisplatin anchored analysis viability curves for cisplatin alone or combined with CX-4945. Cisplatin treatment alone is
indicated by black triangles, and combined CX-4945 plus cisplatin treatment is indicated by blue circles. N = 4. IC50 values
are shown in Table 3. Combination Index for 50% loss of viability is indicated on each curve (ED50 CI). (B) Viability curves
for cisplatin treatment in siCK2 or siControl transfected cells. Cisplatin/siControl treatment is indicated by black squares
(Detroit-562) and black triangles (Fadu), and cisplatin/siCK2 treatment is indicated by blue circles. N = 4. IC50 values are
indicated on each curve. 95% CI for Detroit-562: Cis + siControl (8.99, 31.22 µM), Cis + siCK2 (0.43, 1.2 µM). 95% CI for
FaDu: Cis + siControl (3.47, 10.37), Cis + siCK2 (0.77, 2.79 µM).

3.3. Signaling Response of HNSCC cells to CK2 Targeting Using CX-4945 or siRNA and
Cisplatin Treatment

We further examined treatment response to CX-4945 treatment alone and in combina-
tion with cisplatin in 3 HPV(−) and 2 HPV(+) cell lines by immunoblot. We examined the
cells, using sequential treatment, with CX-4945 treatment for 48 h and cisplatin treatment
for 24 h. This relatively short treatment regimen was chosen to examine CX-4945-induced
changes in HPV(−) and HPV(+) HNSCC cells prior to the full cascade of death signaling.
Overall, CX-4945 treatment alone or combined with cisplatin caused no consistent change
in the proapoptotic proteins Bak and Bax; although some induction of Bak and Bax was
observed in UM-SCC-6 and 93-Vu-147T cells (Figure 3). CX-4945 caused induction of the
cyclin dependent kinase inhibitor p21 from 1.4- to 4.6-fold in four of the cell lines; the
presence of cisplatin generally reversed p21 induction in combined treatment. Cisplatin
treatment alone caused reduction of p21 below 60% of control cells (Figure 3). Levels of
the tumor suppressor programmed cell death 4 protein (PDCD4) were elevated 1.5- to
5-fold following CX-4945 inhibition in four of the five cell lines, with further increase upon
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cisplatin addition in two of these cell lines. Addition of cisplatin to CX-4945 treatment
slightly increased CK2 protein levels in four of the five cell lines.

Figure 3. Immunoblot analysis of various signals following CX-4945 treatment alone or combined with cisplatin in HNSCC.
Cells were treated and protein expression measured using immunoblot assays as described under Materials and Methods.
The drug concentrations (µM) for CX-4945/cisplatin for each cell line were as follows: Detroit-562 1.5/5; Fadu 2.5/5; all
others 5/5. (A) Representative blots from immunoblot analysis of HNSCC cells following CX-4945 treatment (48 h) with and
without cisplatin (24 h). Proteins detected are indicated on the right side of the blots. Actin signal was used as the loading
control. (B) Charts representing quantitation of protein signals relative to DMSO control treatment. Orange = CX-4945
treatment alone. Blue = CX-4945 and cisplatin treatment combined. Black open circles represent each data point from 2
biological replicate immunoblots.
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Detroit-562 and Fadu cells were also transfected with a siRNA cocktail to specifi-
cally knockdown CK2α and CK2α’ protein expression. Reduced expression of the CK2
subunits was confirmed (Figure 4). Many of the observations from CX-4945 treatments
were replicated for Detroit-562, including induction of p21 and PDCD4 by loss of CK2
(Figure 4). One difference was that Bax levels increased following downregulation of CK2
combined with cisplatin as opposed to CX-4945 plus cisplatin treatment. The response of
Fadu cells to siRNA-mediated CK2 loss with and without cisplatin was very similar to that
for the use of CX-4945, with the exception that CK2 downregulation did not induce PDCD4.
CK2 knockdown in these two cell lines only slightly induced PDCD4 mRNA (Detroit-562:
1.36 ± 0.49; Fadu: 1.09 ± 0.07).

Figure 4. Immunoblot analysis of various signals following CK2 downregulation alone or combined with cisplatin in
HNSCC. Cells were treated and protein expression measured using immunoblot assays as described under Materials and
Methods. (A) Immunoblot analysis of Detroit-562 and Fadu cells following siRNA transfection (48 h) with and without
cisplatin (24 h) carried out as described under Materials and Methods. CK2α and CK2α’ antibodies were combined for
simultaneous detection of these 2 proteins. Proteins detected are indicated on the right side of the blots. Actin signal
was used as the loading control. (B) Charts representing quantitation of protein signals relative to si-Control treatment.
Orange = siCK2. Blue = siCK2 and cisplatin treatment combined. Black open circles represent each data point from 3
biological replicate experiments. siCtrl = siRNA for non-targeting control.

Finally, we grouped the HPV(−) versus HPV(+) cell line immunoblot data together
to evaluate any differences between HNSCC cells according to viral status. One striking
difference was the large increase in PDCD4 level in HPV(−) cells compared to HPV(+)
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(Figure 5, p = 0.07) following combined CX-4945 and cisplatin treatment. No other notable
differences were observed.

Figure 5. Comparison of PDCD4 induction following combined CX-4945 and cisplatin treatment
in HPV(−) vs. HPV(+) HNSCC cells. The mean and SEM of PDCD4 immunoblot signals relative
to DMSO control treatment is depicted. Red = HPV(−). Blue = HPV(+). Circles represent each
data point.

4. Discussion

Given the rise in HPV-related HNSCC, we undertook this examination of CK2 level in
relation to HPV status and the effect of CK2 targeting as a cotreatment with cisplatin. We
observed higher steady-state CK2 protein levels and kinase activity directed to NFκB p65
in HPV(+) cells relative to HPV(−). It appears that under conditions of HPV infection, CK2
protein levels are elevated by a currently unknown mechanism to meet the demands of
viral replication. CK2 regulates HPV proteins such as E1 and E7 involved in the papillo-
mavirus lifecycle. The HPV E7 oncoprotein promotes immortalization and transformation
in infected cells through inactivation of pRb and related pathway proteins [34]. Previous
studies have demonstrated key regulation of E7 function by CK2 [18–20,35]. For example,
the phosphorylation of E7 by CK2 is essential to promote Rb-related p130 degradation and
cell cycle S-phase entry [36,37]. CK2α is required for HPV DNA replication by regulating
the stability and nuclear retention of E1, and CK2 has been proposed as a promising target
for the development of antiviral drugs [21,38].

Cervical cancer is almost entirely associated with positive HPV status. In other work,
it was shown that targeting of CK2 activity using an investigational peptide inhibitor is
effective in treating cervical cancer [39,40]. This CK2 inhibitor, CIGB-300, was identified
in a screen of peptides, which bind and block phosphorylation of an HPV16 E7 fusion
protein [41]. Combinatorial use of CIGB-300 with cisplatin demonstrated a good synergy
and/or additivity profile against a cervical cancer cell line, and improved survival in mouse
xenograft studies [42]. These observations are analogous to those described here on the
combinatorial treatment of HNSCC with CK2 inhibitor CX-4945 and cisplatin.

Treatment of malignant cells with cisplatin and/or radiation causes nuclear DNA
damage and redox stress, mitochondrial DNA damage, and mitochondrial outer membrane
permeabilization [43–45]. Over time, adaptation to cisplatin in malignant cells results
in therapeutic failure and tumor recurrence in patients. We have previously shown in
prostate cancer that CK2 inhibition has a negative impact on mitochondrial health through
decreased membrane potential and Ca2+ flux [27,46]. CK2 has significant influence on
numerous DNA repair and other pathways activated by radiation and cisplatin [27,47–49];
loss of CK2 improves sensitivity to cisplatin or radiation in numerous cancers, including
head and neck cancer [42,50–62]. CX-4945 blocks DNA repair after cisplatin or gemcitabine
treatment [51,63], and next generation platinum Pt(IV) prodrugs conjugated with CX-4945
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have shown efficacy in other cancer types [64]. In a pilot study, metastatic HNSCC lesions
were successfully treated in nude mice using a combination of cisplatin and tumor directed
nanocapsules containing RNAi oligonucleotides against CK2 [65]. Together, these data
suggest that incorporating CK2 blockade could improve or prolong the response to cisplatin
therapy by hindering DNA repair and influencing mitochondrial health in both HPV(+)
and HPV(−) HNSCC [66].

A key downstream target of CK2 activity in HNSCC is NFκB. The NFκB complex
plays broad roles promoting proliferative and inflammatory pathways, and is aberrantly
activated in numerous cancers, including HNSCC [65,67]. CK2 modulates IKKβ and IκBα
phospho-states and degradation, promotes IKK-mediated phosphorylation of NFκB p65
at S536, and directly activates p65 by phosphorylation at S529 [65]. We have previously
shown that CK2 knockdown modulates NFκB activity and sensitizes HPV(−) HNSCC
cells to cisplatin [50]. Our data here show a new link between high CK2 levels and CK2-
activated NFκB, but not CK2-activated AKT-1, in HPV(+) HNSCC cells. Transcriptome
analysis demonstrated that NFκB and death signaling pathways differed according to HPV
status [68]. Future studies could further investigate CK2 signaling in HPV(+) HNSCC in
relation to NFκB activity and induction of cell death.

Loss of tumor suppressor gene or protein expression is proposed as part of HNSCC
oncogenesis [14]. It was previously shown in HNSCC that molecular downregulation or
kinase inhibition of CK2 enhanced levels of the tumor suppressor TAp73 and inhibited
expression of cancer stem cell genes and side population [50,69]. The tumor suppressor
PDCD4 protects cells from neoplastic transformation, exhibits reduced expression levels
in malignant compared to non-transformed cells, and functions to inhibit protein transla-
tion [70–72]. PDCD4 protein expression is regulated by multiple microRNAs in HNSCC,
and loss of PDCD4 renders cancer cells more resistant to cisplatin [73–75]. PDCD4 interacts
with CK2 in the nucleus and is a predicted CK2 substrate [76,77]. Our results showed for
the first time that PDCD4 protein levels were strongly induced in HNSCC by CX-4945
treatment, especially in the p53 mutant cell lines Detroit-562, Fadu and 93-Vu-147T. CK2
knockdown using siRNA inexplicably raised PDCD4 in Detroit-562 but not Fadu cells. At
present it is unclear what molecular pathways or genetic characteristics influence PDCD4
abundance following interruption of CK2 activity or expression.

CX-4945 treatment or CK2 downregulation also strongly induced tumor suppressor
p21 levels, a cyclin dependent kinase inhibitor promoting cell cycle arrest [78]. Induction of
p21 was shown to occur when cisplatin-resistant HPV(−) HNSCC cells were resensitized
using palbociclib and JQ1 [79]. Here we observed increased p21 protein after CX-4945
treatment in both HPV(+) and HPV(−) HNSCC. Elevation of p21 is due to CK2 knockdown
in two of two cell lines and CX-4945 treatment in four of five cell lines. We noted a
different CX-4945 related p21 molecular response in the Fadu cell line. The heterogeneity
of malignancies observed in patients and the corresponding cancer cell lines has emerged
as a fundamental tenet of cancer studies over the past many years. It is not unusual that
the HNSCC cell lines we employed in this study occasionally showed different responses
to experimental manipulation, and in fact this is to be expected. Thus, we conclude that
in most HNSCC cell lines, blocking CK2 activity or expression allows elevation of p21.
The recovery of PDCD4 protein levels and the induction of p21 and TAp73 may represent
potential mechanisms by which reducing CK2 activity or expression levels improves
cisplatin sensitivity in HNSCC cells.

Ongoing clinical trials continue to support the potential efficacy of CX-4945 in different
therapeutic contexts in a range of malignancies (clinicaltrials.gov). The small molecule
inhibitor CX-4945 is not solely selective for CK2 activity, due to some off-target inhibition
of and/or interaction with several other kinases [80,81]. In light of the off-target effects of
CX-4945, it is important to note that data from studies using CX-4945 significantly overlap
with data generated in vivo and in vitro by knockdown of CK2 gene expression, as shown
here and in numerous other cancer types [82–92]. A recent summary of an original research
publication states that the development of a new highly selective chemical probe for CK2
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“challenges the broad cancer essentiality of CK2” [93]. The chemical probe SGC-CK2-1 did
not cause notable loss of proliferation in greater than 90% of more than 140 cancer cell lines,
which was a surprising finding [94]. However, there was no discussion of published data
on the effects of CK2 knockdown using RNA interference and CRISPR/Cas9 techniques.
The strong foundation of evidence that molecular downregulation of CK2 protein levels
induces loss of cancer cell viability and tumor cell death should not be discounted. Further
research using SGC-CK2-1 will hopefully shed some light on this observed discrepancy.

Current therapy of HNSCC relies on surgery, radiation, and/or chemotherapy, typ-
ically cisplatin. A significant number of patients, especially those with HPV(−) disease,
suffer poor outcomes after therapy; while patients who experience long-term benefits also
develop persistent cisplatin-related toxicity. This study shows significantly reduced IC50
values for cisplatin in multiple HPV(+) and HPV(−) HNSCC cell lines under combined
treatment with CX-4945 or after CK2 knockdown, suggesting a path toward a therapy
strategy allowing reduced cisplatin usage. HNSCC is the 6th most common cancer in the
world, and new treatment modalities that can improve outcomes and reduce toxicities are
needed [14,95,96]. We summarized in Figure 6 the results presented here and in other pub-
lished works related to loss of CK2 activity and potential pathways of achieving improved
HNSCC response.

Figure 6. Impact of CK2 level and activity in HNSCC. A summary of results presented here and
previously published from this group and others is depicted. Increased cisplatin sensitivity following
CX-4945 or CK2 downregulation is observed in both HPV(+) and HPV(−) HNSCC cells.

Future Directions and Limitations

Extended work could examine cisplatin treatment as the first drug since the CX-4945
treatment dominated the loss of viability in these studies, as suggested by the data in Table 3.
The possible off-target effects of CX-4945 are well documented, and further investigation
into the role of CK2 downregulation through the use of other inhibitors and/or CK2
molecular downregulation and would define the contribution of off-target kinases.

5. Conclusions

To our knowledge, this is the first report evaluating CK2 expression level in relation
to HPV status in HNSCC cells. Treatment with CX-4945 resulted in significantly decreased
IC50 values for combined treatment with cisplatin in both HPV(+) and HPV(−) HNSCC
cell lines; synergy was observed in a subset of cell lines. Phase 1 and 2 clinical trials
demonstrated that the oral CK2 inhibitor CX-4945 is safe for use in cancer patients, slowing
disease progression and extending treatment benefit for some patients with advanced
solid tumor cancers. Our results suggest that HNSCC patients could benefit from further
investigation into the incorporation of CX-4945 into treatment strategies. In addition, the
function of CK2 in HPV biology as it pertains to HNSCC requires further study given the
emergence of HPV(+) HNSCC.

Supplementary Materials: The following are available online: https://www.mdpi.com/article/10.3
390/biomedicines9050571/s1. Table S1, Quantitation of HNSCC cell line immunoblot signals.
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