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Abstract: Multi-path interference causes depth errors in indirect time-of-flight (ToF) cameras. In this
paper, resolving multi-path interference caused by surface reflections using a multi-tap macro-pixel
computational CMOS image sensor is demonstrated. The imaging area is implemented by an array
of macro-pixels composed of four subpixels embodied by a four-tap lateral electric field charge
modulator (LEFM). This sensor can simultaneously acquire 16 images for different temporal shutters.
This method can reproduce more than 16 images based on compressive sensing with multi-frequency
shutters and sub-clock shifting. In simulations, an object was placed 16 m away from the sensor, and
the depth of an interference object was varied from 1 to 32 m in 1 m steps. The two reflections were
separated in two stages: coarse estimation based on a compressive sensing solver and refinement by
a nonlinear search to investigate the potential of our sensor. Relative standard deviation (precision)
and relative mean error (accuracy) were evaluated under the influence of photon shot noise. The
proposed method was verified using a prototype multi-tap macro-pixel computational CMOS image
sensor in single-path and dual-path situations. In the experiment, an acrylic plate was placed 1 m or
2 m and a mirror 9.3 m from the sensor.

Keywords: time-of-flight depth imaging; multi-path interference; multi-tap macro-pixel; charge
modulators; compressive sensing; CMOS image sensor

1. Introduction

Time-of-flight (ToF) [1] depth imaging is a technique for measuring the depth between
a camera and objects based on the round-trip time of light emitted from the camera, assum-
ing that the speed of light is constant. ToF has been applied to a variety of applications [2]
such as autonomous driving, robot navigation, modeling of objects, and gesture recognition
in entertainment due to the small device size, real-time measurement, and the ability to
measure texture-less surfaces. However, ToF has a disadvantage in that the measurement
accuracy is degraded by multi-path interference [3,4]. There are four major types of multi-
path interference: (1) surface reflections from transparent objects, (2) multiple reflections
between objects, (3) sub-surface scattering, and (4) volumetric scattering caused by bulky
weak scattering media such as smoke or fog. In this paper, we focus on surface reflections.

There are two types of ToF image sensors: direct (dToF) [5] and indirect (iToF) [6].
In dToF, impulse light with a duration of nanoseconds is mostly used, and the temporal
reflected light waveform is measured pixel by pixel by using a single-photon avalanche
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diode (SPAD) [7]. Comparison of dToF and iToF is summarized in Table 1. In iToF, on the
other hand, the inner products or correlations of the reflected light waveform with multiple
time-window functions are measured. Then, the temporal or phase delay is calculated.
To perform the inner-product operation, charge modulators are utilized. iToF is further
classified into amplitude modulation continuous wave (AMCW) iToF [8] and pulse iToF [9].
AMCW iToF uses sinusoidally modulated light, and pulse iToF uses rectangular pulsed
light with a duration of tens of nanoseconds. dToF provides the genuine waveform of the
reflected light for many temporal sampling points (typically hundreds of points or more)
with a high temporal resolution by using high-precision time-to-digital converters (TDCs).
Although separation of multi-path components is easier by dToF than by iToF because
the whole waveform of the reflected light is obtained, large digital circuits are required to
build the histograms of photon arrival times. iToF is advantageous for achieving a small
sensor size because signal detection is performed in the charge domain in pixels, and large
digital or analog circuits are required for detection. However, the number of temporal or
phase sampling points of the detected signal is only a few, typically three or four. Therefore,
multi-path component separation is more difficult in iToF than in dToF.

Table 1. Comparison of dToF and iToF.

dToF iToF

Detector SPAD Charge modulator

Pixel size Relatively large Small

Pixel readout circuits Time-to-digital converter and histogram builder
The same as ordinary CMOS image sensors (pixel

source followers, column correlated double
sampling circuits, and analog-to-digital converters)

Immunity to multi-path interference Good No

To decompose or compensate for the surface-reflection-type multi-path
interference, methods that use multiple modulation frequencies or delays have been
demonstrated [10–14]. However, these methods are vulnerable to motion artifacts, since
multiple images with some scanning are necessary. Recently, deep-learning-based methods
have been emerging [15,16]. Reference [16] proposed Deep ToF, which uses a single depth
image taken by an ordinary AMCW iToF camera. Then, the multi-path interference is
corrected by deep learning in real time. This method uses information about neighboring
pixels or the scene to correct multi-path interference caused by multiple reflections. How-
ever, it could be difficult to resolve multi-path interference when neighboring pixels do
not provide any cue to correct the multi-path interference. This problem could arise for
the case of surface-reflection-type multi-path interference. To achieve motion-artifact-free
single-shot imaging acquisition in ToF, specially designed image sensors are necessary.

In our previous study [17,18], we have proposed a method for multi-path component
separation using multi-aperture-based temporally compressive pulse iToF. This method
requires no large on-chip digital circuits, and the number of temporal sampling points
is much more than that of conventional iToF, by taking advantage of the sparsity of the
ToF signal. Figure 1 shows a method for separating multi-path components based on
compressive sensing [19–22]. In this method, 15 inner products of the reflected pulse light
with binary random shutters are acquired at the same time. Then, 32-bin reflected light
histograms are reproduced. Thus, the drawback of iToF, i.e., the limited number of sampling
points, is alleviated, and multiple reflected light paths are separated. However, this method
requires a custom lens array, so it is not easy to reconfigure the optics. In addition, it
is necessary to compensate for the parallax among the lenses. In the framework in [18],
the depth resolution is the same as the width of the minimum time window, although
sub-window resolution is achieved in ordinary iToF cameras.

We have proposed a multi-tap macro-pixel-based compressive ultra-high-speed CMOS
image sensor [23]. This image sensor can implement multi-frequency shutters and sub-clock
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shifting. Such features are useful for multi-path component separation in a single shot. By
using a macro-pixel structure instead of a multi-aperture structure, it is possible to capture
images using ordinary single-aperture lenses so that there is no disparity problem. In this
paper, we evaluate the potential performance of separating dual-path components based on
the multi-tap macro-pixel CMOS image sensor with multiple modulation frequencies and
sub-clock shifting by simulation. Then, we demonstrate dual-path component separation
in temporally compressive pulse iToF with a prototype image sensor. The depth estimation
is performed in two steps: (1) separation of multiple peaks using a compressive sensing
solver TVAL3 [24,25] and (2) refining the depths with sub-clock accuracy by fitting the
result obtained at step 1 by a nonlinear optimization method [26]. Step 2 enables sub-clock-
resolution depth estimation, which was not achieved in our previous study. Although this
method is not suitable for real-time processing, the purpose of this study is to investigate
the potential performance of the proposed scheme.
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Figure 1. Separation of multi-path interference components: (a) optical setup that includes a trans-
parent object causing multi-path interference, (b) compression of optical signals with temporal shut-
ters, (c) compressed signals, and (d) reconstructed optical signal. 
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Figure 1. Separation of multi-path interference components: (a) optical setup that includes a transpar-
ent object causing multi-path interference, (b) compression of optical signals with temporal shutters,
(c) compressed signals, and (d) reconstructed optical signal.

In Section 2, the multi-tap macro-pixel compressive image sensor architecture and
depth imaging based on the temporally compressive pulse iToF are described. Section 3
shows system modeling and performance evaluation by simulation. In Section 4, dual-path
component separation is demonstrated. In the experiment, a transparent acrylic plate was
placed between the camera and an objective mirror to introduce multi-path interference.
Section 5 discusses the issues of the proposed method. Section 6 concludes this paper.
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2. Temporally Compressive Time-of-Flight Depth Imaging
2.1. Multi-Tap Macro-Pixel Computational CMOS Image Sensor

Figure 2 shows the architecture of a multi-tap macro-pixel computational CMOS image
sensor. The sensor is mainly composed of a shutter controller, a clock tree, a lateral electric
field charge modulator (LEFM) [27,28] driver, an array of macro-pixels, and readout circuits
(RDOs). The specifications are summarized in Table 2.
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Figure 2. Structure of multi-tap macro-pixel computational CMOS image sensor. Each macro-pixel is
composed of four subpixels. The subpixel is implemented by a four-tap LEFM with charge drain.

Table 2. Specifications of multi-tap macro-pixel computational CMOS image sensor.

Technology 0.11 µm CMOS image sensor process

Chip size 7.0 mm × 9.3 mm

Valid subpixels 134 × 110

Subpixel pitch 22.4 µm × 22.4 µm

Subpixel count per macro-pixel 2 × 2

Tap count per subpixel 4

Shutter length per tap 8 to 256 bits by 8 bits

The sensor was fabricated in a 0.11 µm CMOS image sensor process. A macro-pixel is
composed of 2 × 2 subpixels. Each subpixel is implemented by a four-tap LEFM, which
has four storages (FD1-4). Charge transfer to the FDs and charge drain is controlled by five
gate signals (G1-4 and GD). The shutter pattern of each gate is programmable. The shutter
length per tap can be set to 8–256 bits in steps of 8 bits. Here, the shutter length is defined
as the length of binary shutters and represented by bits. In Figure 1b, the shutter code in a
unit time is given by one bit.

This sensor compresses images when the shutter length is longer than 16 bits (=the
number of the total taps in the macro-pixel or the number of measured signals per macro-
pixel). The mathematical representation of compressive sensing is briefly mentioned below.
When we consider an N-dimensional column vector x, an M × N matrix A, and an M-
dimensional column vector y, the relationship is denoted by

y = Ax. (1)



Sensors 2022, 22, 2442 5 of 19

Note that x is the original input signal, and y is the signal measured through a known
measurement matrix A. When N > M, the original signal x is compressed. We can
reproduce the original input signal x by solving the inverse problem from y and A based
on a sparsity constraint.

Figure 3 shows the imaging process of a multi-tap macro-pixel computational CMOS
image sensor. First, each tap detects the optical signal from the objects using different
temporal shutters. Then, different temporally compressed images are obtained. After
solving the inverse problem from the temporally compressed images and shutter patterns
based on the sparsity, the time-sequential images are reproduced.
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Figure 3. Image acquisition and reproduction flow of temporally compressive imaging. The object
images are compressed in time with the temporal shutter patterns. Then, sequential images are
reproduced by solving an inverse problem based on sparsity constraint.

For simplicity, the image acquisition and reproduction are explained based on a single
pixel; i.e., x is a temporal waveform of the received light for a single pixel. The coded
shutter is represented by the measurement matrix A in compressive sensing. It is assumed
that A is composed of M sets of temporal shutters given by the M× N-dimensional matrix.
Then, Equation (1) is rewritten as

y1
y2
...

yM

 =

 a11 · · · a1N
...

. . .
...

aM1 · · · aMN




x1
x2
...

xN

, (2)

where each row of A describes one temporal sequence of a shutter. The total number of
taps is the same as the number of taps in a subpixel times the number of subpixels in a
macro-pixel, namely M = 4 × 4 = 16. If the original input signal x is K-sparse, which means
only K elements have non-zero values and all the other elements are zero, x is estimated by
the following optimization based on the l0-norm:

x̂(0) = argmin
x
‖ x ‖0 subject to y = Ax. (3)
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Here, ‖ x ‖m shows lm-norm of x. Note that l0-norm is defined as the number of
the non-zero elements in x. However, solving this problem is hard because this is a huge
combinatorial problem. Therefore, l1-norm minimization is used instead, as follows:

x̂(1) = argmin
x
‖ x ‖1 subject to y = Ax. (4)

Total variation (TV) minimization is widely used to solve l1-norm minimization, where
the original input signal x is estimated by

x̂(TV) = argmin
x

Σi ‖ Dix ‖1 subject to y = Ax. (5)

Here, Di is the differential operator that subtracts an adjacent element from the
i-th element.

2.2. Modeling of Multi-Path Interference in ToF

The detected light waveform g(t) at the ToF camera, shown in Figure 4c, is modeled
as follows:

g(t) = L(t) ∗ f (t), (6)

where f (t) (Figure 4a) is the scene response function, L(t) (Figure 4b) is the waveform of
the total system response, and ∗ is the convolution operator. In the multi-path scenario,
f (t) is modeled as

f (t) =
K

∑
i=1

aiδ

(
t− 2di

c

)
, (7)

where ai is the amplitude and di is the depth of the i-th reflection, c is the speed of light,
K is the total number of reflections, and δ(x) is the δ-function. L(t) is represented by the
convolution of the light source waveform L0(t) (Figure 4d) and the sensor response hs(t)
(Figure 4e):

L(t) = L0(t) ∗ hs(t). (8)
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The sensor response hs(t) is further represented by the convolution of the response
of the charge modulator hs1(t) and the photodiode response hs2(t). When either of these
responses is dominant, hs(t) can be approximated by the first-order delay:

hs(t) = hs1(t) ∗ hs2(t) ∼ exp
(
− t

τ

)
, (9)

where τ is the time constant of the modulator or photodiode. Thus, the detected light
waveform g(t) at the ToF camera is shown in Figure 4c and is modeled as

g(t) = L(t) ∗ f (t) ∼ L0(t) ∗ exp
(
− t

τ

)
∗

K

∑
i=1

aiδ

(
t− 2di

c

)
. (10)

The image sensor puts out M compressed signals {pm} (m = 1, . . . , M) (Figure 4f),
which is also denoted by a vector representation, p = (p1, . . . , pM)T . Note that xT means
the transpose of a vector, x. When the shutter pattern for the m-th tap is written as wm(t),
the detected signal pm is given by the inner product or correlation between wm(t) and g(t):

pm =
∫

wm(t)g(t)dt. (11)

2.3. Selection of Exposure Patterns

As mentioned in Section 2.1, 16 different shutters are applied to the multi-tap macro-
pixel computational CMOS image sensor. In this paper, 32-bit shutter patterns shown in
Figure 5 are used. The shutter patterns of subpixel 1 are shifted by half a clock from those
of subpixel 2. Time windows for slower frequencies can increase the depth range, while
high-frequency time windows improve the depth resolution. By using half-clock shifting,
the depth resolution can be improved by a factor of two without shortening the width of
the minimum time window or increasing the operating frequency of the sensor.
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Figure 5. Temporally coded shutters (shutter length of 32 bits) with multiple frequencies and sub-
clock shifting. The shutters of subpixel 1 are a half-clock-shifted version of those of subpixel 2.

When ordinary four-tap pulse iToF images sensors [29] are used for the dual-path
scene, the shutter patterns only for one frequency can be applied at once, e.g., the shutter
patterns for subpixel 4 in Figure 5. They cannot resolve the multi-path interference if



Sensors 2022, 22, 2442 8 of 19

two reflections are detected in the same time windows. It is possible for them to emulate
the shutter patterns in Figure 5. However, image acquisition should be performed four
times for each set of the shutter patterns for each subpixel. Thus, this implementation will
suffer from motion artifacts. The benefit of our multi-tap macro-pixel computational CMOS
image sensor is single-shot image acquisition. A drawback is that the macro-pixel is larger
in size than ordinary four-tap pixels.

2.4. Solving the Inverse Problem and Depth Refinement

The depth estimation process is pixelwise and composed of two stages. We assume
that there are two reflections: objective light and interference light. This algorithm can be
easily extended to more reflections.

First, we reconstruct the scene response function denoted by x̂ from the sensor output
p, which is a measured version of y, and the measurement matrix A. x is a discrete version of
f (t), and A describes the shutter patterns {wm(t)} and the total system response L(t). Next,
we find peaks in x̂ and obtain K peak depths {di} and their amplitudes {ai} (i = 1, . . . , K).
When two adjacent peaks are too close, only one peak is found. To overcome this problem,
we add two peaks at both ends of the highest peak that is most likely to include the objective
light. Their amplitudes are half of the peak. Then, for all combinations of two arbitrary
peaks among the K + 2 peaks, their depths and amplitudes are refined by a nonlinear search
algorithm. Refinement is performed by minimizing the following evaluation function for
two peaks i and j (i, j = 1, . . . , K + 2, i 6= j):

E
(

a =
aj

ai
, di, dj

)
=

∣∣∣∣∣F(a, di, dj
)
− p

∑M
m=1 pm

∣∣∣∣∣
2

. (12)

Here, the amplitudes of the sensor output are normalized. F is the forward problem
function and provides a simulated sensor output for a, di, and dj, where a is the ratio
of the two amplitudes. The sensor output is normalized by the sum of the elements, i.e.,
(y1, ..., yM)T

∑M
m=1 ym

. The set of the two peaks that gives the minimal evaluation value is selected as

a solution.

3. Simulation
3.1. Simulation Method

The simulation flow is shown in Figure 6. For simplicity, only photon shot noise is
considered, whereas sensor random noise is neglected. The shot noise is given as follows:
First, we determine the total number of photons for the M taps, which is given by Nop, to
define the intensity of the reflected light or signal level. The sensor output p is scaled to

make
M
∑

m=1
pm equal to Nop. Then, shot noise is given to each scaled pm based on the Poisson

distribution to generate p′ electrons. The depth and amplitude are estimated from p′ by
the method explained above. This process is repeated R times to determine the precision
and accuracy of the estimated depths, which are evaluated by using the relative standard
deviation (RSD) and relative mean error (or simply error). Note that RSD and error refer to
precision (or uncertainty) and accuracy (or nonlinearity), respectively. We compare these
indexes for different Nop’s and a’s.

As for the multi-path interference, single-path and dual-path scenarios are simulated.
The single-path situation is essential in the depth estimation. It is necessary to test if the
proposed algorithm correctly works for this simplest case. The resolution of multi-path
interference in the dual-path situation is the main issue in this study. It is expected that
the estimated depth of the objective light becomes erroneous as the number of photons
decreases or the amplitude of the interference light increases. With the depth of the objective
light fixed, the dependency of the estimated depths for both objective and interference light
on the depth of the interference light is investigated.
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For the number of photons, two different cases are discussed. In reality, the number of
the received photons at the ToF image sensor decays in inverse proportion to the square
of the depth of the object. In the simplest case, this decay is not considered to investigate
the natural behavior of the proposed algorithm. Then, the decay of the received photon
number is considered.

The simulation conditions were as follows: The clock frequency for the shutter genera-
tor was 73 MHz. Therefore, the unit time was 13.7 ns which corresponded to approximately
2 m in depth. The measurable depth range was 32.64 m for the shutter length of 32 bits.
The time step in the simulations was 0.05 ns (≈0.75 cm in depth). The time constant τ of
the system response in Equation (9) was set to 1 ns. The duration of the laser pulse was as
long as the shortest time window, namely 13.7 ns. R was set to 100.

To generate the shot noise based on the Poisson distribution, the MATLAB function
imnoise was used. TVAL3 was used as a compressive sensing solver [24,25]. The parameters
of TVAL3 were as follows: nonneg was true, µ was 24, β was 2−2, µ0 was 21, β0 was 2−3,
and other parameters were the default values. To find peaks, findpeaks in MATLAB Signal
Processing Toolbox was used. To refine the peak positions, fminsearchbnd [26] was used to
apply non-negative constraints.

3.2. Single Path

First, we simulated single paths (with no interference light) for the following con-
ditions: Nop was 5000, 10,000, 20,000, or 40,000. The amplitude ratio a was 1. Depth-
dependent decay of the number of photons was not considered. The depth d was varied
from 1 to 32 m in steps of 1 m. The simulation results in Figure 7 show that depth errors
were very small over the range. It was confirmed that the proposed method worked
normally even for the single-path scenario.
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Then, simulation was conducted for a realistic case considering the depth-dependent
decay of light intensity. Figure 8 shows the simulation results. As Nop decreased, RSD in-
creased because the shot noise relatively increased. The waveforms of RSD were oscillating
a little, but mostly constant. No nonlinearity was observed, as shown in Figure 8b.
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3.3. Dual-Path

In the dual-path scenario, two situations were considered. In Type A, the total photon
number was changed while the amplitude was fixed. In Type B, the amplitude was changed
with the total photon number fixed. All the conditions are shown in Table 3. d1 and a1 are
for the objective light. d2 and a2 are for the interference light. The reflection’s depth d1 and
amplitude a1 were always 16 m and 1, respectively. The interference depth d2 was moved
from 1 m to 32 m in 1 m steps. Because this is a numerical investigation, the interference
light can come after the objective light.

Table 3. Conditions of dual-path simulation.

Type A
(Variable Total Photons)

Type B
(Variable Interference Reflection Amplitude)

Shutter length 32 bits

Minimal time window duration 13.7 ns

Light source pulse width 13.7 ns

Number of total taps per macro-pixel 16

Number of total electrons (Nop) 5000, 10,000, 20,000, 40,000 20,000

Amplitude
Objective a1 = 1 a1 = 1

Interference a2 = 0.1 a2 = 0.1, 0.5, 1.0

Depth
Objective d1 = 16 m d1 = 16 m

Interference d2 = 1− 32 m d2 = 1− 32 m

Firstly, simulations without the depth-dependent decay of the number of photons were
performed. Figure 9 shows the results of the simulation. Both the relative error and RSD
of d1 (objective reflection) became large as Nop decreased or a2 increased, especially when
the objective light and interference light were merged. As shown in the results of Type A
(Figure 9a–d), the absolute value of the relative mean error for different light intensities
was <1.2% in both d1 and d2 for all given Nop’s except when d2 was around 1 m or 16 m.
The results of Type B are shown in Figure 9e–h. The absolute value of the relative mean
error for different amplitudes of the interference light was <0.8% in both d1 and d2 except
when d2 was around 1 m, 16 m, or 26 m. The reason why the depth error at around 1 m is
relatively large is that the relative errors become large as the distance becomes small. Other
issues related to the large errors are discussed below.

Figure 10 shows the simulation results for Type B when the depth-dependent decay of
photons was considered. Nop was adjusted to be 5000 when the depth was 4 m and the
amplitude was 1, and it was in inverse proportion to the square of depth. RSD and error
of d1 became large as the contribution of the interference light increased. The behavior of
RSD and error of d2 is interesting. As the amplitude of the interference light becomes small,
both RSD and error become large. At far distances, the nonlinearity of d2 for a2 = 0.1 is
significantly large. This is possibly because d2 becomes closer to d1 = 16 m.
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Figure 9. Results of dual-path simulations: (a–d) Type A. Nop was changed. (e–h) Type B. a2 was
changed. (a,e) Relative standard deviation of d1. (b,f) Relative standard deviation of d2. (c,g) Relative
mean error of d1. (d,h) Relative mean error of d2.
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in the middle (holed mirror) to realize a semi-coaxial configuration. The distance between 
the acrylic plate and the holed mirror was 1 or 2 m. The objective mirror was placed 9.3 m 
away from the holed mirror. The 16 compressed images for the 16 32-bit shutters shown 
in Figure 5 were acquired in a single shot. The shutter controller frequency was set to 73 
MHz. In this experiment, no imaging lens was used. The objective and interference light 
directly illuminated the image sensor. In solving the inverse problem, it was assumed that 
the subpixels in the same macro-pixel were uniformly illuminated. The saturation level of 
the sensor was 67558 LSB. The read noise of the sensor was 376 LSB. 

Figure 10. Results of dual-path simulations when depth-dependent decay of the number of photons
was considered in Type B. Nop was set to 5000 at 4 m for the amplitude of 1. (a) Relative standard
error and (b) relative mean error of d1. (c) Relative standard error and (d) relative mean error of d2.
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4. Experiment Using a Multi-Tap Macro-Pixel Computational CMOS Image Sensor
4.1. Experimental System

In this section, the aforementioned method is demonstrated with a prototype multi-
tap macro-pixel computational CMOS image sensor shown in Table 2 and Figure 2. The
experimental system setup is shown in Figure 11. A semiconductor pulsed laser (Tama
Electric, Hamamatsu, Japan, Model LDS-320, λ = 850 nm) emitted light with a duration of
21 ns toward the objective mirror and the acrylic plate through a mirror having a hole in
the middle (holed mirror) to realize a semi-coaxial configuration. The distance between
the acrylic plate and the holed mirror was 1 or 2 m. The objective mirror was placed 9.3 m
away from the holed mirror. The 16 compressed images for the 16 32-bit shutters shown in
Figure 5 were acquired in a single shot. The shutter controller frequency was set to 73 MHz.
In this experiment, no imaging lens was used. The objective and interference light directly
illuminated the image sensor. In solving the inverse problem, it was assumed that the
subpixels in the same macro-pixel were uniformly illuminated. The saturation level of the
sensor was 67558 LSB. The read noise of the sensor was 376 LSB.
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Figure 11. Experimental setup for dual-path ToF depth imaging. The objective mirror and transparent
acrylic plate constitute dual-path interference.

The correlation of the total system response of the ToF camera system and the coded
shutters, which was equivalent to the sensor output p, was measured before the ToF
imaging. The measurement was performed while the emission timing delay of the pulsed
laser t was scanned over the measurable range. The measured functions are denoted
as follows:

p′m(t) =
∫

wm(ξ)L(ξ − t)dξ. (13)

The measured responses shown in Figure 10 were used in every step of the inverse
problem solving. The measurement matrix A was generated by down-sampling {p′m(t)},
and the sensor output in the refinement stage was given by the superposition of the sensor
output in Figure 12 for different times of flight (=light pulse delays) such as

pm =
∫

p′m(t) f (t)dt. (14)
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Figure 12. Measured sensor output versus light pulse delay. The waveforms are normalized by the
maximum for each tap.

4.2. Measured and Processed Results

Figure 13 shows 16 temporally compressed images when the objective mirror and the
acrylic plate were placed at 9.3 m and 1 m, respectively. For comparison, single-path scenes
were also measured. Figure 13a,b show the captured images for the single-path scenes. The
former is for only the acrylic plate, and the latter is for only the mirror. Figure 13c is for
the dual-path situation. Two reflections from both acrylic plate and mirror are overlapped.
Note that the interference light from the acrylic plate illuminated the bottom half of the
image sensor. Figure 14a,b show the reproduced depth images (33 × 52 pixels) for the
acrylic plate placed at 1 m and the mirror placed at 9.3 m, respectively. The whole image
sensor was illuminated. Figure 14c,d shows the depths reproduced from the images in
Figure 13 for the dual-path scenario.
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placed at 9.3 m and 1 m, respectively. One hundred images are averaged.
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Figure 14. Measured depth images (33 × 52 pixels): (a) Acrylic plate placed at 1 m (single path).
(b) Mirror placed at 9.3 m (single path). (c) Acrylic plate depth (dual-path). (d) Mirror depth (dual-
path). In the dual-path situation (c,d), the depths are similar to those in the single-path situations (a,b).

The total processing time for the dual-path scene was 74 min. The percentages of the
processing time for the first stage (coarse depth estimation by TVAL3) and the second stage
(depth refinement by fminsearchbnd) were 0.7% and 99.3%, respectively. Specifications of
the PC are as follows: CPU: Intel Core i7-9700 (3 GHz, eight cores), RAM: 16 GB. Signal
processing was conducted on MATLAB Version 9.3.0.713570.

Figure 15 shows the depth histograms for the single-path and dual-path situations.
Table 4 summarizes the mean peak positions of the histograms, where the pixels with
pixel values more than half of the maximum pixel value are considered. As shown in the
table, multiple depth components were separated with an absolute error less than 0.2 m
compared with the depths acquired in the single-path scenario.
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Figure 15. Depth histograms for the single-path and dual-path situations. The distance between the
acrylic plate and the objective mirror was 8.3 m.

Table 4. Measured relative mean depths based on the single-path situation (m).

Acrylic Plate at 1 m Acrylic Plate at 2 m Mirror at 9.3 m

Single path −8.5172 −7.2929 0

Dual path −8.3404 −7.3693 −0.1826
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5. Limitations

In the simulation, one of the drawbacks of the proposed method is a relatively large
depth error when the two light reflections are very close. In Figure 8, the depth error of the
interference light is significantly large between 14 m and 18 m. This can happen when the
two pulses are merged. The most effective way to improve the separation is to speed up
the operating frequency of the image sensor to shorten the minimal time window duration.
Because the sensor is still a prototype, it has problems such as low photosensitivity, large
pixel size, and slow operating frequency.

In Figure 9e–h, a huge error is observed at 26 m. At this distance, d1 and d2 are
estimated to be 17.96 m and 24.39 m when no shot noise is considered, although they
should be 16 m and 26 m, respectively. Figure 16 compares the simulated sensor output p′

for d1 = 16 m, d2 = 26 m, and d1 = 17.96 m, d2 = 24.39 m. The signals are similar in terms of
the peak positions. Therefore, the solution could converge to a local minimum. A depth
refinement method or better shutter patterns that can find the global minimum should
be explored.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 15. Depth histograms for the single-path and dual-path situations. The distance between the 
acrylic plate and the objective mirror was 8.3 m. 

Table 4. Measured relative mean depths based on the single-path situation (m). 

 Acrylic Plate at 1 m Acrylic Plate at 2 m Mirror at 9.3 m 
Single path −8.5172 −7.2929 0 
Dual path −8.3404 −7.3693 −0.1826 

5. Limitations 
In the simulation, one of the drawbacks of the proposed method is a relatively large 

depth error when the two light reflections are very close. In Figure 8, the depth error of 
the interference light is significantly large between 14 m and 18 m. This can happen when 
the two pulses are merged. The most effective way to improve the separation is to speed 
up the operating frequency of the image sensor to shorten the minimal time window du-
ration. Because the sensor is still a prototype, it has problems such as low photosensitivity, 
large pixel size, and slow operating frequency. 

In Figure 9e–h, a huge error is observed at 26 m. At this distance, 𝑑  and 𝑑  are 
estimated to be 17.96 m and 24.39 m when no shot noise is considered, although they 
should be 16 m and 26 m, respectively. Figure 16 compares the simulated sensor output 𝒑′ for 𝑑  = 16 m, 𝑑  = 26 m, and 𝑑  = 17.96 m, 𝑑  = 24.39 m. The signals are similar in 
terms of the peak positions. Therefore, the solution could converge to a local minimum. 
A depth refinement method or better shutter patterns that can find the global minimum 
should be explored. 

(a) (b) 

Figure 16. Simulated sensor output, 𝒑′ without shot noise: (a) 𝑑  = 16 m, 𝑑  = 26 m. (b) 𝑑  = 
17.96 m, 𝑑  = 24.39 m. They look very similar. 

0 4 8 12 16
Tap

0

0.05

0.1

0.15

0 4 8 12 16
Tap

0

0.05

0.1

0.15

Figure 16. Simulated sensor output, p′ without shot noise: (a) d1 = 16 m, d2 = 26 m. (b) d1 = 17.96 m,
d2 = 24.39 m. They look very similar.

The number of resolvable paths is of great concern. Basically, multi-path resolution
using the shutter patterns shown in Figure 5 is a combinatorial problem. We assume
a situation that the reflected light from an object placed at depth di is detected by our
computational CMOS image sensor using n-tap charge modulators. For the shutter patterns
for a shutter period of Tj, k j-th time window detects the reflection. k j is denoted by

k j =

⌊
2di

c
mod

Tj

n

⌋
+ 1. (15)

Here, bxc means the integer that is not more than x. In our proposed method, we
prepare multiple Tj’s. Note that sub-clock shift is not considered here. For different Tj’s,
k j’s are detected from the captured image. However, when there are multiple reflections,
k j becomes ambiguous. Namely, it is not easy to tell which signal for each Tj comes from
the same reflection. When signal peaks are separated for a certain Tj and k j is specified
for a reflection, we can resolve the multi-path interference more easily. There are two
cases: (1) k j1 (for higher frequency) is resolved, but k j2 is not determined. (2) k j2 (for lower
frequency) is resolved, but k j1 is not determined. For case 1, k j2 is written as follows when
Tj2 = 2Tj1:

k j2 =

⌊
qTj1 +

(
k j1 − 1

)
Tj1

n
mod

Tj2

n

⌋
+ 1. (16)

Here, q is zero or a positive integer and mod means the modulation operator. The
problem is to find q.
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In case 2, another ambiguity arises. Because the time window duration for Tj2 is twice
longer than that for Tj1, there are two choices as follows:

k j1 =

⌊(
k j2 − 1

)
Tj2

n
mod

Tj1

n

⌋
+ 1 or

⌊(
k j2 − 1

)
Tj2

n
mod

Tj1

n

⌋
+ 2. (17)

It is also necessary for the precision and accuracy to be small enough to determine
the combinations of the detected signals for the multiple frequencies. To improve the
capability of multi-path resolution, it is effective to increase the number of taps of the
charge modulator. However, trade-off among the pixel size, response time, and separability
should be considered.

Although only surface reflection was incorporated in the mathematical model in this
paper, we believe that the proposed method could be extended to compensate multiple
reflections and volumetric scattering because they significantly increase the path length or
time of flight of light. The most difficult point is that the reflected light waveform is not
the same as that of the emitted light. Probably, spatio-temporal point spread functions for
these multi-path components should be also estimated. On the other hand, separation of
sub-surface scattering could be more challenging and requires different techniques other
than the application of temporal shutter patterns because the light intensity caused by the
sub-surface scattering decays very quickly, e.g., in less than hundreds of picoseconds.

Improvement of the algorithm is also necessary. Although it is assumed that the
incident light signal is uniform over a macro-pixel, we should consider the point spread
function to realize subpixel resolution. Development of a non-iterative real-time signal
processing algorithm is also key. In this paper, our aim was to investigate the potential of
the multi-tap macro-pixel computational CMOS image sensor in multi-path separation. As
shown in Section 4.2, the processing time for the depth refinement stage occupies 99.3%
of the total processing time. Most of the processing time was dedicated to the nonlinear
optimization. As the next step, algorithms suitable for real-time processing should be
explored [30].

6. Conclusions

In this paper, the separation of multi-path components in time-of-flight depth imaging
using a multi-tap macro-pixel computational CMOS image sensor was demonstrated. The
macro-pixel has 2 × 2 subpixels, and each subpixel is implemented by a four-tap lateral
electric field charge modulator (LEFM). Thus, 16 images for different temporal shutters
are acquired in a single shot. Multiple frequency–time windows and sub-clock shifting
were adopted to separate the multi-path interference components and to achieve both long
distance range and high distance resolution. The following two-step depth estimation
was used to investigate the potential of the proposed scheme for multi-path component
separation. In the simulation without depth-dependent decay of the number of photons,
the absolute value of the relative mean error was <1.2% for both d1 (objective depth) and d2
(interference depth), except when d2 was very small (at 1 m) or two reflections were merged
(at 16 m). When the amplitudes of the two reflections were the same, the error at d2 = 26 m
became large, probably because the solution could converge to a local minimum. For the
simulation considering the depth-dependent decay of light intensity, the nonlinearity of
the interference light increased significantly at long distances, probably under the effect of
the strong objective light. In the experiment, we separated two reflections from an acrylic
plate placed at 1 m or 2 m and a mirror placed at 9.3 m. The absolute value of the mean
error compared with the single-path situation was less than 0.2 m.
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