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ABSTRACT: The notion of energy landscapes provides conceptual tools for understanding
the complexities of protein folding and function. Energy landscape theory indicates that it is
much easier to find sequences that satisfy the “Principle of Minimal Frustration” when the
folded structure is symmetric (Wolynes, P. G. Symmetry and the Energy Landscapes of
Biomolecules. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14249−14255). Similarly, repeats and
structural mosaics may be fundamentally related to landscapes with multiple embedded
funnels. Here we present analytical tools to detect and compare structural repetitions in
protein molecules. By an exhaustive analysis of the distribution of structural repeats using a
robust metric, we define those portions of a protein molecule that best describe the overall
structure as a tessellation of basic units. The patterns produced by such tessellations provide
intuitive representations of the repeating regions and their association toward higher order
arrangements. We find that some protein architectures can be described as nearly periodic,
while in others clear separations between repetitions exist. Since the method is independent
of amino acid sequence information, we can identify structural units that can be encoded by a variety of distinct amino acid
sequences.

■ INTRODUCTION

“There is something breathtaking about the basic forms of crystals.
They are in no sense a discovery of the human mind; they just “are”,
existing quite independently of us. The most that man can do is
become aware, in a moment of clarity, that they are there, and take
cognizance of them.” M.C. Escher
Natural protein molecules are peculiar polymers. Unlike

most of the random amino acid sequences, natural protein
chains spontaneously find functional states by folding to a
discrete collection of structures constituting a native state. Our
deepest understanding of this phenomenon is grounded in the
energy landscape theory of protein folding, which simplifies the
complexity of folding to a few general descriptors of the
configurational space.1,2 These abstractions provide conceptual
tools to infer reliable energy functions3 and to build simple and
powerful predictive models,4,5 and most importantly, they
provide a common language for the development (and healthy
discussion!) of ideas.6,7 The basic notion underlying these
developments is the principle of minimal f rustration:8 in order to
fold to a stable structure, a polymer must possess a funneled
energy landscape.
According to energy landscape theory, proteins are

information-bearing molecules that evolved to funneled energy
surfaces, contrasting them to random heteropolymeric chains
that have rugged energy landscapes.1 Since amino acids in
natural proteins generally appear to be distributed at random,9

higher order correlations must be present in sequences that

result in stable folds. Energy landscape theory predicts that
funneled landscapes and low energy structures are much easier
to realize in the presence of symmetry as compared to
asymmetric arrangements.10 The identification of funneled
energy landscapes as a general requirement for stable folds
implies that patterns can form in different parts of the molecule
with relative independence which subsequently assemble to
higher order structures. This greatly reduces the search
problem by efficiently arranging relatively small fundamental
building blocks or “foldons”11 in a repetitive fashion. The mere
existence of repetitions or fundamental units does not
guarantee that the system will be symmetric, but these units
should arrange in particular ways and coalesce into higher order
patterns. Hence, a periodicity guarantees a certain symmetry,
but there can be repetitions without symmetry. Therefore,
detecting repeated units and patterns is a first step toward an
understanding of their assembly to complete structures and the
emergence of symmetry. Such structural mosaics are accom-
panied by energy landscapes with multiple funnels embedded
within each other.12−14
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Several algorithms have been used to characterize repetitions
in protein sequences.15,16 Most methods are based on the self-
alignment of the primary structure, while others implement
spectral analysis of pseudochemical characteristics of the amino
acids.15 Since the same structural motif can be encoded by
sequences that appear completely unrelated, it is not surprising
that sequence-based methods fail to infer true structural
repetitions when the sequence similarity is low. In contrast to
sequence based methods, only a few methods for the detection
of repetitions in protein structures are available. These usually
search for repeats by aligning the structure against itself.17,18

Some methods add sophisticated transformations of the
alignment matrices that enhance the detection and character-
ization of structural repeats,19,20 and machine learning provided
a fast method to recognize repeat regions in solenoid
structures.21 Although many families of proteins with repeating
motifs can be identified,16,22 there is still no consensus on how
to reconcile the often conflicting characterizations of repetitions
in proteins15,23 even for basic parameters such as the size of the
repeating elements, the number and location of the
occurrences, and the grouping of these into higher order
patterns.
Here we develop basic concepts and methods for the

detection and analysis of repeats in protein structures. Using a
fast and robust structural alignment protocol and a proper
metric,24 we exhaustively analyze the repetition of every
possible continuous fragment of a protein structure and define
the portions that best describe the overall structure when this
fragment is repeated, translated, and rotated exhaustively with
respect to the complete molecule. The result is a tessellation of
the whole protein in terms of a set of basic tiles. The
tessellation lends itself to an intuitive visualization of the
repeating units and their association into higher order patterns.
We find that some architectures can be described as nearly
periodic, while in some others clear separations between
repetitions exist. Since this method is independent of sequence,
it allows for comparison of recurring structures and tiles that
represent a common structural motif that can be encoded by a
variety of distinct sequence elements.

■ METHODS
Structural Alignments and Tiles. For the characterization

of repetitions and the identification of tiles in protein
structures, we use the TopMatch tool.24,25 Given a pair of
protein structures, this algorithm generates an exhaustive list of
partial alignments along with the transformations (rotations
and translations) that maximize the superposition of equivalent
Cα atoms. The alignments are ranked according to the
TopMatch score

∑= σ−S e
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L
r /i
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which provides a metric for structural similarity.26 Here L is the
length of the alignment and ri is the euclidean distance between
equivalent Cα atoms. Basically, S is a function of the alignment
length L and the structural deviation of the superimposed
structural fragments, where the scaling factor σ determines the
rate of reduction of L as a function of the structural deviation.
Here we used σ = 6.35 Å as reported previously.24 Proteins
often contain recurrent structural motifs that can be considered
as repetitions and variations of a basic structural unit. In order
to detect this kind of structural repetition, we treat the structure

as a mosaic and try to decompose it into smaller units or tiles
with the constraint that these tiles are all structurally similar to
each other. In a protein, the possible tiles are not necessarily
unique nor are they required to cover a chain completely.
However, in any case, it is certainly possible to identify those
tiles that, when repeated in a non-overlapping fashion, cover a
maximum fraction of the structure.
Given a protein structure, every continuous fragment of the

polypeptide is a possible tile. Hence, the length of tiles ranges
from the sequence length N down to a single residue. Since the
Cα traces of tiles of one or a few residues are too small for
meaningful comparisons, we use a lower tile length of six amino
acid residues. In a protein of length N, there is one tile of length
N, two tiles of length N − 1, and so on, and hence, the total
number of tiles is NT =∑L=6

N (N − L + 1). Each of these tiles Ti
is then used as a query in TopMatch to identify all other tiles Tk
that are structurally similar to Ti. Each match is uniquely
identified by its length Lik, the location of its center Zik, and the
associated score Sik. The matches are then sorted by Sik, where
the self-alignment (i ≡ k) necessarily has the highest score,
since the respective alignment length is maximal and the
structural deviation is zero. Hence, Lii = Sii, i.e., the score
obtained from an alignment of a tile with itself evaluates to the
length Lii of the alignment.
From the set of matches, we extract that subset of fragments

that maximizes the sum over the scores Ci = max∑k Sik, where
any two tiles Tk1 and Tk2 that occur in the sum must not
overlap. This sum defines the coverage Ci of tile Ti which was
used to generate the matches. We define the associated tile
score as

Θ =
−
−

C L
N Li

i ii
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which represents the fraction of the structural space that can be
covered by repetitions of a given tile. When considering the
ranked list of hits, there are several ways to define the set of
non-overlapping alignments. In the most restrictive variant, we
include only those repeats Tk for which the aligned region
comprises the whole tile, i.e., Lik ≡ Lii. A more flexible variant is
to include all alignments where Lii/2 < Lik ≤ Lii, that is, when
more than half of Tk matches Ti. In the latter case, we use the
additional restriction that the first and last residues of any two
tiles Th and Tk in the optimal subset must not overlap.

Homogeneous Model. To evaluate the upper limits of the
tiling scoring functions, we calculated the tile score Θi expected
for a homogeneous model, where the protein is represented as
a finite linear string of amino acids. In this case, every alignment
of tile Ti and repeat Tk has a perfect match, and thus, the
alignment score Sik will be equal to Lii. Then, the coverage Ci is
the product of Lii and the number of tile copies nc that can be
accommodated which, depending on the tile center Zi, is nc =
⌊N/Li⌋ if the chain ends are covered or nc = ⌊N/Li⌋ − 1 if they
are not.
When alignments with Lii/2 < Lik ≤ Lii are permitted, then Θi

has an extra term that takes into account the coverage at the
chain ends:
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where χ = <
≥{x x

x( ) 0 if 0
1 if 0 , nc is the number of full length

tile copies that can be accommodated along the protein, and
Cbeg and Cend are the maximum number of amino acids left
uncovered by the copies at the limits of the protein, and can be
calculated as
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Further details of this model can be found in the Supporting
Information.

■ RESULTS AND DISCUSSION
To illustrate the characteristic properties of tessellations of
protein structures, we use the protein “4ank” (pdb: 1n0r, N =
126 residues) which is a synthetic construct of canonical
ankyrin repeats.27 Figure 1a shows the scores of the top 15 hits
for three different fragments of the structure used as the query
tile Ti. In all instances, the highest ranking tile corresponds to
the self-alignment (i ≡ k) and in each of these cases there are

two tiles (i ≠ k) that yield nearly perfect matches. For the
subsequent tiles, the score drops rapidly.
Next we use the ranked list to pick out non-overlapping

fragments in order to cover the protein structure as repeats of
tile Ti. For each possible tile Ti, the tile score Θi is calculated as
described above. Clearly, the tile score Θi for tiles with Lii > N/
2 is always zero, as no repetitions of such fragments are possible
(Figure 1b). The largest tile that can be repeated twice has Li =
57 amino acids. Tiles nested within these largest tiles
necessarily have smaller scores. Three repeats are observed
for Li = 33, and four for Li = 24 (Figure 1b). The peaks in
Figure 1b correspond to the largest fragments that occur more
than once and for which each of its extensions occurs fewer
times; that is, they are maximal elements. The steady decrease in
Θi results from fragments that are nested within the maximal
ones. This can be inferred from the homogeneous model where
a group of tiles that occurs nc times yields the tile score Θi = (nc
− 1)Li/(N − Li).
The fact that there is a number of tiles of similar score Θi but

varying length Li implies that the overall protein architecture
can be covered by a set of nested tiles. Hence, the question
arises which of the possible tile lengths yields a tessellation of
maximum coverage. In the case of real proteins, copies of
individual tiles generally exhibit structural variations with
respect to a basic tile. Such variations reduce the score Sik of
the respective structural matches. The relative reduction is
generally much more pronounced for small tiles as compared to
larger tiles which may result in a relatively large decrease of the
overall tile score Θi. In short, if the various copies of small tiles
have relatively large structural deviations, then the associated
tile score Θi may appear suboptimal with respect to tile scores
obtained from larger tiles. It is therefore convenient to take the
average ΘL over all tile scores Θi that have the same tile length
Li (Figure 1C). In the example, it is evident that the maximum
occurs at Θ̅L = 33 residues, indicating that tiles of this size
tessellate the structure in an optimal way. Formally, the optimal
length is obtained as a root of the derivative dΘ̅L/dL; i.e., it can
be obtained from the finite differences ΔΘ̅L = Θ̅L − Θ̅L−1. Note
that this identifies the optimal tile length L but not the
particular tile Ti that optimizes the tessellation.
Since a particular tile Ti is characterized by the position of its

center Zi along the amino acid sequence and a match between
two tiles Ti and Tk by the respective alignment length Lik, the
multitude of tessellations of a particular structure is
representable in two dimensions and the associated score
Θi(Li, Zi) can be indicated by shades of gray (Figure 2). Such
representations show how copies of each of the possible tiles
cover the whole structure. In the case of 1n0r, the structure is
covered by two repeats of 57 amino acids, centered at residues
30 and 96. These repeats decay into two smaller repeats of 24
amino acids, where the decomposition results in a loss of
approximately 12% coverage. These tiles in turn consist of two
smaller tiles of 8 and 10 amino acids. The latter correspond to
two α-helices that are part of the canonical ankyrin motif
(Figure 2).
A peculiar phenomenon is apparent for tiles of length Li =

33. Any tile of this size provides a nearly complete tessellation
of the structure. Moreover, at this length scale, the tiles are
separated by a distance that is equal to the size of the tile itself.
Hence, the whole structure has the characteristics of a wave.
The characteristic wavelength is L = 33, and the structure can
be completely covered starting with any phase ϕ = 0, 1, ..., L −
1. Taken together, these observations imply that those tiles

Figure 1. Scoring the tiles: continuous portions of a protein model
(pdb: 1n0r, A) are selected and structurally aligned to the whole
protein. A ranked list of alignments is generated for every fragment
according to TopMatch score (Sik), three of which are shown in panel
a. Li is the length of the fragment in amino acid units and Zi is the
center, according to the numbering scheme of the Cα atoms of the
pdb. (b) Distributions of tile score Θi for every tile length (Li). Each
point corresponds to the experimental values obtained when perfect
matching (Sik = Lii) is restricted. The lines correspond to the
expression Θi = (nc − 1)Lii/(N − Lii), with N = 126 and the number of
tile copies that can be repeated is nc = 1, 2, 3, ..., 12 as indicated. (c)
The points correspond to the average Θi calculated for every Li. The
dotted line is the difference between consecutive points δΘi.
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optimally cover a repetitive protein structure whose average
score ΘL is a maximum, and it seems that such maxima are
accompanied by a large value of ΔΘ̅L (Figure 1b). From the set
of tiles that contribute to ΘL, we may define the most typical
tile as that particular tile Ti that has the largest score Θi(Li, Zi)
with respect to all other tiles Tk(Li) in this set.
Repeats in protein structures are thought to be the result of

duplication of amino acid sequences. In general, a duplication
results in an exact copy of the duplicated material. On the level
of amino acid sequences, the similarity among the copies decays
in time due to the accumulation of amino acid substitutions,

insertions, and deletions. The respective structures are more
robust in the sense that the similarity among the sequences
decays much faster as compared to the similarity among the
polypeptide backbone. Nevertheless, insertions, deletions, and
other events also affect the three-dimensional structures of the
individual copies, and therefore, in natural proteins, structural
repeats are rarely exact and they are often interspersed by
nonrepetitive regions. In what follows, we discuss tessellations
obtained for a broad variety of protein structures. This method
does not rely on visual inspection. We define the characteristic
frequency at the highest peak in ΔΘ̅L, and the basic tile-unit as
the one that scores the highest Θi at this Li. The nonrepetitive
regions found in these tessellations are marked as insertions
(Table S1, Supporting Information).

Tessellations of Classical Repetitive Proteins. Many
natural proteins contain tandem repeats of similar amino acid
stretches. They are broadly classified in groups according to the
length of the minimal repeating unit. Short repeats of up to five
residues usually form fibrillar structures such as collagen or silk,
while repeats longer than about 100 residues frequently fold
independently as globular domains.16,28 There is a class of
repeat proteins that lies in between these for which folding of
the repeating units is coupled and “domains” are not obvious to
define.29 Since defects in the regularities of the repeating array
are likely to affect the folding transitions and the biological
function, we aimed at defining these from a purely geometrical
perspective using the tiling approach described above.
IκBα is an ankyrin repeat containing protein that binds to

and inhibits the transcription factor NF-κB.30 The fragmenta-
tion and tiling procedure correctly identifies a characteristic 33
amino acids length corresponding to the canonical ankyrin
repeat size (Figure 3a). We found deviations from this

Figure 2. Tiling a highly symmetric protein: a designed ankyrin-repeat
protein (pdb: 1n0r, A) was fragmented in 7381 different tiles. These
are ordered according to their size (vertical axis) and their center
(horizontal axis) in amino acid units. The tile score Θi of each one is
displayed in grayscale. The structures of the protein and the respective
tiling at different Li are shown on the left. The native structure is
colored gray, and superimposed to it is the selected tile (yellow); the
copies of it are colored cyan, magenta, red, etc.

Figure 3. Tiling classical repeat-containing proteins. The tiling profile is shown in grayscale, together with the δΘL projected on the left. The
structures of the native protein and the highest scoring tiling at the characteristic frequency are shown, using the same coloring scheme of Figure 2.
The length (Li) and center (Zi) of the selected tile are (a) ankyrin repeat: IκBα (pdb: 1nfi, E) Li = 33, Zi = 191.5; (b) hevein: wheat-germ agglutinin
(pdb: 1k7u, A) Li = 43, Zi = 150.5; (c) leucine-rich: porcine ribonuclease inhibitor (pdb: 2bnh, A) Li = 57, Zi = 139.5; and (d) HEAT: PR65/A
(pdb: 1b3u, A) Li = 39, Zi = 530.5.
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canonical size ranging from 30 to 39 residues, indicating that
not all the ankyrin repeats are geometrically equivalent.
Fragments with highest scores can be placed six times, covering
about 92% of the structure (Table S1, Supporting Information).
It is apparent that the most C-terminal repetition is distorted
relative to the others, as the Θi corresponding to this region are
lower. The grouping of consecutive repeats at bigger Li

segregate pairs where the central one scores best, indicating
that the insertions detected at length 33 distort the symmetry
of the array at a higher length scale. Maybe it is no coincidence
that this protein was shown to fold in vitro in three consecutive
transitions roughly corresponding with the pairing of repeats at
Li = 70.31,32

The monomeric chain of wheat-germ agglutinin has been
described to contain four hevein subdomains.33 The tiling
approach detects that this structure can be composed with two
tiles of Li = 86 amino acids, as well as four repetitions of Li =
43, both covering 100% of the structure (Figure 3b). Taking
the average of the Θi at each Li points that a discontinuity
occurs at size 43, defining a characteristic frequency. At this
size, most tiles are equally good in covering the structural space
with three repetitions. The highly symmetric disposition of the
four best tiles at this length scale makes the whole structure
appear nearly periodic, and a preferred phase is determined by
the N and C termini of the chain.
Porcine ribonuclease inhibitor is a leucine-rich repeat protein

for which 16 consecutive repetitions were defined in its
sequence. Although very similar at the primary level, these
repeats are not structurally equivalent. We detect that there are
two different types of tiles, each consisting of 28 and 29 amino
acids (Figure 3c). Moreover, we found that these are alternated
along the structure, appearing as a square-tooth pattern at this
length scale (Figure S3, Supporting Information). Since these

units are arranged in a symmetric fashion, the structure can be
represented as well by bigger fragments (Figure 3c). At the
length of Li = 57 residues, almost every fragment repetition is as
good as others in explaining the overall structure. Thus, the
repeating length is better described with two canonical leucine-
rich repeats. It is striking to note that Haigis et al. previously
identified a 57-residue repeat as the evolutionary unit of this
protein by analyzing the exon boundaries of the primary
transcripts.34

The scaffolding subunit of protein phosphatase 2A, PR65/A,
is a large repeat-protein of the HEAT class.35 The tiling
procedure detects the best tile at size 39 amino acids and
identifies 15 copies of it in the structure, coincident with the
detection in amino acid sequence patterns of the HEAT motif
(Figure 3d). This protein exhibits an overall superhelical
structure, yet irregularities in the array cause unevenness in the
grouping of consecutive repeats at higher length scales. The
periodic packing of HEAT repeats is interrupted between
repeats 3 and 4 (Zi = 117) and between 12 and 13 (Zi = 471).35

This is reflected at higher Li where the tiles centered around
amino acid 300 display consistent higher scores, indicating that
the central repeats are more symmetrically arranged than the
terminal ones (Figure 3d).

Tessellations of Globular Proteins. In contrast to the
solenoidal architectures usually acquired by classical repeat-
proteins, some protein folds display point rotational
symmetries. Often the N and C terminal repetitions come in
contact, closing up the structure in polyhedral-like forms. We
investigated how the tiling procedure identifies structural
repetitions and tessellation patterns in some of the most
common topologies of this kind.
The TIM barrel is one of the most common folds among

monomeric enzymes.36 This is typically described as a

Figure 4. Tiling globular repeat-containing topologies. The tiling profile is shown in grayscale, together with the δΘL projected on the left. The
structures of the native protein and the highest scoring tiling at the characteristic frequency are shown, using the same coloring scheme of Figure 2.
The length (Li) and center (Zi) of the selected tile is are (a) TIM barrel: (pdb: 1fq0, A) Li = 88, Zi = 60; (b) β-propeller (pdb: 3ow8, A) Li = 42, Zi =
200; (c) trefoil (pdb: 1ybi, A) Li = 46, Zi = 176; and (d) Ig-repeats (pdb: 2rik, A) Li = 94, Zi = 140.
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collection of β−α motifs linked by variable loops that close up a
cylinder of parallel β-strands surrounded by a layer of α-helices.
There is a relatively high structural conservation among
proteins of this type, yet their sequences can appear unrelated,
opening room for discussion about the nature of the repeating
units and their arrangement.37 We applied the tiling procedure
on some of the most discussed cases, and for most, we detect
signals for 2, 4, and 8 repeats (Table S1 and Figure S4,
Supporting Information). Not all the TIM barrels showed the
same characteristic frequency. Some of the structures are best
described with fragments that correspond to half barrel (Figure
4a), while others displayed comparable signals at sizes
corresponding to half or quarter barrel (Figure S4, Supporting
Information). The most irregular examples have characteristic
frequencies at even lower length scales (Table S1, Supporting
Information). On the basis of amino acid sequence patterns,
Soding et al. annotated equivalent deviations in this topological
family.37

Several proteins can be grouped into the β-propeller class.
These contain a variable number of radially arranged
antiparallel β-sheets appropriately named “blades”.38 We
identify that in most cases the best tiles distinguish this motif
and annotate 4-, 5-, 6-, and 7-bladed propellers (Figure S5,
Supporting Information), even when a nonpropeller domain is
present in the same polypeptide chain (Figure S5d, Supporting
Information). An interesting exception occurs in the subclass of
WD-repeat propellers where the selected tile does not
correspond with a blade (Figure 4b). In this case, we detect a
characteristic frequency of Li = 42 amino acids, with tiles
repeated seven times and contributing three strands to one
blade and one strand to the next one (Figure 4b). Notably, this
particular phase was the one originally described when no
structure of members of this class was known.39

The hemagglutinating protein HA33 from Clostridium
botulinum is a neurotoxin-associated protein that folds in an
appealing topology of two consecutive β-trefoil subdomains
(Figure 4c). The characteristic frequency (Li = 142) points to
two fragments that have the highest Θi and correspond to the
tiles of each subdomain. The best phase at the second peak (Li
= 46) corresponds to tiles that can be fitted three times in each
subdomain and match the annotated foil of the β-trefoil
architecture.
Surveying other architectures with repeating motifs, we noted

that in some cases the highest scoring tiles are at the
characteristic frequency. Figure 4d shows the results for a
fragment of titin that contains three tandem immunoglobulin-
like (Ig) domains. At Li = 94 amino acids, the best phase
coincides with the Ig domains. The fact that other phases also
score high at this length scale is indicative that the arrangement
between the Ig domains is regular, as if this were not the case,
those fragments would not display that high Θi.
At some level, all proteins are formed by repetitions of amino

acids. The symmetry of the backbone interactions in secondary
structures was key to the Pauling and Corey proposal of these
arising from the regular repetition of planar peptide bonds.40,41

Recurrent secondary structure motifs were once candidates for
fundamental building blocks of globular domains, in line with
the success of structure prediction by fragment assembly.42−44

Since repetitions can be confidently found by tiling the
structural space, we explored to what extent any given protein
structure can be said to be composed with tiles, illustrating with
some classical examples.
Synthesized at embryonic stages and hopefully lasting soluble

for a lifetime,45 βγ-crystallins lens proteins increase the
refractory index and maintain transparency of the vertebrates’
eyes. Since its initial description, it has been a clear example of
structural motifs coalescing into higher order patterns.

Figure 5. Tiling classical globular proteins. The tiling profile is shown in grayscale, together with the δΘL projected on the left. The structures of the
native protein and example tilings are shown, using the same coloring scheme of Figure 2. The length (Li) and center (Zi) of the selected tile are (a)
βγ-crystallin (pdb: 1h4a, X) Li = 43, Zi = 149.5; (b) myoglobin (pdb: 1mbd, A) Li = 18, Zi = 29; (c) green fluorescent protein (pdb: 1gfl, A) Li = 15,
Zi = 182.5; and (d) β-lactamase (pdb: 4blm, A) Li = 15, Zi = 185.5.
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Coincident with the classical descriptions of these folds, tiling
the structural space detects that this protein can be very well
described with two repetitions of an eight-stranded β-barrel of
Li = 87 amino acids centered at positions Zi = 44.5 and Zi =
133.5 (Figure 5a). In turn, each of these can be composed with
two units of about 40 residues that correspond to the Greek-
key motif, that can be further decomposed into three 10-residue
β-strands. The characteristic frequency is at Li = 43 amino
acids, selecting out the Greek-key as the repetition we annotate.
It is apparent that there are irregularities in the structure that
make the second and fourth Greek-keys have a higher Θi than
the others and indeed different maximal Li.
About 70% of the mean structure of myoglobin, the

hydrogen atom of biology,46 can be described with six copies
of an 18 amino acid fragment. This corresponds to the “B” α-
helix, and constitutes a maximal fragment. The score at higher
length scales decreases rapidly (Figure 5b). In this case, we
could not detect a relevant frequency above the α-helical
segments, indicating that these do not contiguously repeat in a
highly symmetrical way, a fact that strongly surprised Kendrew
et al. when they solved the crystal structure.47

Green fluorescent protein folds as a β-barrel with a coaxial
helix, with the fluorophore forming from the central helix.48 We
identify fragments of Li = 15 that can cover about 71% of the
structural space with 11 repetitions, corresponding with β-
strands (Figure 5c). At higher length scales, no fragment
significantly raises the signal.

Bacillus licheniformis β-lactamase illustrates an example of a
mixed αβ topology, composed of two discontiguous sub-
domains.49 Here again, there is no particular length scale at
which a useful characteristic frequency can be defined (Figure
5d). The best tiling occurs at Θi = 15 where the fragment
corresponds to 1 of 10 α-helices and covers 74% of the
structural space when repeated.

Tessellations of Oligomers. In their natural environment,
most of the polypeptide chains of living organisms are not
found folded as spheroidal monomers but typically come
together, forming oligomeric complexes with two or more
subunits. Most frequently, they form homodimeric complexes,
but hetero-oligomers are not uncommon and even thousand-
mers are to be found. The symmetrical basis of this
phenomenon has been explored even before the first protein
structures were solved.50 A recent survey estimates that over
95% of the homodimeric complexes crystallized are symmet-
ric,51 and it is expected that small insertions and deletions can
have profound effects on protein functionality, modulating
oligomer stability, specificity, and aggregation.52 To analyze the
details of symmetry in multichain complexes, we can first define
the elementary blocks that constitute the array. To explore this,
we applied the same procedure of fragmenting and tiling
described above now using the quaternary arrangements of
subunits as the target structure to cover. If the monomers that
form a homo-oligomer cannot be decomposed into significant
tiles, we expect the best tile to correspond to the monomeric
chain itself. Indeed, we find this is the case for the majority of

Figure 6. Tiling quaternary complexes. The tiling profile is shown in grayscale, together with the δΘi projected on the left. The structures of the
native protein and example tilings are shown, using the same coloring scheme of Figure 2. The length (Li) and center (Zi) of the selected tile are (a)
homodimeric HPV-16 E2c (pdb: 1r8p) Li = 43, Zi = 58.5; (b) deoxy-hemoglobin (pdb: 2hhb) Li = 141, Zi = 71.5 from chain A; (c) the β-subunit of
Thermotoga maritima DNA polymerase III (pdb: 1vpk) Li = 128, Zi = 297; and (d) the processivity factor of Saccharomyces cerevisiae DNA
polymerase-δ (pdb: 1plq) Li = 132, Zi = 190.
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the oligomers we evaluated. We noted however interesting
cases in which the subunits can be decomposed into significant
tiles.
Papillomavirus E2c-DNA binding protein is a remarkable

model to study sequence specific recognition.53 This domain is
composed of two identical chains that come together, forming
in a β-barrel architecture that exposes four α-helices. The tiling
procedure identifies an 81-residue fragment as the best scoring
fragments, corresponding to the monomeric chains (Figure 6a).
However, these can be further decomposed in tiles of Li = 43,
covering about 90% of the structural space. The best tile at this
frequency corresponds to a βαβ motif that intertwines in each
monomer and together contributes half β-barrel (Figure 6a).
Hemoglobin (the helium atom of biology?) is the prime

example of a symmetrical quaternary arrangement, a tetramer
of α2β2 chains. Figure 6b shows a regular tiling pattern in which
four nearly identical regions can be distinguished. This
highlights the long-established structural identity of the α and
β chains. As in the case of myoglobin, no significant
decomposition of the structure can be made with continuous
fragments.
On occasion, protein structures reveal geometrical chances

and necessities of their history. Figure 6 shows the structures of
the β-subunit of an archaeal DNA polymerase III (a
homodimer, Figure 6c), together with the processivity factor
of eukaryotic DNA polymerase-δ (a homotrimer, Figure 6d).
Tiling these quaternary complexes identifies the subunits and
further points to similar characteristic frequencies of Li = 128
and Li = 132. In both cases, the chosen tiles at their respective
Li cover about 94% of the structure of the complexes. It is
apparent that a DNA clamp of this kind can be constructed
with either two or three polypeptide chains, each containing
three or two tiles, that pack in a 6-fold rotational fashion.24 This
common tile can be further decomposed into two tiles of Li =
65 amino acids yet compromising about 10% coverage. It is
interesting to note that these smaller fragments get intertwined
when forming a higher order structure, unlike any other of the
maximal fragments identified.

■ CONCLUSIONS

Foldable sequences with funneled landscapes are easier to find
if the low energy structure is symmetric.10 Modern natural
philosophers appreciate the existence of symmetry as an
emergent feature of the parsimony of nature, resulting from the
limited modes of interaction between a small number of
elementary parts assembling into higher order structures50,54−56

It is the inexact symmetries of biological molecules that are
most striking.10,54 Subtle aperiodicities can give rise to big
biological effects,57 and thus, their modulation can be at the
core of the physiological workings of these “frozen accidents”.
In order to detect and characterize repetitions in protein

structures, we presented a simple scheme based on analyzing
the distribution of suboptimal structural alignments of
continuous fragments. The procedure identifies maximal
fragments, those for which any extension occurs fewer times
in the ensemble of solutions (Figure 1B). By counting the
number of occurrences of non-overlapping fragments and
having a good metric for the overall coverage, we defined a
score that ranks how a structure can be tessellated with similar,
though not identical, fragments. We found that in most cases
there is a defined fragment length at which the coverage gained
by the repetitions is highest, defining a characteristic frequency.
In some cases, there is a discrete collection of fragments that
allows one to unequivocally define a best phase. In these cases,
the repeat unit, the number of occurrences, and their
boundaries can be confidently defined (Table S1, Supporting
Information). In other cases, there are several equivalent phases
at the characteristic frequency, pointing to structures that can
be considered almost periodic and where the definition of a
basic tile must remain arbitrary (Figure 2 and Table S1,
Supporting Information). This is a common theme in the cases
of solenoidal proteins where different researchers have defined
the repeat unit at distinct frequencies and phases.23 Including
other information beyond geometry could indicate if there is a
biologically preferred phase, such as the characterization of
insertion sites, the variability in orthologous sequences, exon
boundaries, or folding mechanisms.58

Figure 7. Tileability of protein structures. The tiling procedure was applied to the protein models (indicated with their PDB code, HM:
homogeneous model) and ranked according to their tileability score Ξ. Example tessellations are shown with the tile-unit colored yellow and the
copies colored black, superimposed to the native structure in gray. Filled symbols: solenoidal repeat proteins. Empty symbols: globular repeat
proteins.
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Proteins in which the repeats pack symmetrically against each
other but do not translate along an axis can form closed
structures. The fragmenting and tiling approach can be readily
applied to such topologies like barrels, propellers, trefoils, and
so on. Within these, we can distinguish nested repeating units
and even resolve fine geometrical differences (Figure 4 and
Table S1, Supporting Information). If the fundamental tiles are
arranged symmetrically, then there must be larger tiles which
are multiples of these basic tiles. These higher order tiles appear
as additional maxima of ΘLi toward larger Li as compared to the
basic tile. This hierarchical nesting of tiles can be captured by a
tessellation score that is computed in the following way. For
each tile length Li, take the maximum tile score Θi (e.g., the
maximum score for a particular Li in Figure 1b) and take the
average over all L. This tileability score (Ξ) is 1.0 for the
homogeneous model, approaches 1 for highly regular structures
like α-helices, and goes to zero for nonrepetitive structures. In
Figure 7, a variety of proteins are ranked by their respective
tileability score Ξ (Table S1, Supporting Information). The
largest value of Ξ is obtained for a long α-helix from a coiled
coil. The helix is followed by several solenoidal proteins with
the most regular designed proteins ranking higher than the
more irregular natural ones. These structures are followed by
repetitive proteins with an overall globular shape. At the end of
this scale, we find typical globular domains that do not have any
periodicity larger than a few residues. We note that not all
members of a particular topology group together; they rather
get segregated according to the irregularities they display
(Figure 7).
The same tiling procedure can be applied at the level of

protein complexes, analyzing the details of how fragment copies
between chains cover the structural space. At this level, we
found that the best tiles often correspond with the monomeric
chains or classical globular domains within them. However,
interesting exceptions can mark chains that can be further
decomposed into smaller units (Figure 6). It will be appealing
to extend this now limited survey and characterize how
frequently the distribution of geometric tiles coincides with the
polypeptide chains, globular domains, exons boundaries,
foldons, or motifs.
It is tempting to speculate about the functional consequences

that the symmetrical distribution of similar fragments can have
at different length scales. Energy landscape theory modus
operandi appreciates that packing subunits in symmetrically
equivalent ways give rise to structures with similar free energies,
allowing multiple funnels to coexist in the energy landscape59

and small perturbations to switch between these states.60

Symmetry has been pointed out as being the key in other
functional phenomena such as folding cooperativity, multiple
ligand binding, thermodynamic stability, coding compression,
and finite assembly.55,50 Symmetric organization is an easy (and
perhaps unavoidable) way for allostery to emerge.61,62

Repetitions with point symmetries give rise to closed arrays
such as barrels and the like at the tertiary level, and rings or
polyhedra at the quaternary level. Helical symmetries form
solenoids at the tertiary level that correspond with tubular
organizations at the quaternary level. Nucleation and capping of
these repeating arrays is often pointed to be critical to their
physiological behavior both at the tertiary and quaternary levels.
Potentially unbounded periodicity may require other mecha-
nisms to terminate growth. It is thus not surprising that
physiological workings and pathological states are the result of

aggregation of similar fragments, such as cytoskelton
dynamics,63 epigenetic phenomena,64 sickle-cell anemia,65 and
amyloid-related processes.66

The organization of protein molecules can be appreciated at
many levels, from amino acid sequence motifs to dynamic
interacting networks of thousands of components.63 As the
relevant contributions of the physical forces change at different
length and time scales, the organizational agencies at each level
will necessarily differ, but some common principles may
underlie. The concepts postulated by energy landscape theory
can be a guide in such a search.67−69
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