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Abstract 

The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. 
An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets 
of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. 
This early innate immune response consists of the expression of hundreds of pro‑inflammatory and anti‑viral genes 
that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by 
intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcrip‑
tions factors. These pathways are tightly regulated by complex networks of post‑translational modifications, including 
ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. 
The intricate nature of the signaling pathways and their regulation offers the opportunity for fine‑tuning the innate 
immune response against HRSV to control virus replication and immunopathology.
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Introduction
Human Respiratory Syncytial Virus (HRSV) is the lead-
ing cause of severe lower respiratory tract infections 
such as bronchiolitis and pneumonia in infants [17]. It 
also produces severe infections in the elderly and immu-
nocompromised adults [36]. Worldwide, HRSV causes 
more than 33 million infections in children under five 
per year, of which approximately 3 million require hos-
pital admission, and about 60.000 die [119, 150]. Bron-
chiolitis caused by HRSV infection is characterized by 

inflammation of the bronchial tubes and bronchioles of 
infected patients. Together with mucus, this inflamma-
tion obstructs the airway lumen reducing airflow through 
the airways. In the infant population, the airways are nar-
rower, so they become more easily blocked, increasing 
the disease severity [135].

HRSV belongs to the Orthopneumovirus genus within 
the Pneumoviridae family. It is an enveloped virus with a 
non-segmented, single-stranded, negative RNA genome 
[2]. The HRSV genome contains ten genes that codify for 
11 proteins. These include the attachment glycoprotein 
(G), the fusion protein (F), and the small hydrophobic 
(SH) protein, which are located on the virus surface. The 
nucleoprotein (N), phosphoprotein (P), large polymerase 
protein (L), M2 protein, and the matrix (M) protein are 
all placed inside the virion. Finally, the virus has two non-
structural (NS1 and NS2) proteins [25, 53].
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The early immune response against HRSV
The immune response against HRSV begins in the epi-
thelial cells from respiratory airways, the main targets of 
virus infection. These cells produce multiple cytokines 
and chemokines (including CCL2, CCL3, CCL5, CCL7, 
CXCL10, CXCL11, IL-8, and IL-15) that trigger a pro-
inflammatory/anti-viral response essential for virus con-
trol [111, 168, 192]. Conversely, the pro-inflammatory 
response also plays a prominent role in the pathogenesis 
of the disease [9, 11, 28, 56, 118, 136].

The HRSV infection is detected in epithelial cells by 
Pattern Recognition Receptors (PRR) that recognize 
Pathogen-Associated Molecular Patterns (PAMPs), 
which, in HRSV infection, are mainly viral RNAs 
with 5’-triphosphate end and the double-strand RNA 
(dsRNA) produced during viral replication [52, 74, 
96]. Those cell receptors trigger intracellular signaling 
involving different adaptors, kinases, and transcrip-
tion factors (Fig. 1). The main PRRs that detect HRSV 
infection in epithelial cells are RIG-I Like Receptors 

Fig. 1 Main pathways activated in early innate anti‑viral immunity after HRSV infection. The signaling pathways begin with the recognition of HRSV 
RNA by RIG‑I and TLR3 receptors. The signal is transduced through adaptor proteins (MAVS, TRIF) to TRAF proteins (TRAF3/6), which activate the 
kinase complexes (NEMO, TBK1, IKKα/β/ε, TAB1, and TAK1), triggering the activation of transcription factors IRF3/7, NF‑κB and AP1 to express type I/
III IFN, cytokines, and anti‑viral genes. The released IFNs binds to their receptors (IFNAR1/IFNAR2) in an autocrine and paracrine manner to induce 
JAK/STAT‑mediated expression of multiple ISGs
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(RLRs) and Toll-Like Receptors (TLRs) [34, 63, 78, 96, 
107, 146]. These PRRs activate the transcription fac-
tors nuclear factor-κB (NF-κB) and interferon regu-
latory factors 3 and 7 (IRF3/7) (Fig.  1). The activation 
and translocation of these transcription factors to the 
cell nucleus triggers the expression of type I interferon 
(IFN-I), cytokines, chemokines, and anti-viral mole-
cules [59, 73, 96, 112, 148].

RIG‑I mediated signaling
RIG-I (Retinoic acid Inducible Gene I), a member of the 
RLR family, is the principal PRR involved in HRSV rec-
ognition in respiratory epithelial cells [96, 110, 183]. 
RIG-I silencing by siRNA inhibited the activation of both 
NF-κB and IRF3 transcription factors and the expres-
sion of IFN-β, CXCL10, CCL5, ISG15, TNF-α, and IL-6 
at early times after HRSV infection [96, 110]. RIG-I com-
prises two N-terminal Caspases Activation and Recruit-
ment Domains (CARDs), a central DExD/H box RNA 
helicase domain, and a regulatory C-Terminal Domain 
(CTD). The receptor is localized in the cell cytoplasm 
and, after viral infection, recognizes the 5’-triphosphate 
ends from single or double-strand viral RNAs [27, 143, 
161, 184]. The viral RNA recognition induces a confor-
mational change in RIG-I, leading to interaction with 
Mitochondrial Antiviral-Signaling proteins (MAVS, also 
known as Cardif, IPS1, or VISA). MAVS mediates the 
expression of most of the HRSV-induced genes in the 
lungs of infected mice, including IFN-I, IL-6, IL-1β, TNF-
α, CCL2, CXCL1, and CXCL2 [12, 82, 129]. MAVS pro-
teins contain TRAF-interacting motifs to interact with 
TRAF family proteins such as TRAF3/6 (TNF Recep-
tor Associated Factor 3 and 6). This interaction leads to 
kinase-mediated activation of the transcription factors 
IRF3/7 and NF-κB and the subsequent expression of type 
I/III IFN, cytokines, chemokines, and anti-viral proteins 
[7, 10, 12–15, 23, 38, 40, 47, 52, 54, 58, 97, 98, 101, 113–
115, 139, 140, 155, 159, 164–168, 183] (Fig. 1).

TLR3 mediated signaling
TLRs are among the best-characterized families that 
detect PAMPs from extracellular media, intracellular 
endosomes, and lysosomes [162]. In HRSV infection, 
the RNA recognition by TLR3 triggers the TRAF3/6-
mediated signaling pathway and the transcription of 
several inflammatory and anti-viral immune response 
genes [55, 95, 96, 121, 141, 162] (Fig. 1). Following HRSV 
infection of airway epithelial cells, TLR3 is induced by 
RIG-I-dependent IFN-β secretion, indicating that RIG-I 
and TLR3 mediate the HRSV-induced innate immune 
response at different times postinfection [96].

IFN‑mediated signaling
HRSV NS1 and NS2 proteins suppress type I IFN pro-
duction [159]. Therefore, a robust IFN response is not 
observed in nasal secretions of HRSV infected infants 
[117]. However, type I and III interferons are pro-
duced in epithelial cells following HRSV-mediated 
RIG-I activation [96, 138, 185]. The transcription fac-
tors mediating IFN production are IRF3/7, activated 
by the kinase complex TBK1/IKKε/NEMO [39, 57, 
99] (Fig. 1). The secreted IFN can act in a paracrine or 
autocrine manner by binding to its receptor (IFNAR), 
activating intracellular signaling pathways and leading 
to the expression of IFN-stimulated genes (ISGs). The 
IFNAR receptor is a cell surface transmembrane recep-
tor composed of two subunits; IFNAR1 (IFN-α receptor 
1) and IFNAR2. Both are associated with cytoplasmic 
tyrosine kinase 2 (Tyk2) and Janus-activated kinase 1 
(Jak1). After IFN interaction, the tyrosine residues in 
the IFNAR cytoplasmic domains are phosphorylated 
to recruit and phosphorylate the “Signal Transducers 
and Activators of Transcription 1 and 2” (STAT1 and 
STAT2), leading to the formation of STAT1/STAT2 het-
erodimers and STAT1/STAT1 homodimers [49, 60, 83, 
158] (Fig. 1). The STAT1 homodimers translocate to the 
nucleus, binding to IFN-gamma-activated sequences 
(GAS) sites in gene promoters and activating its tran-
scription. On the other hand, STAT1/STAT2 heterodi-
mers interact with IRF9 to form the ISGF3 (Interferon 
Stimulated Gene Factor 3) complex that binds to the 
interferon-stimulated response elements (ISRE) site, 
leading to the transcription of many ISGs, and estab-
lishing an anti-viral state [41, 89, 156].

In HRSV infection, IFN signaling plays an essen-
tial role in inducing pro-inflammatory cytokines and 
anti-viral genes [75, 83]. Goritzka et  al. described the 
critical role of IFNAR in the innate resistance to HRSV 
infection in mice [50]. IFNAR1 deficient mice showed 
increased viral load and reduced type I/II/III IFN, pro-
inflammatory cytokines, and chemokines in the lung 
in response to HRSV infection, indicating that signal-
ing through IFNAR is necessary for coordinating the 
inflammatory response against HRSV [50]. Makris 
et al. reported that cytokine production is abolished in 
alveolar macrophages (AM) from IFNAR deficient mice 
infected with HRSV [106]. These data showed that the 
IFN pathway is critical for the innate immune response 
following HRSV infection. Therefore, inhibition of 
IFN signaling may help reduce inflammation in HRSV 
infections. However, the IFN pathway is also neces-
sary to inhibit virus replication, so a fine-tune control 
of the innate immune response should be done to avoid 
immunopathological damage while restricting viral 
replication.
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The ubiquitination process
The ubiquitin is a small protein of 76 amino acids con-
served among different eukaryotic organisms. Ubiquitin 
can be conjugated to other proteins by covalent attach-
ment between its C-terminal di-glycine motif and lysine 
(K) residues in the target protein. This covalent attach-
ment, known as ubiquitination, modifies the activity 
or functionality of the target protein [6, 29, 134]. Ubiq-
uitination is a three-step enzymatic process; firstly, the 
ubiquitin-activating enzyme (E1) activates the ubiquitin 
molecule in an ATP-dependent process. Secondly, the E1 
protein transfers the activated ubiquitin to the ubiquitin-
conjugating enzyme (E2). Lastly, the ubiquitin ligase (E3) 
interacts with E2 to attach the activated ubiquitin to the 
target protein through an isopeptide bond [24, 64, 81, 
182] (Fig. 2A). The E3 enzyme determines the specificity 
of the target protein [29, 105, 197].

One (monoubiquitination), two (diubiquitination), or 
several (polyubiquitination) ubiquitin molecules can be 
attached to the target protein. The links between differ-
ent ubiquitin molecules are also formed through cova-
lent attachment of the C-Terminal di-glycine motif of 
one ubiquitin and the epsilon amino lysine residue of 
a second ubiquitin. The ubiquitin molecule has seven 
internal lysines (K6, K11, K27, K29, K33, K48, and 
K63), and therefore, several different types of ubiquitin 
chains with distinct functions can be formed (Fig. 2B) 
[29, 70, 81, 116]. The best-characterized are: (i) 

Ubiquitin linkage through lysine at position 48 (K48), 
which labels the target protein for proteasome recog-
nition and degradation. (ii) Ubiquitin linkage through 
K63 activates intracellular signaling pathways by stabi-
lizing substrates or acting as a scaffold that facilitates 
the formation of an active signaling complex [29, 200]. 
(iii) The linear ubiquitin chains are formed by covalent 
bonding between the C-terminal carboxyl group of one 
ubiquitin and the N-terminal methionine of another 
ubiquitin molecule [29].

Ubiquitination is a reversible process. Ubiquitin 
molecules can be removed from the target proteins 
by deubiquitinases (DUBs), which have protease and 
metalloprotease activity. The ubiquitin molecules are 
released to the cytosol for recycling or degraded in the 
proteasome [29] (Fig. 2A).

Innate immune response regulation by ubiquitination/
deubiquitination
In viral infections, the intracellular pathways activated 
by PRRs are tightly regulated by ubiquitination/deu-
biquitination and phosphorylation processes. These 
post-translational modifications modulate the activ-
ity, stability, or location of proteins involved in sign-
aling pathways to ensure a proper immune/anti-viral 
response [57, 79, 108, 131, 142, 179] (Table 1).

Fig. 2 Ubiquitination/deubiquitination mechanisms. A Ubiquitination is a reversible three‑step enzymatic process in which participate 
ubiquitin‑activating (E1), ubiquitin‑conjugating (E2), and ubiquitin ligase (E3) enzymes. Conjugated ubiquitins are removed from the target proteins 
by deubiquitinases (DUBs) (see text for full description). B Eight main types of ubiquitin chains with distinct cellular functions can be formed, 
depending on the ubiquitin lysine residue involved (K6, K11, K27, K29, K33, K48, or K63). Linear ubiquitin chains (M1) are formed by a head‑to‑tail 
linkage between the C‑terminal carboxyl group of one ubiquitin and the N‑terminal methionine of another ubiquitin molecule (see text for full 
description). A “U” inside a green circle depicts ubiquitin residues
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Table 1 Ubiquitinases (E3 ligases) and deubiquitinases (proteases) that regulate intracellular signaling

Target protein Enzyme (symbol) Name Activity Ubiquitin linkage Refs.

RIG‑I TRIM25 Tripartite Motif‑containing protein 25 E3 ligase K63 [44]

RNF135 RING Finger Protein 135 E3 ligase K63 [122]

TRIM4 Tripartite Motif‑containing protein 4 E3 ligase K63 [181]

MEX3C Mex‑3 RNA binding family member C E3 ligase K63 [84]

USP4 Ubiquitin Specific Protease 4 Protease K48 [172]

RNF122 RING Finger Protein 122 E3 ligase K48 [174]

RNF125 RING Finger Protein 125 E3 ligase K48 [5]

CBL (c‑Cbl) Casitas B lineage lymphoma E3 ligase K48 [19]

TRIM40 Tripartite Motif‑containing protein 40 E3 ligase K27 and K48 [193]

CYLD Cylindromatosis Protease K63 [42]

USP21 Ubiquitin Specific Protease 21 Protease K63 [37]

MAVS TRIM31 Tripartite Motif‑containing protein 31 E3 ligase K63 [93]

TRIM21 Tripartite Motif‑containing protein 21 E3 ligase K27 [180]

RNF125 RING Finger Protein 125 E3 ligase K48 [5]

SMURF1/2 SMAD Specific E3 ubiquitin‑protein ligase 1/2 E3 ligase K48 [126, 176]

ITCH Itchy E3 ubiquitin‑protein ligase E3 ligase K48 [22, 187]

RNF5 RING Finger Protein 5 E3 ligase K48 [199]

MARCH5 Membrane‑associated RING‑CH 5 E3 ligase K48 [186]

TRIM25 Tripartite Motif‑containing protein 25 E3 ligase K48 [16]

MARCH8 Membrane‑associated RING‑CH 8 E3 ligase K27 [77]

TRIM29 Tripartite Motif‑containing protein 29 E3 ligase K11 [178]

YOD1 (OTUD2) Ovarian Tumor Deubiquitinase2 Protease K63 [94]

TRAF3 RNF166 RING Finger Protein 166 E3 ligase K63 [18]

HECTD3 HECT Domain E3 Ubiquitin Protein Ligase 3 E3 ligase K63 [86]

RNF216 (Triad3A) RING Finger Protein 216 E3 ligase K48 [120]

OTUB1/2 OTU Deubiquitinase, Ubiquitin Aldehyde Binding 1 and 2 Protease K63 [88]

ZC3H12A (MCPIP1) Monocyte Chemotactic Protein‑Induced Protein‑1 Protease K63 [20, 91]

TRAF6 TRAF6 TNF Receptor Associated Factor 6 E3 ligase K63 [85]

RNF166 RING Finger Protein 166 E3 ligase K63 [18]

ZC3H12A (MCPIP1) Monocyte Chemotactic Protein‑Induced Protein‑1 Protease K63 [91]

OTUB1/2 OTU Deubiquitinase, Ubiquitin Aldehyde Binding 1 and 2 Protease K63 [88]

TNFAIP3 (A20) TNFα Induced Protein 3 Protease K63 [3, 130, 149]

TRIM38 Tripartite Motif‑containing protein 38 E3 ligase K48 [195]

TBK1 MIB1/2 MIB E3 ubiquitin‑protein ligase E3 ligase K63 [87]

RNF41 (Nrdp1) RING Finger Protein 41 E3 ligase K63 [170]

RNF128 RING Finger Protein 128 E3 ligase K63 [152]

DTX4 Deltex E3 Ubiquitin Ligase 4 E3 ligase K48 [26]

TRAIP (TRIP) TRAF Interacting Protein E3 ligase K48 [191]

TRIM27 Tripartite Motif‑containing protein 27 E3 ligase K48 [198]

NEMO TRAF6 TNF Receptor Associated Factor 6 E3 ligase K63 [31]

TRIM23 Tripartite Motif‑containing protein 23 E3 ligase K27 [4]

LUBAC Linear Ubiquitin chain Assembly Complex E3 ligase M1 [169]

TRAF7 TNF Receptor Associated Factor 7 E3 ligase K29 [201]

TRIM29 Tripartite Motif‑containing protein 29 E3 ligase K48 [177]

TAK1 TRAF6 TNF Receptor Associated Factor 6 E3 ligase K63 [171]

CYLD Cylindromatosis Protease K63 [1]

ITCH Itchy E3 ubiquitin‑protein ligase Protease K63 [1]

TBK1‑IKK complex TNFAIP3 (A20) TNFα Induced Protein 3 Protease K63 [46, 127, 144]
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RIG‑I
RIG-I receptor is tightly modulated by complex ubiquit-
ination and deubiquitination processes [44, 122, 125, 133, 
189]. Its activity is positively regulated by TRIM25 and 
RNF135 (also known as RIPLET or REUL). Both TRIM25 
and RNF135 contain an N-terminal RING (Really Inter-
esting New Gene) domain with E3 ligase activity and a 
C-terminal PRY-SPRY domain [44, 45, 62, 109, 122, 123, 
125]. RIG-I recognizes the 5’-triphosphate ends from 
small uncapped viral RNAs by its CTD. This interaction 
induces a conformational change in RIG-I that exposes 
its CARDs domains to interact with TRIM25. Subse-
quently, TRIM25 activates RIG-I via K63 polyubiqui-
tination, while RNF135 activates RIG-I by K63-linked 
ubiquitin chains on its CTD domain [21, 44, 67, 122, 124, 
145, 189]. RIG-I polyubiquitination promotes its interac-
tion with MAVS and triggers downstream intracellular 
inflammatory and anti-viral responses [43, 44, 80, 137, 
179]. Two other ubiquitin ligases have been reported to 
polyubiquitinate CARDs on RIG-I, namely TRIM4 and 
MEX3C [84, 181]. TRIM4 belongs to the TRIM family 
and adds ubiquitin residues through K63 to one of the 
CARDs of RIG-I, contributing to the RIG-I activation 
[181]. K63-linked ubiquitin residues added by MEX3C on 
different CARDs lysines of RIG-I increase the type-I IFN 
induction [84]. Additionally, the deubiquitinase USP4 
removes K48-linked polyubiquitin chains on CARDs of 
RIG-I, allowing signal transduction [172].

There are also negative regulators of RIG-I activity: 
(i) RNF125 and RNF122 belong to the RING domain 
and E3-ligase family proteins, which ubiquitinate the 

CTD and CARDs in RIG-I through K48, respectively [5, 
105, 123, 174]. (ii) c-Cbl (CBL) also ubiquitinates RIG-I 
through K48 on its CTD domain [19]. (iii) TRIM40 ubiq-
uitinates RIG-I through K27 and K48 at the first CARD 
domain. In all these cases, these types of ubiquitination 
induce RIG-I proteasomal degradation [193]. (iv) CYLD 
is a deubiquitinase of the USP family that removes the 
K63 ubiquitin residues from RIG-I, inhibiting the inter-
action between RIG-I and MAVS [42]. (v) USP21 deu-
biquitinates the K63-linked ubiquitin chains on CARDs 
of RIG-I anchored by TRIM25 and RNF135 [37]. In all 
instances, the result is the inhibition of the RIG-I-medi-
ated intracellular signaling pathway.

In HRSV infection, the K63 ubiquitination of RIG-I 
by TRIM25 induces the innate signaling pathways [7, 
44, 102, 110]. The carboxy-terminal SPRY domain of 
TRIM25 interacts with the N-terminal CARDs or RIG-I 
to ubiquitinate Lys 172 of RIG-I [44]. Moreover, the E3 
ubiquitin ligase FBXW7 ubiquitinates and degrades the 
SHP2 protein disrupting the SHP2/c-Cbl complex that 
mediates RIG-I degradation [153]. In both cases, these 
modifications promote RIG-I-mediated signaling.

MAVS
In HRSV infection, levels of MAVS are increased and 
mediate signaling pathways triggering the innate and 
adaptative immune response [12, 30, 129]. Upon RIG-I 
activation, CARD-CARD interaction between RIG-I 
and mitochondria-anchored MAVS induces a confor-
mational change in MAVS to form a prion-like structure 
that activates downstream signaling [68]. The prion-like 

Ubiquitination/deubiquitination processes regulate many proteins involved in RIG‑I and TLR3 signaling pathways. Different E3 ligases (add ubiquitin chains to the 
target protein) or proteases (remove the ubiquitin chains from the target protein) modify the activity, localization, or stability of the target proteins. E3 ligases add 
ubiquitin residues to the target proteins; proteases (deubiquitinases) remove ubiquitin residues from the target proteins

Table 1 (continued)

Target protein Enzyme (symbol) Name Activity Ubiquitin linkage Refs.

IRF3 TRIM26 Tripartite Motif‑containing protein 26 E3 ligase K48 [173]

TRIM21 Tripartite Motif‑containing protein 21 E3 ligase K48 [66]

RBCK1 (RNF54) RING Finger Protein 54 E3 ligase K48 [190]

CBL (c‑Cbl) Casitas B lineage lymphoma E3 ligase K48 [196]

UBE3C (RAUL) Ubiquitin Protein Ligase E3C E3 ligase K48 [188]

IRF7 UBE3C (RAUL) Ubiquitin Protein Ligase E3C E3 ligase K48 [188]

TRIM21 Tripartite Motif‑containing protein 21 E3 ligase K48 [65]

NF‑κB MKRN2 Makorin Ring Finger Protein 2 E3 ligase K48 [151]

PDLIM1 PDZ And LIM Domain 1 E3 ligase K48 [163]

COMMD1/Cul2 Copper Metabolism Domain Containing 1/Cullin 2 E3 ligase K48 [48]

TRAF7 TNF Receptor Associated Factor 7 E3 ligase K29 [201]

STAT1 RNF31 RING Finger Protein 31 E3 ligase M1 [202]

OTULIN OTU deubiquitinase with Linear linkage specificity Protease M1 [202]
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structure of MAVS recruits different TRAFs proteins like 
TRAF3/6, which promotes the activation of: (i) TBK1 
complex (TBK1, IKKε, and NEMO (IKKγ)) that induces 
the IRF3/7 phosphorylation and their translocation into 
the nucleus to induce the transcription of type I IFN 
genes [100, 142]. (ii) IKK complex (IKKα/β and NEMO) 
that activates the NF-κB transcription factor and pro-
duction of pro-inflammatory cytokines [100, 104, 162] 
(Fig. 1).

Post-translational modifications tightly regulate the 
MAVS adaptor to ensure a proper immune response. 
TRIM31 and TRIM21 are TRIM family members with 
E3 ubiquitin ligase activity that have been proposed as 
positive regulators of MAVS. TRIM31 catalyzes the for-
mation of the prion-like aggregates through K63 ubiq-
uitination of MAVS [93]. TRIM21 ubiquitinates MAVS 
through K27, enhancing its interaction with TBK1. In 
both cases, IRF3 and NF-κB signaling pathways are acti-
vated [180].

Numerous E3 ubiquitin ligases mediate the K48-linked 
ubiquitination and subsequent proteasome degrada-
tion of MAVS: RNF125 [5], Smurf1/2 [126, 176], ITCH 
[22, 187], RNF5 [199], MARCH5 [186], and TRIM25 
[16]. Moreover, other E3 ligases, TRIM29 and MARCH8, 
ubiquitinate MAVS through K11 and K27, promoting 
MAVS degradation by the proteasome and autophagy, 
respectively [77, 178]. Recently, it has been described that 
the deubiquitinase YOD1 (OTUD2) removes K63-linked 
ubiquitin chains on MAVS, thereby abolishing the for-
mation of MAVS prion-like aggregates and attenuating 
downstream signaling [94].

TRAF
TRAF3 and TRAF6 are involved in inducing the early 
innate immune response against HRSV. Thus, TRAF3 
seems to be relevant in the signaling pathways induced 
by HRSV, as indicated by the NS1 and NS2-induced 
decrease of TRAF3 levels in HRSV infections [160]. 
TRAF6 is required for RIG-I-mediated p65 phosphoryla-
tion and subsequent activation of NF-κB transcription 
factor [183].

TRAF3/6 belongs to the TRAF family of adapter pro-
teins, characterized by one conserved TRAF domain at 
the C-terminal end necessary to interact with other pro-
teins and one RING domain at its N-terminal end with 
E3 ubiquitin ligase activity [72, 131]. MAVS recruits 
TRAF3/6 proteins to activate intracellular signaling 
[100] (Fig. 1). TRAF3/6 interaction with MAVS induces 
TRAF3/6 K63-linked autoubiquitination and activation 
[72].

Following activation, TRAF3 recruits TBK1 and IKKγ/ε 
to phosphorylate IRF3 and IRF7. The phosphorylated 
transcription factors translocate to the nucleus to induce 

type I IFNs and ISGs expression [121, 142] (Fig.  1). 
TRAF3 activity is modified by ubiquitination and deu-
biquitination processes. The RNF166 and HECTD3 are 
E3 ubiquitin ligases that ubiquitinate and activate TRAF3 
via K63, inducing the signaling pathway [18, 86]. In con-
trast, another E3 ubiquitin ligase, RNF216 (also known as 
Triad3A), adds K48-linked ubiquitin residues to TRAF3, 
inducing its proteasomal degradation and inhibiting 
signal transduction [120]. Finally, TRAF3 can be nega-
tively regulated by MCPIP1 (also known as ZC3H12A), 
OTUB1, and OTUB2. The MCPIP1 protein, as well as 
OTUB1 and OTUB2, removes K63-linked ubiquitin moi-
eties from TRAF3, inhibiting cell signaling [20, 88, 91].

TRAF6 E3 ligase activity mediates K63-linked poly-
ubiquitination of its substrates, including itself and 
NEMO [31, 85, 171]. Ubiquitinated TRAF6 serves as a 
scaffold for the recruitment and activation of the TAK1/
TAB1/TAB2/3 complex and subsequent NF-κB activa-
tion (Fig. 1) [31, 157, 194]. Like TRAF3, TRAF6 is posi-
tively regulated by RNF166-mediated K63 ubiquitination 
[18]. Conversely, TRAF6 is negatively regulated by some 
proteins, including MCPIP1 [91], OTUB1, OTUB2 [88], 
TNFAIP3, and TRIM38. TNFAIP3 (also known as A20) 
removes K63-linked ubiquitin residues on TRAF6, inhib-
iting its activity and subsequent signaling [3, 130, 149]. 
The E3 ubiquitin ligase TRIM38 negatively regulates 
TRAF6 through K48 ubiquitination and subsequent deg-
radation by the proteasome [195].

IKK and IKK‑related kinases
The IkappaB kinases (IKKs), IKKα and IKKβ, and the 
IKK-related kinases TBK1 (TANK Binding Kinase 1) and 
IKKε are the last proteins to transduce the RLR-signaling 
pathway upstream of the transcription factors (Fig.  1). 
Both types of kinases interact with NEMO (IKKγ), a 
scaffold protein essential in the RIG-I-MAVS-mediated 
response against HRSV in infected cells [98]. NEMO 
recruits TBK1 (TANK Binding Kinase 1) and IKKε to 
form a complex that phosphorylates IRF3/7. Phospho-
rylated IRF3/7 translocate to the nucleus to induce 
the expression of type I/III IFNs, pro-inflammatory 
cytokines, and chemokines [148, 194] (Fig. 1).

In the case of NF-κB, its p65 (RelA) and p50 subunits 
are retained in the cytosol by the IκBα protein (Inhibi-
tor of NF-κB proteins). The complex formed by NEMO, 
IKKα, and IKKβ phosphorylates IκBα, triggering its 
ubiquitination and subsequent proteasome-dependent 
degradation. Degradation of IκBα leads to the release 
of NF-κB and its translocation to the nucleus to express 
pro-inflammatory cytokines [61].

In HRSV infections, IKKβ is required for p65 phos-
phorylation and subsequent NF-κB translocation to the 
nucleus [33, 183]. Moreover, Haeberle et al. have reported 
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that IKKβ and NEMO association is critical for NF-κB-
mediated chemokine expression and lung inflammation 
[58]. Interestingly, after HRSV infection, IKKε appears to 
mediate both IRF3 and NF-κB-dependent gene expres-
sion [8, 71, 160]. Additionally, a decrease of TBK1 has 
been observed after treating cells with a potential drug 
against HRSV, indicating that TBK1 may participate 
in the HRSV-mediated immune signaling [69]. Finally, 
inhibition of TAK1 expression reduces HRSV-induced 
NF-κB-dependent gene expression [33].

The activity of these kinases is regulated by ubiquitina-
tion and deubiquitination processes. TBK1 is activated by 
the E3 ubiquitin ligases Mib1/2 [87], Nrdp1 (also known 
as RNF41) [170], and RNF128 [152], all of them add K63-
linked ubiquitin residues to TBK1, promoting the down-
stream signaling pathway. On the other hand, DTX4 [26], 
TRIP (also known as TRAIP) [191], and TRIM27 [198], 
ubiquitinate TBK1 via K48 and label the protein for pro-
teasomal degradation, inhibiting the RLR-mediated sign-
aling cascade.

The IKK complex is regulated at different steps. NEMO 
activity is positively regulated by TRAF6, which ubiqui-
tinates NEMO through K63 linkages, promoting IKK 
complex activation and the subsequent phosphorylation 
of IRF3/7 and NF-κB transcription factors [31]. Other E3 
ubiquitin ligases, such as TRIM23 and LUBAC, promote 
the NEMO activity by adding K27 and M1-linked ubiqui-
tin chains, respectively [4, 169]. In contrast, TRAF7 and 
TRIM29 induce NEMO degradation through K29 and 
K48-linked ubiquitination, respectively [177, 201]. TAK1 
is also positively regulated by TRAF6 through the same 
mechanism as NEMO [171] but is negatively regulated by 
CYLD- and ITCH-mediated K63 deubiquitination [1].

Both TBK1 and IKK complexes are negatively regulated 
by the A20 deubiquitinase, which removes K63-ubiquitin 
chains on those proteins. In this role, A20 cooperates 
with TAX1BP1 (Tax1 Binding Protein 1) and ABIN1 
(A20-binding inhibitor of NF-κB activation, also known 
as TNIP1) to disrupt the TRAF3-TBK1-IKKε complex 
and inhibit the IRF3 activation [46, 127, 144]. In line 
with this, our group found that downregulation of A20, 
TAX1BP1, or ABIN1 in HRSV infection increased the 
early innate immune response and reduced virus pro-
duction in epithelial cells [108]. Accordingly, enhanced 
expression of inflammatory and anti-viral cytokines has 
been observed in TAX1BP1 knockout mice infected with 
HRSV [32].

Transcription factors: IRF3/7 and NF‑κB
The last step in the RLR-signaling pathway is the activa-
tion of the transcription factors IRF3/7 and NF-κB [39, 
57, 61, 99]. In HRSV infection, these transcription fac-
tors have been implicated in the induction of several 

pro-inflammatory cytokines and chemokines [7, 10, 23, 
33, 38, 40, 54, 59, 71, 92, 96, 97, 115, 128, 140, 155, 164, 
166–168, 183].

IRF3 is negatively regulated by K48 ubiquitination that 
promotes its proteasomal degradation. The E3 ubiquitin 
ligases involved in this process are: TRIM26, TRIM21, 
RBCK1 (also known as RNF54), c-Cbl, and RAUL (also 
known as UBE3C) [66, 173, 188, 190, 196]. IRF7 is 
also modulated by the ubiquitin E3 ligases RAUL and 
TRIM21 through the same degradative mechanism [65, 
188].

NF-κB is also regulated by ubiquitination. The p65 
(RelA) subunit is negatively regulated through K48 and 
K29 ubiquitination mediated by MKRN2, PDLIM1, 
COMMD1/Cul2, and TRAF7. Except for TRAF7, which 
ubiquitinates p65 through K29, all other ubiquitin E3 
ligases add K48 ubiquitin chains to p65. However, both 
K29 and K48 ubiquitination result in p65 degradation 
and, consequently, the inactivation of NF-κB transcrip-
tion factor [48, 151, 163, 201].

Components of the IFN signaling pathway
The HRSV innate immune response in epithelial cells 
begins with RIG-I activation, leading to type I/III IFN 
and pro-inflammatory cytokines expression. IFNs from 
infected cells trigger additional signaling pathways in 
the same and neighboring cells. These pathways are also 
tightly modulated by ubiquitination and deubiquitina-
tion processes. Thus, linear ubiquitination of STAT1 
by RNF31 (also known as HOIP, a part of the LUBAC 
complex) prevents its interaction with IFNAR2. Conse-
quently, STAT1 is not phosphorylated, and the anti-viral 
type I IFN signaling is inhibited [202]. As a positive regu-
lator, the deubiquitinase OTULIN specifically removes 
linear ubiquitin chains from STAT1, allowing its phos-
phorylation and activation [202].

The HRSV infection activates and modulates STAT 
signaling pathways and subsequent ISGs expression [60, 
75, 83, 138]. Wang et al. observed that the inhibition of 
HRSV replication by JAK-STAT1/2 activation is partially 
mediated by TRIM22 expression [175].

Regulation of ubiquitination processes by HRSV proteins
HRSV counteracts the host’s innate immune response by 
different mechanisms. The viral proteins NS1 and NS2 
play a crucial role in modulating RLR-mediated induc-
tion of type I and III IFN [76, 92, 103, 140, 147, 154]. The 
interaction between NS1 and TRIM25 is one of the best-
known mechanisms to disrupting the RIG-I signaling 
pathway. The NS1 protein binds to the PRY-SPRY domain 
in TRIM25 to prevent K63 ubiquitination of RIG-I 
(Fig. 3A) and, consequently, its activation [7]. The HRSV 
NS2 protein also interferes with RIG-I activation by 
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binding to the N-terminal CARD domain of RIG-I, pre-
venting RNA recognition, ubiquitination of the domain, 
and its interaction with MAVS (Fig. 3B) [92, 132].

NS1 has a consensus sequence (VALLKITCYTDK) 
for binding to the elongin C and cullin 2 E3 ligase. Thus, 
it has been suggested that the NS1 may interact with 
elongin C and cullin 2 to form an E3 ligase complex 
that may ubiquitinate STAT2 for proteasomal degra-
dation (Fig.  4) [35]. Although the NS2 protein does not 

appear to interact directly with the E3 ligase complex, it 
is necessary for effective STAT2 degradation, perhaps by 
bringing STAT2 closer to the NS1 E3 ligase complex or 
stabilizing or regulating the complex [35, 103]. However, 
Swedan et  al. found a similar consensus sequence for 
potential binding to elongin C and cullin 2 in NS2 [160]. 
Therefore, the ability of NS2 to reduce STAT2 protein 
levels through a proteasomal mechanism may be medi-
ated by this sequence (Fig. 4) [160].

Goswami et al. have described the so-called NS-degra-
dosome (NSD), a large degradative complex contain-
ing the NS1 and NS2 proteins, as well as proteasomal 
and non-proteasomal proteases. Upon HRSV infection, 
NSD translocates to the mitochondria and interacts with 
MAVS. This association allows the degradation of several 
intermediates of the immune/anti-viral pathways, such as 
RIG-I, TRAF3, IKKε, or IRF3/7 [51]. However, it was not 
determined whether ubiquitination enzymes are struc-
tural components of the NSD or not.

Not only HRSV NS1 and NS2 proteins are involved 
in the regulation of the early innate immune response. 
GBP5 (Guanylate Binding Protein 5) is an IFNγ-inducible 
gene that belongs to the GTPase family and is involved in 
several cellular processes, such as inflammasome assem-
bly, vesicle trafficking, and innate immunity. In HRSV 

Fig. 3 HRSV NS1 and NS2 inhibition of RIG‑I ubiquitination. HRSV 
NS1 and NS2 proteins disrupt the innate immune cascade in 
infected cells by interfering with the K63 ubiquitination of RIG‑I. This 
process involves NS1 binding to the PRY‑SPRY motif of TRIM25 (A) 
or NS2 binding to RIG‑I CARDs (B). A “U” inside a green circle depicts 
ubiquitin residues

Fig. 4 HRSV NS1‑mediated STAT2 ubiquitination and degradation. 
NS1, and maybe NS2, form an E3 ligase complex with elongin C 
and cullin 2 that ubiquitinates STAT2 through K48 linkages. This 
modification labels STAT2 for proteasomal degradation, thus 
inhibiting IFN signaling. A “U” inside a green circle depicts ubiquitin 
residues

Fig. 5 HRSV G‑mediated ubiquitination and degradation of GBP5. 
HRSV glycoprotein G indirectly promotes GBP5 K48 ubiquitination 
for proteasomal degradation by raising the E3 ligase DZIP3 levels. 
Degradation of GBP5 increases the formation of HRSV infectious 
particles. A “U” inside a green circle depicts ubiquitin residues
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infection, GBP5 reduces cell-associated SH protein lev-
els by promoting SH release in cell culture, resulting in 
defective HRSV particles. However, HRSV modulates 
GBP5 expression in infected cells through the HRSV G 
protein. The G protein upregulates DZIP3 (DAZ Interact-
ing Zinc Finger Protein 3), an E3 ligase that ubiquitinates 
GBP5 inducing its proteasomal degradation, promoting 
the generation of viable HRSV particles (Fig. 5) [90].

Concluding remarks
Emerging data show that complex ubiquitination and 
deubiquitination processes are involved in the regula-
tion of HRSV-induced early innate immunity. RIG-I, 
MAVS, TRAF3/6, and NEMO are the main proteins reg-
ulated by these processes. Ubiquitination/deubiquitina-
tion of K63 or K48-linked chains are the most frequent 
modifications.

Regulation of innate immune pathways in infected cells 
may impact HRSV dissemination and adaptative immu-
nity. Therefore, proteins participating in those pathways 
are potential targets for controlling virus replication and 
immunopathology.
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