
 

www.aging-us.com 14109 AGING 

INTRODUCTION 
 

Rheumatoid arthritis (RA) is a kind of common 

autoimmune disease with hyperplasia of joint tissue and 

synovial inflammation that can finally lead to some 

serious systematic disorders, such as cardiovascular, 

pulmonary, skeletal disorders, and psychological [1]. It 

affects around 1.3 million people in the USA [2], and 

0.32%-0.36% population in China [3]. One of the most 

severe comorbidities of RA is osteoporosis (OP), which 

is a chronic metabolic skeletal disease leading to an 

increased risk of low trauma fracture [4]. Osteoporosis 

can be characterized by microarchitectural deterioration 

of bone tissue and low bone mass. Epidemiology studies 

indicate that about 60-80% of RA patients have a 

comorbidity of OP [5]. The most commonly used 

measurement for OP is bone mineral density (BMD) [6]. 

Both RA and OP have a strong genetic component. 

Previous studies have suggested that the heritability of 

RA is approximately 60% [7], while the heritability of 

OP is up to 50-85% [8]. To date, genome-wide 

association studies (GWASs) have successfully identified 

more than 200 single-nucleotide polymorphisms 

(SNPs) for OP and explained approximately 5% of the 

genetic heritability [9]. GWASs for RA have identified 

more than 100 susceptibility loci and explained 

approximately 12% of the genetic heritability [10]. 

These two kinds of complex diseases may share  

some common genetic mechanisms and biological 

processes. For example, proinflammatory cytokines 

including TNF-α, IL-17, IL-6, and IL-1 have been 

reported to be closely associated with OP [11], and 

they also play important roles in the development of 

RA [12]. 
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ABSTRACT 
 

Many observation studies have demonstrated a close relationship between rheumatoid arthritis (RA) and 
osteoporosis (OP). However, the causal genetic correlation between RA and OP remains unclear. In this study, 
we performed bi-directional Mendelian randomization (MR) analyses to explore causal inference between 
these two traits. The instrumental variables for RA were selected from a large-scale genome-wide association 
study (GWAS) (1,523 cases and 461,487 controls). Bone mineral density (BMD) at five different sites (heel 
(n=265,627), forearm (FA) (n=8,143), femoral neck (FN) (n=32,735), lumbar spine (LS) (n=28,498), and total body 
(n=28,498)) were used as phenotypes for OP. The inverse variance weighted (IVW) method did not detect any 
causal effect of BMDs on RA except heel BMD (beta = -7.57 × 10-4, p = 0.02). However, other methods (MR-
Egger, weighted median, weighted mode, MR-PRESSO, and MR-RAPS) showed no causal association between 
heel BMD and RA. Likewise, we did not find a causal effect of RA on BMD at any sites. In conclusion, we found 
no evidence that RA is causally associated with OP/BMD, or vice versa. We suggested that the associations 
found in previous observational studies between RA and OP/BMD are possibly related to secondary effects 
such as antirheumatic treatment and reduced physical activity. 

mailto:lihuix@csu.edu.cn
mailto:xiaotaoxyl@csu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 14110 AGING 

In addition, many observation studies demonstrate a 

close relationship between OP and RA with strong 

evidence. Focal or generalized bone involvement occurs 

frequently in RA patients. Güler-Yüksel M et al. 

reported that osteoporosis was found in the spine and 

hip in 11% and 25% of 381 recently diagnosed active 

RA patients [13]. Synovial membrane inflammation 

will lead to periarticular cortical bone loss and marginal 

bone erosion, while generalized osteoporosis involving 

the appendicular and axial skeletons probably occurs 

before the onset of articular disease [14]. Follow-up 

studies conducted by the same group demonstrated that 

joint damage and joint damage progression were 

independently associated with high bone mineral 

density (BMD) loss both in hip/spine and hands after 1 

year of treatment [15]. Longer duration and severity of 

RA were also indicated as independent risk factors for 

vertebral fractures [16]. 

 

Does RA have a direct effect on OP, or vice versa? Due 

to the potential bias introduced by confounding factors, 

these prior observation data were limited for causal 

inference. The gold standard method for identifying 

causality is randomized controlled trial (RCT) design, 

but it consumes considerable time and money. In recent 

years, Mendelian randomization (MR) has been widely 

performed as an alternative method to assess causal 

relationships in observational data [17]. Genetic variants 

are used as instrumental variables (IVs) in the MR 

method to leverage the random assortment of genetic 

variants during gamete formation. If we assume that 

there are no genetic mating restrictions upon the 

population (panmixia), then the genotype distribution of 

this population should be unrelated to the confounding 

factors that typically affect observational epidemiology 

studies. In this regard, MR can be thought of as a 

“natural” RCT. Moreover, the assignment of genotypes 

is not affected by age, sex, lifestyle, or other 

environmental factors. Hence, the greatest advantage of 

MR is avoiding the effect of potential confounders or 

reverse causality compared with the general RCT design 

[18]. A genetic variant can be considered as an 

instrumental variable for a given exposure if it satisfies 

the 3 assumptions: 1) They are strongly associated with 

exposure. 2) They are independent of any known 

confounders. 3) They are conditionally independent of 

given exposure, outcome, and potential confounders, 

meaning that it does not affect the outcome except via 

the exposure, and it is not associated with the outcome 

due to confounding (Figure 1A).  

 

Two-sample MR uses GWAS summary statistical data 

of both exposure and outcome traits to infer the causal 
association between exposure and outcome. Hence, it is 

not necessary to obtain the effect of the instrumental 

variable-exposure/-outcome association from the same 

sample of participants. In other words, two-sample MR 

allows us to perform MR between two traits using only 

independent GWAS summary statistics. In addition, 

there are some advantages to obtain summary statistical 

data from two different groups of participants. For 

example, the “winners’ curse” is unlikely to happen in 

two-sample MR, while it can underestimate true causal 

effects in one-sample MR [19]. Likewise, the weak 

instrument bias that biases effects towards the 

confounded multivariable regression result has a great 

impact in one-sample MR, but it is towards null in two-

sample MR. The main advantage of using summary 

data from large GWASs in two-sample MR is the 

increasing of statistical power, particularly in testing 

effects on binary disease outcomes. Regardless of many 

successes of MR in investigating the potential causality 

of environmental factors-to-diseases or diseases-to-

diseases, whether there is a causal effect between OP 

and RA is still unclear, though extensive evidence from 

observational studies showed a strong correlation 

between these two diseases. Therefore, we performed 

bi-directional MR analyses for causal inference between 

RA and OP in the present study. Since BMD is the most 

often used measurement for diagnosing OP [20, 21], 

summarized GWAS data for five different BMD 

measurements were included: the 1st~3rd BMD 

measurements were DXA measuring-based BMD at 

forearm (FA), low spine (LS), and femoral neck (FN), 

which were most commonly used for diagnosing of OP 

and OP-related fracture [22]; the 4th BMD measurement 

is DXA measuring-based BMD of total body, which has 

been reported with a strong correlation with BMD at 

low spine (LS) and femoral neck (FN), and with the 

largest collection of DXA measuring-based BMD [23]; 

the 5th BMD measurement is heel BMD measured by 

quantitative heel ultrasounds from UK biobank [24]. 

Although the heel BMD estimated from quantitative 

heel ultrasounds is not as standard as DXA-based 

measurements, it is also strongly associated with DXA-

based BMD. In addition, benefit from its convenience 

and low cost, the study of eBMD in UK biobank is 

much larger than any DXA-based study. 

 

The bi-directional MR study design is shown in Figure 

1B. In the first stage, we examined whether BMD 

measurements have causal effects on RA. In the second 

stage, we detected whether RA is causally associated 

with BMD measurements. 

 

RESULTS 
 

Stage1: Influence of BMD traits on RA 

 
Respectively, we obtained 342, 3, 14, 14 and 50 IVs 

without effects of linkage disequilibrium (LD, r2 < 

0.001) that reached genome-wide significance level  
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(p < 5 × 10-8) from GWASs for heel, FA-, FN-, LS- and 

TB-BMD (Supplementary Table 1). The heterogeneity 

test showed no significant heterogeneity among selected 

IVs (Q_p value > 0.05, Table 1), except IVs of FN-BMD 

(Q_IVW = 24.73, Q_pval_IVW=0.02). All tests for MR 

Egger regression and leave-one-out analysis were 

negative (p for MR-Egger intercept > 0.05) (Table 1 and 

Supplementary Figures 1–5), indicating that our MR 

results were not biased by heterogeneity or horizontal 

pleiotropy. To demonstrate the power of selected IVs, 

we presented F statistics. The values of F statistics for 

selected IVs and the variance explained by them for heel 

BMD, FA-BMD, FN-BMD, LS-BMD, and TB-BMD 

were 97.05, 58.20, 52.33, 58.39, and 66.32, respectively. 

All of the F statistics were larger than 10, demonstrating 

that the selected IVs were strong enough to decrease any 

potential bias of the causal analyses. As expected, the 

negative control analyses presented that heel BMD, FA-

BMD, FN-BMD, LS-BMD, and TB-BMD were not 

associated with myopia, suggesting that IVs of 

exposures we selected for this study were appropriate 

(Supplementary Tables 2, 3). 

 

The inverse variance weighted (IVW) method supported 

a causative association between heel BMD and RA 

(beta = -7.57 × 10-4, p = 0.02), but MR Pleiotropy 

RESidual Sum and Outlier (MR-PRESSO) did not 

detect any potential pleiotropic IVs for BMD, and the 

 

 
 

Figure 1. Workflow of bi-directional MR analysis. (A) The fundamental idea of MR analysis: If we cannot randomize the exposure, we 
can find a randomized instrumental variable to disentangle (B) Workflow of our bi-directional MR analysis. MR: Mendelian randomization; 
BMD: Bone mineral density; RA: Rheumatoid arthritis. 
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Table 1. Mendelian randomization estimates for BMD on RA. 

Exposure Outcome 
No. of 

IVs 

Heterogeneity tests 
Directional horizontal 

pleiotropy test 
MR results 

Methods Cochran's Q (p) MR-Egger intercept (p) Method Beta P 

Heel BMD RA 342 MR Egger 370.51 (0.12) -1.87e-05 (0.20) Inverse variance weighted -7.57E-04 0.02 
   Inverse variance weighted 372.28 (0.12)  MR Egger -1.48E-05 0.98 
      Weighted median -2.48E-04 0.62 
      Weighted mode 6.49E-05 0.93 
      MR-Presso -5.44E-04 0.08 
      MR-Raps -5.49E-04 0.07 

FA-BMD RA 3 MR Egger 2.94 (0.09) -2.36e-04 (0.65) Inverse variance weighted -5.64E-04 0.49 
   Inverse variance weighted 4.08 (0.13)  MR Egger 1.16E-03 0.76 
      Weighted median -1.87E-04 0.78 
      Weighted mode -7.27E-05 0.93 

FN-BMD RA 14 MR Egger 18.26 (0.11) -5.13e-04 (0.06) Inverse variance weighted -3.03E-04 0.70 
   Inverse variance weighted 24.74 (0.02)  MR Egger -9.08E-03 0.06 
      Weighted median -3.40E-04 0.67 
      Weighted mode 1.17E-04 0.93 

LS-BMD RA 14 MR Egger 19.92 (0.07) -2.36e-04 (0.41) Inverse variance weighted -1.16E-04 0.86 
   Inverse variance weighted 21.15 (0.07)  MR Egger -3.66E-03 0.40 
      Weighted median -3.24E-04 0.65 
      Weighted mode -5.09E-04 0.65 

TB-BMD RA 50 MR Egger 50.46 (0.38) 9.29e-05 (0.09) Inverse variance weighted -3.49E-04 0.35 
   Inverse variance weighted 53.64 (0.30)  MR Egger -2.08E-03 0.06 
      Weighted median -6.23E-04 0.25 
      Weighted mode -6.54E-04 0.38 

MR-PRESSO and MR-RAPS were performed for pairs of exposure-outcomes with more than 100 IVs. BMD: bone mineral 
density; RA: rheumatoid arthritis; FA: forearm; FN: femoral neck; LS: lumbar spine; TB: total body; IVs: instrumental variables; 
MR-PRESSO: Mendelian Randomization Pleiotropy RESidual Sum and Outlier; MR-RAPS: Mendelian Randomization Robust 
Adjusted Profile Score. 

 

corrected MR causal association between BMD and RA 

was negative (beta = -5.44 × 10-4, p = 0.08) (Table 1). 

As there were 342 IVs for heel BMD, we performed 

MR Robust Adjusted Profile Score (MR-RAPS) to test 

whether BMD affects RA through many weak 

instruments (beta = -5.49 × 10-4, p = 0.07) (Table 1). 

MR-RAPS did not show that heel BMD has a causal 

effect on RA. Furthermore, IVW analysis showed that 

FA-, FN-, LS- and TB-BMD were all negatively 

associated with RA (beta range from -1.16 × 10-4 to -

5.64 × 10-4). In addition, MR-Egger, weighted median, 

and weighted mode methods did not identify any causal 

effect of heel, FA-, FN-, LS- and TB-BMD on RA 

(Table 1). Combined with results from different MR 

methods, we concluded that BMD has no causal effect 

on RA. 

 

Stage2: Influence of RA on BMD traits 

 

In total, we obtained 6 LD-independent (r2 < 0.001) 

instrumental variables (IVs) with p < 1 × 10-5 from 

GWAS for RA (Supplementary Table 4). The 

heterogeneity test showed significant heterogeneity (Q_p 
value < 0.05, Table 2) in selected IVs of RA on heel 

BMD and FN-BMD. All tests for MR Egger regression 

and leave-one-out analysis were negative (p for MR-

Egger intercept > 0.05) (Table 2 and Supplementary 

Figures 6–10), indicating that our MR results were not 

biased by heterogeneity or horizontal pleiotropy. The 

value of F statistics for selected IVs is 71.71 (larger than 

10), demonstrating that the IVs we selected in this study 

were powerful enough. As expected, the negative control 

analyses presented that RA was not associated with 

myopia, suggesting that the IVs of exposures we 

selected in this study were appropriate (Supplementary 

Tables 2, 3). 

 

Through IVW analyses, we did not detect any evidence 

for a causal effect of RA on BMD at any site (beta 

range from -4.96 to 3.93) (Table 2). The estimates from 

MR-Egger were consistent with these results (beta 

range from -62.00 to -2.18). The weighted median 

(WME) and weighted mode (WMO) analysis detected a 

significant causal effect of RA on heel BMD (p_WME 

= 9.93 × 10-4, p_WMO = 0.04). When there is absent 

evidence of directional pleiotropy (p for MR-Egger 

intercept > 0.05), the IVW method is considered the 

most reliable indicator in MR analyses [25, 26]. 

Therefore, we concluded that the causal association 
between RA and BMD is negative. For the other BMD 

traits, the results from weighted median and weighted 

mode analysis were consistent with IVW (Table 2). In 
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Table 2. Mendelian randomization estimates for RA on BMD. 

Exposure Outcome 
No. of 

IVs 

Heterogeneity tests 
Directional horizontal 

pleiotropy test 
MR results 

Methods Cochran's Q (p) MR-Egger intercept (p) Method Beta P 

RA Heel BMD 

4 

MR Egger 14.87 (0.001) 3.00e-03 (0.63) Inverse variance weighted -2.52 0.20 
     MR Egger -4.33 0.38 
  Inverse variance weighted 17.23 (0.001)  Weighted median -2.96 0.00 
     Weighted mode -3.26 0.04 
  MR Egger 5.13 (0.16) 4.00e-02 (0.61) Inverse variance weighted 3.93 0.80 

RA FA-BMD 5    MR Egger -62.00 0.63 
   Inverse variance weighted 5.67 (0.22)  Weighted median 17.68 0.31 
      Weighted mode 23.93 0.39 
   MR Egger 11.82 (0.02) 8.00e-03 (0.58) Inverse variance weighted -4.66 0.50 

RA FN-BMD 6    MR Egger -11.87 0.45 
   Inverse variance weighted 12.90 (0.02)  Weighted median -7.91 0.13 
      Weighted mode -7.78 0.20 
   MR Egger 3.53 (0.47) -6.00e-03 (0.53) Inverse variance weighted -4.96 0.32 

RA LS-BMD 6    MR Egger 0.49 0.96 
   Inverse variance weighted 4.00 (0.55)  Weighted median -3.20 0.58 
      Weighted mode -3.19 0.66 
   MR Egger 4.75 (0.31) 6.34e-05 (0.99) Inverse variance weighted -1.74 0.56 

RA TB-BMD 6    MR Egger -1.79 0.77 
   Inverse variance weighted 4.75 (0.45)  Weighted median -2.08 0.53 
      Weighted mode -2.08 0.58 

BMD: bone mineral density; RA: rheumatoid arthritis; FA: forearm; FN: femoral neck; LS: lumbar spine; TB: total body; IVs: 
instrumental variables. 

 

summary, combined with the results from different MR 

methods, we concluded that there is no causal effect of 

RA on BMD. 

 

DISCUSSION 
 

In the present study, we used bi-direction Mendelian 

randomization to figure out whether RA is causally 

associated with OP, or the other way around. Despite 

using the largest available public GWAS meta-analyses 

data, we were unable to demonstrate an association 

between genetic instruments for RA and BMD, or vice 

versa. Thus, there was no evidence for a causal 

relationship between RA and OP according to our MR 

analyses. 

 

Previous observation studies have shown powerful 

evidence of an association between active RA and low 

BMD [27–30]. According to a population-based study, 

the prevalence of OP had a twofold increase in both male 

and female RA patients compared with healthy subjects 

[31]. A Korean cohort including 47,034 RA patients and 

235,170 controls also indicated an increased risk of 

osteoporotic fractures for RA patients across all sexes, 

age groups, and various anatomic sites, compared with 

non-RA patients [32]. High disease activity, long disease 

duration, and joint damage were reported as determinants 

of reduced BMD in RA patients [15, 33]. Studies  

on the molecular mechanism also suggested that  

the pathogenesis of generalized BMD loss and focal 

erosions had common pathways mediated by osteoclasts, 

particularly by the receptor activator of nuclear factor 

kappa B ligand (RANKL) pathway [14, 34, 35].  

 

However, importantly, no conclusions can be drawn on 

whether RA has a direct influence on OP, or the other 

way around. Some studies found that focal or 

generalized bone loss occurred before the diagnosis  

of RA in some patients, and BMD seems to be 

predominantly related to demographic factors in those 

patients without disease-modifying antirheumatic drugs 

(DMARDs) or corticosteroid treatment [14, 15]. These 

findings suggested that the reduction of BMD in RA 

patients might be partially intermediated by other 

factors, such as antirheumatic treatment. Our MR 

analysis results found that there is no causal association 

between RA and OP/BMD, which also suggested a 

secondary effect of RA on OP/BMD. 

 

Some kinds of classic DMARDs might have effects on 

the progression of bone formation. For example, 

methotrexate (MTX) could inhibit the differentiation of 

osteoblasts and exert direct negative effects on bone 

metabolism in RA patients [36]. However, Minaur NJ et 

al. indicated that reduced BMD associated with MTX 

was due to confounders such as disease activity, and no 

adverse effect of low-dose MTX on bone formation in 

RA was detected [37]. Corticosteroids, widely used in 
treating RA due to their strong suppressive effect on 

inflammatory activity, can decrease generalized BMD 

loss. However, as a side-effect, they could also increase 

BMD loss [38]. Nevertheless, a study including 342 
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patients with RA found no differences in BMD loss 

between four common treatment strategies, including 

high doses of corticosteroids, sequential monotherapy/ 

step-up combination therapy of high doses of MTX, and 

antitumor necrosis factor-α [15]. Moreover, lack of 

physical exercise might be another reason for bone loss 

in patients with RA. Patients with RA usually experience 

pain, swelling, and immobilization in one or more joints; 

thus, they are more likely to take less physical activity. 

Habitual levels of higher impact physical activity were 

reported to be positively related to lower limb bone 

strength in older women [39]. A study focused on healthy 

young men also found that sedentary activities were 

inversely related to FN-BMD [40].  

 

As far as we know, no MR study on the effect of RA on 

OP/BMD or OP/BMD on RA has yet been reported. 

Our study uses several variants summarized from large-

scale GWA studies on RA and BMD to date to increase 

the statistical power to detect causal associations. 

Compared with the analysis of individual-level data 

from a small study, a key strength of our research is that 

effect-size data were drawn from separate large-scale 

GWASs for exposure and outcome traits so that we can 

assess the effect sizes more precisely. 

 

However, our study also has certain limitations. First, 

stratified analyses such as menopausal status would also 

have been of interest, due to the increased risk of 

developing OP of postmenopausal women [41], 

however, since we used summary-level data for two-

sample MR analyses, the analyses in specific subgroups 

were not possible. Otherwise, female sex is also an 

independent risk factor for RA. However, a Korean 

large-scale observation study showed an increased risk 

of osteoporotic fractures for RA patients across all sexes, 

age groups, and various anatomic sites, suggesting that 

there might be no sex and age differences in bone loss in 

patients with RA [32]. Second, compared with other 

sites, hand BMD is an independent predictor of 

subsequent radiographic damage since quantitative hand 

bone loss in RA patients occurs before radiographic joint 

damage. Therefore, hand BMD may be used as an 

instrument for the evaluation of bone involvement in RA 

patients [42]. Unfortunately, we did not obtain available 

public GWAS data for hand BMD. The forearm BMD 

summarized data we used in our study included wrist but 

did not include hand. Nevertheless, some studies have 

suggested that hand BMD is associated with both the 

lumbar spine and total hip BMD among postmenopausal 

women with RA [43], and other RA patients [44]. Thus, 

using BMD in different sites as phenotypes for OP could 

reduce the statistical bias in our MR analyses. 
 

In summary, we found no evidence that RA is causally 

associated with OP/BMD, or the other way around. 

Therefore, the associations between RA and OP/BMD 

indicated in previous observational studies are possibly 

related to secondary effects such as antirheumatic 

treatment and less physical activity. At present, the 

clinical treatment of RA is aimed at suppressing 

inflammatory activity and anti-osteoporosis. Based on 

our current results, we suggested no indications for anti-

osteoporosis treatment in RA patients without other risk 

factors for OP. 

 

MATERIALS AND METHODS 
 

Data sources 

 

Summary statistics for RA were obtained from the MRC 

IEU OpenGWAS database (https://gwas.mrcieu.ac.uk/), 

which comprises mainly publicly available GWAS 

summary data, serving as an input source to a variety of 

analytical methods, such as Mendelian randomization, 

fine mapping, and colocalization [45, 46]. The GWAS 

for RA was examined in imputed genotype data from the 

UK Biobank study, which included 1,523 cases and 

461,487 controls from European populations [45]. RA 

cases were obtained from the UK Biobank study using 

Hospital Episode Statistics (HES) with ICD-10 codes 

M06. Since the absence of the original individual 

measures, gender- or age-specific analyses were difficult 

to perform. Fortunately, gender and age were adjusted in 

the original GWAS analysis. GWAS summary statistics 

for heel, TB-, FA-, FN- and LS-BMD were obtained 

from GEFOS (http://www.gefos.org/). The GWAS for 

heel BMD included 265,627 individuals from the 

European population in the UK Biobank study. GWAS 

for heel BMD was estimated from quantitative heel 

ultrasounds, the age, sex, genotyping array, assessment 

center, and ancestry informative principal components 1 

to 20 were included in the fixed model as covariates 

[47]. The GWAS dataset for TB-BMD contains 

summary statistics for a GWAS meta-analysis study 

involving 66,628 European individuals and was adjusted 

for age, weight, height, sex, genomic principal 

components, and other study-specific covariates (such as 

recruiting center) [23]. GWASs for FA-, FN-, LS-BMD 

were obtained from a meta-analysis released at GEFOS 

in 2015 [22]. Separately, 8,143 individuals for FA-

BMD, 32,735 individuals for FN-BMD, and 28,498 

individuals for LS-BMD from European populations 

were included, and BMD was adjusted for sex, weight, 

age, and age squared. More details for assessment, 

quality control, and association analysis were presented 

in the original studies [22, 23, 45, 47]. 

 

Selection of genetic variants 

 

In the first stage, genetic variants associated with BMD 

were used as instrumental SNPs. To satisfy the 3 

https://gwas.mrcieu.ac.uk/
http://www.gefos.org/
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assumptions for MR analysis, we selected independent 

SNPs (r2 < 0.001) that were strongly (p < 5 × 10−8) 

associated with the exposure. Next, we obtained the 

association results of the corresponding SNPs with the 

outcome. If the corresponding SNPs were not available 

in the outcome data, we used proxy SNPs that were 

highly correlated (r2 > 0.8) with the corresponding 

SNPs (if possible). To ensure that all corresponding risk 

factors and outcome alleles were on the same strand, we 

harmonized the effect of these instrumental SNPs where 

possible. In the second stage, since there were only 3 

SNPs with a p-value less than 5 × 10−8 for RA, we 

broadened the threshold to 1 × 10-5 for selecting RA-

associated variants as instrumental SNPs. To ensure that 

the selected IVs have enough power for detecting the 

causal effect of exposure on the outcome, we calculated 

the F statistic of selected IVs with an online tool 

(https://sb452.shinyapps.io/overlap) [48]. The selected 

IVs with F statistics >10 are considered powerful 

enough for the causal effect estimate. 

 

MR analysis 

 

IVW method was conducted as the primary method to 

estimate the causal effect between exposure and 

outcome, which was calculated as the effect size of the 

association between SNP and outcome divided by the 

effect size of the association between SNP and exposure 

[49]. When there was no evidence of directional 

pleiotropy (p for MR-Egger intercept > 0.05) among the 

selected IVs, the IVW method was considered the most 

reliable [26]. To ensure the robustness of our results, 

MR-Egger, weighted median, and weighted mode 

methods were also performed to estimate the causal 

effect of exposure on outcome. Detailed information 

about these MR methods mentioned above can be found 

in published studies [17, 18]. The MR analyses were 

performed in the R software (http://www.r-project.org) 

with the TwoSampleMR package [46]. For the IVs with 

a p-value < 0.05 for IVW analysis, we then performed 

MR-PRESSO with the MRPRESSO package [50], 

which can detect, remove the potential pleiotropic IVs 

(outliers), and provide the outlier-adjusted estimates. In 

addition, for pairs of exposure-outcomes with more than 

100 IVs, we also performed a recently proposed MR 

method called Robust Adjusted Profile Score (RAPS) 

[51], which is unbiased even when there are many (such 

as hundreds of) weak instruments. 

 

Sensitivity analysis 

 

To further ensure the robustness of our MR estimates, 

the following sensitivity analyses were performed: First, 
Cochran’s Q statistics were employed to assess the 

heterogeneity among the IVs. Second, MR Egger 

regression was used to examine whether our MR 

analyses were driven by the directional horizontal 

pleiotropy. Moreover, to examine whether the casual 

association was driven by a single SNP, we performed 

the leave-one-out analysis. 

 

Negative control 

 

To further ensure the validity of the selected IVs, we 

included myopia as a negative control outcome, since 

no evidence showed that OP or RA is correlated with 

myopia. The GWAS data for myopia were derived from 

the FinnGen biobank (https://www.finngen.fi/en), 

including 621 myopia cases and 93,606 controls from 

the European population. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 
 

Supplementary Figure 1. MR leave−one−out sensitivity analysis for 'Heel BMD' on 'RA'. 
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Supplementary Figure 2. MR leave−one−out sensitivity analysis for 'FA-BMD' on 'RA'. 
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Supplementary Figure 3. MR leave−one−out sensitivity analysis for 'FN-BMD' on 'RA'. 
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Supplementary Figure 4. MR leave−one−out sensitivity analysis for 'LS-BMD' on 'RA'. 
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Supplementary Figure 5. MR leave−one−out sensitivity analysis for 'TB-BMD' on 'RA'. 
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Supplementary Figure 6. MR leave−one−out sensitivity analysis for 'RA' on 'Heel BMD'. 
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Supplementary Figure 7. MR leave−one−out sensitivity analysis for 'RA' on 'FA-BMD'. 
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Supplementary Figure 8. MR leave−one−out sensitivity analysis for 'RA' on 'FN-BMD'. 
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Supplementary Figure 9. MR leave−one−out sensitivity analysis for 'RA' on 'LS-BMD'. 
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Supplementary Figure 10. MR leave−one−out sensitivity analysis for 'RA' on 'TB-BMD'. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. IVs of BMDs for MR analyses in stage 1. 

Supplementary Table 2. IVs for MR analyses in negative control. 

Supplementary Table 3. MR results of negative control. 

Exposure Outcome No. of IVs 
MR results 

Methods Beta Se Pval 

Heel BMD Myopia 342 Inverse variance weighted 0.133 0.175 0.447 
   MR Egger 0.197 0.357 0.583 
   Weighted median -0.082 0.292 0.779 
   Weighted mode -0.303 0.442 0.493 

FA-BMD Myopia 3 Inverse variance weighted 0.300 0.281 0.285 
   MR Egger -0.381 0.841 0.729 
   Weighted median 0.208 0.319 0.514 
   Weighted mode 0.162 0.329 0.671 

FN-BMD Myopia 14 Inverse variance weighted 0.814 0.410 0.047 
   MR Egger 1.657 2.762 0.567 
   Weighted median 0.616 0.474 0.194 
   Weighted mode 0.521 0.624 0.428 

LS-BMD Myopia 14 Inverse variance weighted 0.088 0.408 0.829 
   MR Egger -0.909 3.288 0.790 
   Weighted median 0.052 0.464 0.911 
   Weighted mode 0.090 0.781 0.911 

TB-BMD Myopia 50 Inverse variance weighted -0.090 0.197 0.647 
   MR Egger 0.193 0.545 0.725 
   Weighted median -0.259 0.310 0.403 
   Weighted mode 0.048 0.473 0.919 

RA Myopia 6 Inverse variance weighted 20.092 24.974 0.421 
   MR Egger 8.850 52.780 0.878 
   Weighted median 19.148 28.146 0.496 
   Weighted mode 16.835 30.698 0.613 

# IVs represents instruments variates; MR represents Mendelian randomization; FA-, FN-, LS-, TB-BMD represent forearm, 
femoral neck, lumbar spine and total body BMD respectively; RA represents rheumatic arthritis. 
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Supplementary Table 4. IVs of RA for MR analyses in stage 2. 

Exposure Outcome SNP 
Effect  

allele 

Other  

allele 

GWAS Beta GWAS P 

Exposure Outcome Exposure Outcome 

RA Heel BMD 

rs11102689 A T 6.50E-04 0.006 4.90E-06 0.006 

rs11687715 G T -5.48E-04 0.004 6.20E-06 0.015 

rs3104415 C A 2.14E-03 -0.007 9.50E-65 0.000 

rs4318292 C T -5.68E-04 -0.001 2.20E-06 0.750 

RA FA-BMD 

rs11102689 A T 6.50E-04 0.011 4.90E-06 0.579 

rs11687715 G T -5.48E-04 0.021 6.20E-06 0.191 

rs4318292 C T -5.68E-04 -0.022 2.20E-06 0.165 

rs4512588 C T 9.72E-04 -0.039 2.50E-08 0.301 

rs7331739 C G 6.07E-04 0.013 4.10E-06 0.462 

rs741384 G C 6.09E-04 0.023 4.70E-07 0.137 

RA FN-BMD 

rs11102689 A T 6.50E-04 0.024 4.90E-06 0.018 

rs11687715 G T -5.48E-04 0.011 6.20E-06 0.158 

rs3104415 C A 2.14E-03 -0.017 9.50E-65 0.163 

rs4318292 C T -5.68E-04 -0.006 2.20E-06 0.448 

rs4512588 C T 9.72E-04 -0.041 2.50E-08 0.082 

rs7331739 C G 6.07E-04 -0.004 4.10E-06 0.601 

rs741384 G C 6.09E-04 -0.002 4.70E-07 0.793 

RA LS-BMD 

rs11102689 A T 6.50E-04 0.011 4.90E-06 0.355 

rs11687715 G T -5.48E-04 0.015 6.20E-06 0.098 

rs3104415 C A 2.14E-03 -0.006 9.50E-65 0.648 

rs4318292 C T -5.68E-04 0.009 2.20E-06 0.345 

rs4512588 C T 9.72E-04 -0.006 2.50E-08 0.819 

rs7331739 C G 6.07E-04 -0.001 4.10E-06 0.883 

rs741384 G C 6.09E-04 0.014 4.70E-07 0.132 

RA TB-BMD 

rs11102689 A T 6.50E-04 0.066 4.90E-06 0.575 

rs11687715 G T -5.48E-04 0.002 6.20E-06 0.800 

rs3104415 C A 2.14E-03 -0.005 9.50E-65 0.497 

rs4318292 C T -5.68E-04 -0.004 2.20E-06 0.478 

rs4512588 C T 9.72E-04 0.011 2.50E-08 0.312 

rs7331739 C G 6.07E-04 -0.011 4.10E-06 0.099 

rs741384 G C 6.09E-04 0.005 4.70E-07 0.450 

# IVs represents instruments variates; MR represents Mendelian randomization; FA-, FN-, LS-, TB-BMD represent forearm, 
femoral neck, lumbar spine and total body BMD respectively; RA represents rheumatic arthritis. 


