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Abstract

Cold-water corals (CWCs) are important habitats for creatures in the deep-sea environment, but they have been degraded by

anthropogenic activity. So far,nogenomeforanyCWChasbeenreported.Here,we report adraftgenomeof Trachythela sp.,which

represents the first genome of CWCs to date. In total, 56 and 65 Gb of raw reads were generated from Illumina and Nanopore

sequencing platforms, respectively. The final assembled genome was 578.26 Mb, which consisted of 396 contigs with a contig N50

of 3.56 Mb, and the genome captured 90.1% of the metazoan Benchmarking Universal Single-Copy Orthologs. We identified

335 Mb (57.88% of the genome) of repetitive elements, which is a higher proportion compared with others in the Cnidarians, along

with 35,305 protein-coding genes. We also detected 483 expanded and 51 contracted gene families, and many of them were

associated with longevity, ion transposase, heme-binding nicotinamide adenine dinucleotide, and metabolic regulators of transcrip-

tion. Overall, we believe this genome will serve as an important resource for studies on community protection for CWCs.
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Introduction

Cold-water corals (CWCs) live in the cold, dark, and hypoxic

deep-sea waters and are widespread around the world

(Roberts et al. 2006). Most CWCs must attach to hard-

bottom substrates to grow, and only a few can live on soft

sediments (Roberts et al. 2006; Hebbeln et al. 2020). Due to

the lack of symbiotic zooxanthellae, they do not require sun-

light as a source of energy (Malakoff 2003; Roberts et al.

2006; Roberts and Cairns 2014), and their major source of

nutrients is the microscopic zooplankton that comes from

passing currents or descends from the surface of the ocean.

Most CWC species have long life spans and slow growth

rates. Thus, they are excellent materials for palaeoclimatic

and paleoceanographic reconstructions (Frank et al. 2011;

Thierens et al. 2013; Struve et al. 2020).

The complexity of CWC structures provide important ben-

thic habitat and nurseries for larvae of many deep-sea species

(Roberts and Hirshfield 2004; Roberts, et al. 2006; Auster
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et al. 2011; Baillon et al. 2012). However, CWCs are increas-

ingly facing existential threats (Roberts et al. 2006) (e.g., de-

struction by trawl fishing) (Rogers 1999). Additionally, ocean

acidification has already impacted coral reef ecosystems;

CWCs are highly sensitive to ocean acidification because

the saturation of CaCO3 in the deep sea is lower than

shallow-water environments (Li et al. 1969; Maier et al.

2012). Accidental oil spills have also inflicted an unprece-

dented impact on deep-sea ecosystems, which include

CWCs (White et al. 2012; Girard et al. 2018). Moreover, other

anthropogenic activities (e.g., mineral extraction, oil and gas

exploration) have noticeably affected the health of CWC eco-

systems as well (Roberts et al. 2006; Foley et al. 2010). More

recently, the impact of macroplastics and microplastics on

CWCs has been put under the spotlight worldwide

(Chapron et al. 2018; Mouchi et al. 2019). Under the many

different threats, the ecological stability of CWC ecosystems

are being affected by the rapid changes in oceans globally,

and these ecosystems will take hundreds or thousands of

years to return to their previous level of health (Rogers 1999).

Increasing human activity and global environmental

change will threaten CWC ecosystems further. In addition,

the genetic architecture of CWCs is still poorly understood

(Pratlong et al. 2015; Glazier et al. 2020). Here, we present

a draft genome of Trachythela sp., which is a CWC, by using a

combination of Illumina and Nanopore sequencing technolo-

gies. We believe that this first draft genome of a CWC is an

important resource for forthcoming research on these species

and will facilitate studies on the protection of this vulnerable

ecosystem.

Materials and Methods

Sample Process, Library Construction, and Sequencing

A colony specimen of Trachythela sp. was collected from a

slope of the Xisha Trough (18�530N, 112�660E, July 2019) in

the South China Sea (SCS) by the manned submersible

Shenhaiyongshi at a depth of �1,068 m (supplementary fig.

S1, Supplementary Material online). The sample was cut into

small pieces and preserved in liquid nitrogen immediately. The

species was identified by sequencing the mitochondrial ge-

nome (GenBank accession number MW238423) and compar-

ing it with the mitochondrial gene database (unpublished) of

Catherine S. McFadden (Harvey Mudd College, USA).

Genomic DNA was extracted by using a Qiagen Genomic

DNA extraction kit (Qiagen, Germany). DNA quality and

quantity were checked using 1% agarose gel electrophoresis

and a Qubit2.0Flurometer (Life Technologies, CA), respec-

tively. Only high-quality DNA (OD260/280:1.8–2.0 and OD

260/230: 2.0–2.2) was used for library preparation and

whole-genome sequencing. A total of 1.5mg DNA was frag-

mented to construct a library of 350 bp by using a Truseq

Nano DNA HT Sample Preparation Kit (Illumina). Also, 150-

bp paired-end reads were sequenced by an Illumina NovaSeq

platform (Illumina). In addition, 20-kb Nanopore libraries were

constructed and sequenced on a Nanopore PromethION

(Oxford Nanopore Technologies, UK).

Genome Assembly

The raw data were filtered based on the method described by

Liu et al. (2020). In brief, Illumina raw data were filtered by

Fastp (v0.19.6, Chen et al. 2018), and genome size of

Trachythela sp. was estimated using Jellyfish software

(v1.1.10, Marcais and Kingsford 2011). Nanopore raw data

were filtered by ontbc (https://github.com/FlyPythons/ontbc,

last accessed February 15, 2019) with the following parame-

ters: –min_score 7 –min_length 1000, and then the data were

assembled by NextDenovo (v2.2, https://github.com/

Nextomics/NextDenovo, last accessed December 27, 2020)

with “seed_cutoff” set at 4,896. Then, the raw assembly

was polished with Illumina short reads using Nextpolish

(v1.1.0, Hu et al. 2020), which was conducted twice.

Finally, the duplicated genes in the assembly were removed

by using Purge_Haplotigs software (v1.1.1, Roach et al.

2018). The completeness of the final genome assembly was

assessed by Benchmarking Universal Single-Copy Orthologs

(v4.1.4, Seppey et al. 2019) using the “metazoa_odb10”

database.

Genome Annotation

For the repetitive sequences, we first used RepeatModeler

(v2.0, Tarailo-Graovac and Chen 2009) for de novo construc-

tion of a local library, then the homolog repeats were anno-

tated using RepeatMasker (v3.3.0, Tarailo-Graovac and Chen

2009). The transposable elements (TEs) were also annotated

by RepeatMasker and RepeatProteinMask (v3.3.0) against the

Repbase-20181026 with the parameters -noLowSimple -

pvalue 1e-04 (Tarailo-Graovac and Chen 2009). The tandem

repeats were further identified using Tandem Repeats Finder

software (v4.07b) with these parameters: Match ¼ 2,

Mismatch ¼ 7, Delta ¼ 7, PM ¼ 80, PI ¼ 10, Minscore ¼
50. (Benson 1999).

We used Augustus (v3.2.1, Stanke et al. 2008) to perform

de novo gene prediction. For homology-based prediction,

protein sequences of Acropora digitifera (GCA_000222

465.2), Dendronephthya gigantea (GCF_004324835.1),

Stylophora pistillata (GCF_002571385.1), and Nematostella

vectensis (GCA_000209225.1) were downloaded from the

NCBI database, Porites lutea was downloaded from http://

reefgenomics.org/, and then these protein sequences were

aligned to the repeats of a soft-masked genome by TBlastN

(v2.2.29, Altschul et al. 1990) with a cut-off -evalue 1e-5. In

addition, the results from de novo and homology prediction

were integrated using EVidenceModeler (v1.1.1, Haas et al.

2008).
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Gene functional annotation for Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

was conducted using InterProScan (v5.39-77.0, Jones et al.

2014).

Phylogenetics and Molecular Dating

To define the phylogenetic position of Trachythela sp., we

used proteome data from 17 Cnidaria genomes, which in-

cluded nine stony coral, three soft corals, three sea anemones,

and one species of hydra (supplementary table S1,

Supplementary Material online). The comparison of these pro-

tein set was implemented in OrthoFinder (v2.3.1, Emms and

Kelly 2015) with the alignment program Diamond (v0.9.25,

Buchfink et al. 2015). The single-copy orthologues were sub-

jected to multiple sequence alignment by MUSCLE

(v3.8.1551, Edgar 2004) with default parameters. Then, the

low-quality alignments were trimmed by TrimAl (v1.2,

Capella-Gutierrez et al. 2009), and the phylogenetic tree

was built by RAxML (-m GTRGAMMA -f a -x 12345 -N 100

-p 12345-T 30) (v8.2.12, Stamatakis 2014) using the maxi-

mum likelihood method (bootstrap repeat was 100). The

MCMCtree program was implemented in PAML (v4.9, Yang

2007) to calculate divergence time. The date of the three

nodes that were constrained with fossil records (Hydra–

Anthozoa: 512–741 Ma, Corallimorpharia–Hexacorallia:

263–445 Ma, Pennatulacea–Octocorallia: 218–419 Ma) was

based on the Timetree website (http://www.timetree.org/).

Analysis of Gene Families

Based on the results of OrthoFinder, expansions and contrac-

tions of gene families of Trachythela sp. were evaluated in

CAF�E (v4.0, De Bie et al. 2006) with default parameters. In

addition, gene families that experienced significant expansion

and contraction (P-values <0.05) were also used for KEGG

and GO enrichment analysis (Chi.FDR < 0.05).

TE Activity and Demographic History

TE activity and demographic history were analyzed using the

same method, which was described by Wang et al. (2019). To

rebuild the TE accumulation, we used the publicly available

parseRM.pl Perl script (version 5.8.2, downloaded from

https://github.com/4ureliek/Parsing-RepeatMasker-Outputs,

last accessed October 18, 2017) to parse the age category of

each TE copy based on the alignment files from

RepeatMasker (v3.3.0, Kapusta et al. 2017). The mutation

rate was set at 0.0084 site per million years, which was re-

estimated by r8s (v1.81, Sanderson 2003) using the penalized

likelihood method. The result was packed into bins per 0.1

Ma. We further applied the Pairwise Sequentially Markovian

Coalescence model (Li and Durbin 2011) that was based on

heterozygous sites to infer the demographic history of

Trachythela sp. The cleaned Illumina reads were mapped to

the final genome assembly using BWA-mem (Li and Durbin

2010). Heterozygous sites were extracted by performing

Samtools (v1.3.1, Li et al. 2009) with the parameters

“mpileup -q 20 -Q 20.” Finally, the PSMC model (Li and

Durbin 2011) was analyzed using the parameters -N25 -t15

-r5 -b -p “4p25*2p4p6.” (ZHu et al. 2020).

Results and Discussion

Genome Sequencing and Assembly

After filtering the low-quality data, we generated a total of

56 Gb (�96.8-fold coverage of the genome) of Illumina raw

reads and 65 Gb (�110.7-fold coverage of the genome) of

Nanopore raw reads. The 23-mer survey showed that the

genome of Trachythela sp. was 1.87% heterozygous (supple-

mentary fig. S2, Supplementary Material online) and indicated

that the size of the genome was�585 Mb. Comparison with

the heterozygosity levels of other corals (e.g., Acropora mil-

lepora: 2.0%, Montipora capitata: 1.3%; Helmkampf et al.

2019; Ying et al. 2019) showed that the coral genomes are

generally highly heterozygous. After polishing and curating

the heterozygous genome, the final draft genome of

Trachythela sp. was 578.3 Mb. The final contig N50 and

N90 values were 3.56 and 0.67 Mb, respectively (supplemen-

tary table S2, Supplementary Material online). We assessed

the completeness of this draft genome by Benchmarking

Universal Single-Copy Orthologs, and the result indicated

that 90.7% (865) of the 954 metazoan BUSCOs was com-

plete (supplementary table S3, Supplementary Material on-

line). All these results revealed that this genome was one of

the more complete genomes assembled for Cnidarians.

Gene Prediction and Functional Annotation

Overall, we identified 334.7 Mb (57.88%) repetitive sequen-

ces in the assembled genome (supplementary tables S4 and

S5, Supplementary Material online). This proportion was

higher than the values of other available cnidarian genomes.

Combined with the results of de novo gene prediction and

homology annotation, a total of 35,305 protein-coding genes

were predicted. Overall, 32,426 of all genes were annotated

by InterProScan, which represented 91.85% of the total

genes (supplementary table S6, Supplementary Material

online).

Phylogenetics and Analysis of Divergence Time

The phylogenetic tree was constructed based on 395 single-

copy orthologues. All nodes with the maximum bootstrap

support were 100. Estimation of divergence time with fossil-

calibration suggested that Trachythela sp. and D. gigantea

diverged �128.92 Ma (fig. 1a). After its first description in

1922 (Verrill 1922), the genus Trachythela still lacked suffi-

cient morphological and genetic data. In this study, the
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phylogenetic analysis showed that Trachythela sp. was close

to the family Alcyoniina, which will help the taxonomic revi-

sion of this family.

Expansions and Contractions of Gene Families

We detected 483 expanded and 51 contracted gene families

by comparative genomic analyses among 17 Cnidaria species.

KEGG enrichment analysis showed that significantly ex-

panded gene families were mainly involved in the categories

of RNA degradation, nicotinate and nicotinamide metabo-

lism, the longevity regulating pathway, and mismatch repair

(FDR< 0.05, supplementary table S7, Supplementary

Material online). GO enrichment analysis showed that most

of the expanded gene families were related to DNA repair,

telomere maintenance, calcium ion binding, ion transposase

activity, and heme-binding terms (C.FDR< 0.05, supplemen-

tary table S8, Supplementary Material online). The contracted

gene families were enriched in the GO categories of scaven-

ger receptor activity, calcium ion binding, and serine-type en-

dopeptidase activity (supplementary table S9, Supplementary

Material online).

TE Activity and Population History

Analysis of demographic history indicated that the effective

population size of Trachythela sp. reached a peak at�1.1 Ma,

and then it experienced a decline (fig. 1b). Furthermore, anal-

ysis of TE accumulation suggested that Trachythela sp. had

undergone two concentrated TE expansions at 110 and 10

Ma (fig. 1c).

In conclusion, we obtained the first genome sequence of

the CWC Trachythela sp. The high ratios of repetitive

sequences and the significant expansion and contraction of

gene families indicated that the adaptive mechanisms of

CWCs were for darkness, cold, and high pressures in the

deep sea.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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