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Abstract Despite evidence that autism is highly heritable
with estimates of 15 or more genes involved, few studies
have directly examined associations of multiple gene
interactions. Since inability to effectively combat oxidative
stress has been suggested as a mechanism of autism, we
examined genetic variation 42 genes (308 single-nucleotide
polymorphisms (SNPs)) related to glutathione, the most
important antioxidant in the brain, for both marginal
association and multi-gene interaction among 318 case–
parent trios from The Autism Genetic Resource Exchange.
Models of multi-SNP interactions were estimated using the
trio Logic Regression method. A three-SNP joint effect was
observed for genotype combinations of SNPs in glutare-
doxin, glutaredoxin 3 (GLRX3), and cystathione gamma
lyase (CTH); OR=3.78, 95% CI: 2.36, 6.04. Marginal
associations were observed for four genes including two
involved in the three-way interaction: CTH, alcohol
dehydrogenase 5, gamma-glutamylcysteine synthetase, cat-
alytic subunit and GLRX3. These results suggest that
variation in genes involved in counterbalancing oxidative

stress may contribute to autism, though replication is
necessary.

Keywords Autism . Oxidative stress . Gene–gene
interaction

The Autism spectrum disorders (ASD) are a collection of
pervasive developmental disorders characterized by delayed
or absent language development, lack of interest in other
people, stereotyped or repetitive behaviors, and in some
cases regression of early speech and sociability (Rapin and
Autism 1997) . While several lines of evidence suggest a
genetic etiology (Veenstra-VanderWeele and Cook 2004),
only a few genes have been established as risk factors for
ASDs (Bill and Geschwind 2009). Although interactive
models involving multiple genes are commonly proposed
as likely models to describe autism risk (Risch et al. 1999;
Lamb et al. 2000), few studies have empirically explored
gene–gene interactions in ASDs to date (Anderson et al.
2008, 2009; Campbell et al. 2008; Coutinho et al. 2007;
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Ashley-Koch et al. 2007; Ma et al. 2005; Kim et al. 2008).
While genome-wide linkage and association studies have
provided initial discoveries of potential genetic risk factors
and have implicated particular molecular pathways in
autism, most of these studies have neglected gene–gene
interaction, primarily due to methodologic limitations, as
examination of interaction effects on the genomic scale is
computationally difficult. In addition, genome-wide
markers may not fully cover implicated regions. Candidate
genes studies are therefore an appropriate design to evaluate
gene–gene interaction. One approach is to focus on genes
known to code for proteins that play a role in a particular
biological pathway implicated in ASDs, as these are likely to
interact on risk. Of the handful of candidate gene studies that
have undertaken gene–gene interaction in ASDs, none have
explored high-order interaction in a single pathway, with
adequate gene coverage. Previous studies did not have the
advantage of very high density marker information on each
gene, and were limited to only two or three-way interaction
based on traditional regressionmethods (Campbell et al. 2008;
Kim et al. 2008). The few family-based three-way interaction
approaches that have been reported for ASD could not take
full advantage of the family data because they were limited
to multiple dimensionality reduction (MDR) methods devel-
oped for case–control designs (Anderson et al. 2008, 2009;
Coutinho et al. 2007; Ashley-Koch et al. 2007; Ma et al.
2005), although newer family-based MDR methods are now
available (Ritchie et al. 2001). We attempted to overcome
these limitations by focusing on a single pathway, using
an information-based gene-selection algorithm (based on
location in autism linkage regions and expression
patterns), selecting tag-single-nucleotide polymorphisms
(SNPs) to achieve very high coverage of genes and
flanking regions, and by evaluating high order gene–gene
interactions using a newly developed method adapted for
family data. Logic regression is an adaptive regression
methodology that uses and/or combinations of SNPs to
predict disease risk.

Oxidative stress during prenatal and early postnatal
development, resulting from polymorphisms in key
antioxidant genes in the fetus/infant is hypothesized to
contribute to the susceptibility of autism (James et al.
2006). Oxidative stress is believed to contribute to
neuronal damage for a wide range of neurological diseases
including Alzheimer’s, Parkinson’s, amyotrophic lateral
sclerosis, and HIV-associated dementia (Perry et al. 2004)
with a suggested contribution to developmental disorders,
such as fetal alcohol syndrome (Cohen-Kerem and Koren
2003). Further, susceptibility to oxidative stress is not
limited to the CNS. Deficits in this system would help
explain the full range of medical symptoms observed in
autism, such as gastrointestinal (Valicenti-McDermott et
al. 2006) and immune system (Pardo et al. 2005)
irregularities.

Decreased total glutathione and a decreased ratio of
reduced (active) to oxidized (inactive) glutathione has been
observed in plasma of autistic children (James et al., 2004,
2006). Plasma (Sogut et al. 2003; Yorbik et al. 2002) and
erythrocyte (Yorbik et al. 2002) glutathione peroxidase
were also shown to differ between autistic children and
controls; however, this was increased in one study (Sogut et
al. 2003) and decreased in the other (Yorbik et al. 2002).
One genetic association study has shown an association
between autism risk and the null allele of glutathione-S-
transferase Mu 1 implying reduced antioxidant capacity due
to alterations in glutathione associated genes (James et al.
2006; Buyske et al. 2006). Additionally, a haplotype of
another glutathione gene, glutathione-S-transferase Pi 1,
was observed to be overtransmitted in mothers of autistic
children (Williams et al. 2007) .

Glutathione and its metabolic cofactors provide the
primary defense against oxidative stress (Maher 2006)
including: directly scavenging free radicals, reducing
peroxides and conjugations with toxic electrophilic com-
pounds (Maher 2006). Therefore, alternations in enzymes
related to the metabolism of glutathione or any of these
three processes may increase the potential for oxidative
damage that could contribute to the development of autism.

Our objective is to more fully characterize the contribu-
tion of a child’s genetic variation in glutathione pathway
genes to autism risk and to specifically explore potential
interactions between genes in this pathway. We genotyped
SNPs in 42 glutathione-related genes to determine their
marginal and potential interacting effects on autism risk in a
collection of 318 families from the Autism Genetic
Resource Exchange (AGRE) repository. We examined 308
SNPs in these 42 genes for marginal effects and an
uncorrelated set of 138 of these SNPs from these genes
for potential interaction. To our knowledge, this analyses
the most extensive search for gene–gene interaction along a
suspected etiologic pathway.
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Methods

Study population

The AGRE was created by Cure Autism Now and the
Human Biological Data Exchange to advance genetic
research in autism spectrum disorders by consolidating
large numbers of families into one collection (www.agre.
org; Geschwind et al. 2001). Genetic biomaterials and
clinical data were obtained from families with a child
diagnosed with an ASD based on evaluation by the Autism
Diagnostic Interview-Revised (ADI-R; Lord et al. 1994
Oct). The 1,149 individuals from 318 families included in
the present analyses are a subset of the initial 331 families
recruited by AGRE. For a subset of participants, an
additional diagnosis is available based on the Autism
Diagnostic Observational Schedule (ADOS) (Lord et al.
2000). Cases in the studies presented here met criteria for
Autistic Disorder based on the ADI-R and confirmed by
ADOS if available. Participant characteristics are described
in Table 1.

Gene selection

Gene selection began with an initial list of 64 genes
identified via searches of the University of California at
Santa Cruz genome database (http://genome.ucsc.edu/) and
the GO database (geneontology.org), using the keyword
‘glutathione’. Each gene was further entered in the Entrez
database to collect additional information, such as function,
and to review previous studies of the gene (http://www.
ncbi.nlm.nih.gov/). Of these 64 genes, 59 had sufficient
data available and were then ranked using a weighted sum
of non-standardized values from three domains: (a) location
in an autism linkage region; (b) expressed in the brain; and
(c) having a pattern of expression in the brain that is
correlated with expression of other glutathione genes. A
final list of the 59 genes is available in Supplemental
Table 1.

Genes located in the same chromosomal band as an
autism linkage signal, based on a 2007 review of genetic
studies of autism (Freitag 2007) were given a linkage
domain weight of 10 for our gene-ranking algorithm, while
those that were not in a linkage region were given a weight
of 0. Gene expression weights were based on expression
scores for 17 brain regions from two replicates using
Affymetrix microarrays in the GNF2 Atlas track of the
University of California, Santa Cruz (UCSC) genome
browser. For each gene, if the gene’s standardized, relative
expression score was >0 for a particular brain region, it was
given a brain expression weight of 1, 0 otherwise, for that
region. Therefore, across 17 brain regions, expression
weights for this domain ranged from 0 to 17 per gene.

These first two criteria facilitated the selection of genes
that are plausibly associated with ASD. Because we were
focused on genes that may interact together biologically, we
included an additional domain favoring genes that have
similar co-expression in the brain. For this, we used the
same UCSC brain expression data to calculate a quantita-
tive co-expression weight for each gene determined by the
number of other glutathione genes for which each gene’s
brain expression is correlated greater than 0.4, resulting in
co-expression weights between 0 and 63. The correlation
was calculated using the correlation function in excel 2007.

We then ranked the 64 genes based on this non-standardized
weighted sum. The highest scoring gene, GSTM2, had a score
of 42 and the lowest scoring gene, GSR, had a score of 2.
Starting with the highest scoring gene, we included as many
genes as possible using tagSNPs (described below) to fill a
384-SNP Illumina Oligo Assay Pool (www.illumina.com). A
total of 42 genes were included.

SNP selection and genotyping

We selected SNPs within each gene based on information
available in The International HapMap Project (HapMap;
www.hapmap.org) for the Centre de'Etude du Polymor-
phism Humain (CEPH) population using build 35, release
21a (Thorisson et al. 2005). We implemented the program
Tagger (http://www.broad.mit.edu/mpg/tagger/) to select
tagSNPs to cover all known CEPH HapMap SNPs in that
gene and 10 kb of flanking sequence with an r2>0.8 (de
Bakker et al. 2005). In addition, we included potentially
functional SNPs as well as SNPs in conserved regions,

Table 1 Participant characteristics of 457 Autistic Children form
Autism Genetic Resource Exchange (n=318 families)

Count (%)

Sibships 321 (mean 1.67)

Male 352 (77.62)

Race

White 419 (91.68)

Black 1 (0.22)

Unknown 37 (8.10)

Ethnicity

Non-Hispanic 380 (83.15)

Hispanic 40 (8.75)

Unknown 37 (8.10)

Family type

Multiplex 446 (98.02)

Simplex 9 (1.98)

Zygosity

DZ Twin 33 (7.22)

Triplet 6 (1.31)
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based on synonymous and non-synonymous SNPs in
HapMap and conservation information in UCSC. A
conservation score >0.5 for any position within five base
pairs of a particular SNP, using the Mammal Cons
(phastCons44wayPlacental) track, was considered con-
served. We achieved at least 85% coverage of HapMap
CEPH SNPs (minor allele frequency (MAF)>1%) with an
r2>0.8 for the majority of genes, with nearly half covered
at 100%. Because tagSNP selection was based on CEPH
samples, there may be reduced coverage of these candidate
genes among non-CEPH families in our sample, such as
those who report Hispanic ancestry.

Blood was taken from each participant by researchers in the
AGRE program and then sent to the Rutgers University Cell
and DNA Repository in New Jersey for cell line creation,
DNA isolation and storage. DNA samples for 1,518 partic-
ipants in 20 μg aliquots at 0.1 μg/μl concentration were
shipped to The Johns Hopkins Bloomberg School of Public
Health (JHSPH). Sample plating was carried out at JHSPH
and samples shipping for genotyping at the JHU SNP Center
using Illumina GoldenGate Genotyping Assay on a Beadlab
system (www.illumina.com).

Data cleaning

SNPs and DNA samples were examined for MAF, Hardy–
Weinberg Equilibrium (HWE), Mendelian inconsistencies
(MI), and missing data. MAF were calculated using SAGE
(S.A.G.E. [2008] Release 5.4.2: http://darwin.cwru.edu/)
and SNPs were dropped if the MAF was <1%. HWE was
estimated using Stata (StataCorp. 2001. Release 10.0) and
SNPs were dropped if the p value <0.001. MI was
estimated using SAGE. SNPs were dropped if greater than
5% of the individuals genotyped for that SNP contained
errors; individuals were dropped if greater than 5% of their
SNPs contained errors. Inconsistencies within families were
verified by estimating pairwise identity-by-decent (IBD)
using Plink (http://pngu.mgh.harvard.edu/purcell/plink/)
and comparing the estimated values to expected IBD
sharing for a given relative. Genotypes were defined as
missing if the Illumina Gene Call score was <0.6.
Individuals and SNPs were dropped if they were missing
greater than 5% of their data. There were 308 SNPs
remaining after data cleaning.

Statistical analysis

Interaction models

Models of possible joint effects of SNPs from genes related
to glutathione were built and evaluated using the logic
regression method adapted for trio data (Li et al. 2009a, b),
denoted as “trioLR”. The objective of trioLR is to search

Boolean (and/or/not) combinations of covariates (in this
case, SNPs) for the best model to predict transmitted
genotype status, compared to other possible child geno-
types, given parent genotypes. We assume two risk groups
in the population defined by some genotype pattern G and
assume that the probability of disease p is given via logistic
regression as: ln p

1�p

� �
¼ a þ bIG where IG indicates

whether a particular Boolean statement of interaction is
met, and α and β are effect parameters to be estimated. The
genotype interaction patterns G are based on Boolean
combinations of SNPs in dominant and recessive coding,
such as (SNPR1 ^SNPD15), indicating that subjects with the
combination of two variant alleles at SNP 1 (recessive
coding) and at least one variant allele at SNP 15 (dominant
coding) define the high-risk group. This combination can
also be displayed as a “tree” defining the particular
interaction model.

Given our trio data, trioLR is embedded in a conditional
logistic regression framework, conditioning on a case–
parent trio with one observed case genotype and three
matched pseudo-control genotypes. It uses the deviance
function to evaluate the fit of each model. A search
algorithm evaluates all possible trees (interaction models)
of a specified size (number of interacting SNPs) to identify
specific combinations that minimize the deviance. We
evaluated models containing between one and six SNPs,
and report the best models for trees of size 1–4, as higher
models did not add predictive information in our data set.

The conditional logistic model for a single SNP
compares one case genotype to three possible pseudo-
controls based on parent genotypes. However, when more
than one SNP is included in a logic tree (as in the two-SNP
example above), >3 psuedo-controls are possible if the
SNPs are uncorrelated. trioLR handles this by randomly
selecting three multi-SNP combinations consistent with
Mendelian possibilities from among the full set of multi-
SNP combinations possible given the parent genotypes.
Since pseudo-controls are randomly selected, different data
sets can be constructed for the same observed data resulting
in different trioLR results. To address this issue, we
constructed 10 separate data sets, with unique pseudo-
control draws per Boolean combination, and ran each in
trioLR. The best logic tree models for each of the 10 data
sets were recorded and the most common logic tree result
among the 10 data sets was used for final analysis
presentations and permutation testing described below.

To determine which model size is most appropriate for
our data, we employed permutation testing. For trioLR, the
response variable, or residual conditioned on a smaller
trioLR model, is permuted within each matched set after
conditioning on a particular fitted logic model. Beginning
with a null model (no predictors), we permuted response
(case genotype versus pseudo-controls) 500 times, per-
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formed trioLR, and plotted the final deviance scores for
each of the iterations in a histogram (top row of Fig. 1).
Lower scores suggest better performance and it is expected
that larger tree models will perform better; therefore the
majority of the permuted data set scores, which fit non-null
models, should fall to the left of the null model. We next
fitted the best one-SNP model from our data, then permuted
residuals from this model to create 500 data sets,
conditional on a one-leaf model. trioLR was carried out
for each of these data sets and the deviance scores plotted.
Again, all permuted data set results, allowing higher-order
models, performed better than the one-leaf model. We
continued this by conditioning on the best two-leaf model,
three-leaf model, etc. up to six leaves. As the histogram

ceases to drift left, less residual risk can be explained by
larger models and the fitted model size is selected as the last
model size for which an improvement can be seen. Since
logic regression does not involve hypothesis testing, formal
power calculations are not relevant and were not computed.
However, the recent methods paper by Li et al. (2009a)
discusses the “hit rate” for trio logic models under simulations
of two- and three-way interaction and shows that sample sizes
in the range we present here do have high probabilities of
detecting at two-way interactions and for detecting at least one
of the causal SNPs in three-way interactions.

An important aspect of trioLR, similar to case-only
studies of interaction, is that SNPs included in model
searches be uncorrelated in the general population. There-

Fig. 1 Results of the
logic regression permutation
tests. Histograms of score
results per permutation given
model size (leaf) 0 through
4. Scores for the null model
through 4 leaf model are 0.347,
0.343, 0.34, 0.337 and 0.334,
respectively
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fore, we trimmed our set of 308 SNPs to only 138 SNPs
with an r2≤0.2 between them for LR analyses. To ensure
that all glutathione-related genes are represented in the
interaction models, and that marginal signals are investi-
gated for potential interactions, the most significant SNP
from each gene was force included as well as any SNPs
with a p value <0.10. LR analyses were conducted in R (R
Development Core Team. R: A Language and Environment
for Statistical Computing 2008).

Single SNP analyses

Odds ratios and 95% confidence intervals were estimated
using conditional logistic regression with a robust
variance estimator to account for multiple affected
children per family. Matched sets consisted of an
affected child and three pseudo-controls based on the
other Mendelian-possible child genotypes given the
parent genotypes. P values were generated using likeli-
hood ratio tests of conditional logistic models with and
without terms for genotype effects, with heterozygotes and
minor allele homozygotes modeled separately compared
to major allele homozygotes as the reference. These
analyses were conducted in Stata (StataCorp. 2001.
Release 10.0).

Additional AGRE families

The present study evaluated SNPs in 318 families,
reflecting the earliest recruitment of AGRE samples.
AGRE now has a collection of over 1,000 families
available, and two genome-wide association studies
(GWAS) have been conducted on the majority of these
families including an Affymetrix 5.0 (http://www.affyme-
trix.com) panel of 500,000 SNPs on 777 families (Weiss et
al. 2008) and an Illumina Hap550 (www.Illumina.com)
panel of 550,000 SNPs on 943 families (Wang et al.
2009). For each of the associated SNPs in our analysis, we

attempted to identify exact SNP matches or SNPs that
were correlated with an r2>0.9, as evaluated using
HapMap, in either GWAS panel to allow additional
families to be analyzed as a replication of our initial
findings. This was only possible for six of the none SNPs
with p<0.05. For these, we employed identical statistical
methods to estimate conditional logistic regression odds
ratios in the subset of AGRE families not previously
included in our analyses. SNPs from the two GWAS data
sets were analyzed separately.

Results

Summary of quality assessment

A total of 1,158 individuals from 318 families were
genotyped and 336 SNPs were released by SNP Center
Quality Control criteria (genotype quality score >0.25). Of
these, eight had atypical clustering and were not included
in the analyses, 13 were dropped due to missing data, five
were dropped due Mendelian inconsistencies, and two
were dropped due to a low MAF. After these filters, no
additional SNPs were out of HWE among parents. Nine
individuals were dropped as a result of Mendelian
inconsistencies that could not be resolved. The data
cleaning resulted in 308 SNPs and 1,149 individuals from
318 families with a mean sibship size of 1.67. Participant
characteristics are listed in Table 1.

Interaction models

Table 2 displays trioLR results for the best models of size
1–4 interacting SNPs. We have included odds ratios
generated through trioLR as well as in separate conditional
logistic regression models with 95% confidence intervals,
estimated via STATA. The one-SNP model suggests
carrying either one or two common alleles at cystathione

Table 2 Logic trees, odds ratios, and 95% confidence intervals for trees including one through four SNPs

Logic tree
model size

Logic tree model Logic
regression OR

Conditional logistic regression
OR (95% CI)

1 notCTH -r (rs12737233) [i.e., 0 or 1 copies of minor allele] 0.19 0.19 (0.08, 0.49)

Complement interpretation: CTH-r – 5.14 (2.02, 13.06)

2 notCTH -r (rs12737233) AND notGLRX3-r (rs3750834) 0.39 0.39 (0.26, 0.58)

Complement interpretation: [CTH-r OR GLRX3-r] – 2.58 (1.72, 3.87)

3 [CTH-r (rs12737233) OR GLRX3-r (rs3750834)] AND GLRX-d (rs11135434) 3.78 3.78 (2.36, 6.04)

4 {[notCTH-r (rs12737233) AND notGLRX3-r (rs3750834)] OR GSTA2-d
(rs2608615)} OR GLRX-d (rs11135434)

0.17 0.17 (0.10, 0.30)

Complement interpretation: {[CTH-r (rs12737233) OR GLRX3-r (rs3750834)]
AND notGSTA2-d (rs2608615)}AND not GLRX-d (rs11135434)

– 5.79 (3.31, 10.15)
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gamma lyase (CTH) SNP rs12737233 is protective for
autism (OR=0.19, 95% CI: 0.08–0.49), consistent with our
single-SNP marginal effect results. This is referred to as
“notCTH-r” for the complement of the recessive (−r)
coding. One could also interpret this as a strong risk effect
for carrying two copies of the minor allele at this SNP
(OR=5.14, 95% CI: 2.02, 13.06). The two-SNP model
suggests carrying either one or two common alleles of this
same CTH SNP and carrying one or two common alleles
the GLRX3 SNP rs3750834 also reduces risk of autism.
This may be more easily understood via the alternative
interpretation that being homozygote for the minor allele at
either SNP (CTH-r or GLRX3-r) confers increased risk
(OR=2.58, 95% CI: 1.72, 3.87). The three-SNP model
reflects the same combination of these two SNPs with the
additional inclusion of carriers of the minor allele at
rs17216887 in GLRX (OR=3.78, 95% CI: 2.36–6.04). This
result is consistent with the one- and two-leaf models. The
four-leaf model includes a fourth gene, GSTA2, and results
in a combined risk set with an OR=5.79.

Based on the permutation tests, the optimal model size for
these data appears to be three SNPs (see Fig. 1). Figure 2
shows the risk and protective group memberships for this LR
model graphically.

Single-SNP results

Results of the single SNP analyses are presented in Fig. 3.
The majority of SNPs with a p value <0.05 are located in
four genes including CTH, alcohol dehydrogenase 5
(ADH5), gamma-glutamylcysteine synthetase, catalytic
subunit (GCLC), and GLRX3. Figures 4 shows each of
the four genes enlarged and superimposed with the linkage
disequilibrium structure (as indicated by the recombination
hot spots) of that gene. The strongest association was
observed for SNP rs12737233 in CTH, with a heterozygote
(OR=0.91, 95% CI: 0.65, 1.28) and a homozygote
(OR=4.83, 95% CI: 1.85, 12.59). Two other SNPs in this
gene showed associations for homozygote risk as well
(Fig. 4a). Using the program String (http://string-db.org/),
we created Fig. 5 to present the known interactions between
all 42 glutathione-related genes included in the present
study. Associations identified in the analyses are denoted
with a star for the marginally significant single SNP results
and an ‘I’ for the members of our three-SNP model.

Replication in independent AGRE samples

Of the nine SNPs with p values <0.05 in our primary
single-SNP analyses, six were represented either directly or
through an LD proxy on one of the GWAS panels available
on additional AGRE samples (Table 3). Two SNPs,
rs524553 and rs761141, both located in GCLC, approached
nominal statistical significance in independent AGRE
samples (Table 3), with similar odds ratio profiles.

Discussion

We evaluated gene–gene interactions between SNPs located in
42 genes encoding enzymes involved in glutathione (GSH)
metabolism or that utilize GSH as a co-factor in enzymatic
reactions. The most compelling evidence from interaction
models point to the genes CTH and GLRX. Our three-SNP
model showed that having both minor allele variants of either
rs12737233 (CTH) or rs3750834 (GLRX3) combined with at
least one variant allele of rs11135434 in GLRX increases the
risk for autism almost fourfold. Additional stepwise condi-
tional logistic regression models were run to evaluate whether
this three SNP result is primarily due to the marginal effects
of a single SNP. While we could not fit a fully saturated
model due to lack of observations in some three-way
interaction groups, stepwise logistic regression models did
show that no main effect or two-way interaction, adjusting for
all three SNPs, was as strong as this three-way combination.

The permutation results suggest that the three-SNP
model is the best fit for our data, though several SNPs
may be good candidates for future studies. For example, we

            “AND“ 

                             “OR”            rs11135434 (GLRX)-d 

rs12737233 (CTH)-r     rs3750834 (GLRX3)-r 

 GLRX-d 

 AA Aa aa 

CHR-r “OR” GLRX3-r= 1  

CHR-r “OR” GLRX3-r= 0  

  CTH-r 

  AA Aa aa 

GLRX3-r BB   

Bb   

bb  

GLRX3-r BB 

Bb 

bb 

CTH-r 

AA Aa aa 

2-leaf model 

3-leaf model 

Fig. 2 Final three-leaf model (rs12737233 (CTH)-r “OR” rs3750834
(GLRX3)-r). Two-leaf model shown in purple and final, three-leaf
model shown in red
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ran 10 iterations of pseudo-control data sets and while the
two-SNP model with CTH and GLRX3 had the highest
posterior frequency (50% of the 10 replicates), a model
with the recessive rs10439143 of GPX4 or the recessive

rs11017128 (GLRX3) was the best two-SNP model in four
of the 10 iterations, or 40% posterior frequency (not
shown). Additionally, rs3743853 of hydroxyacyl glutathi-
one hydrolase, also known as GLO2, was in several three-
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and four-SNP models and therefore may be a good
candidate gene for future studies.

The best three-SNP model included a SNP in CTH and a
SNP from two separate glutaredoxins (GLRX and GLRX3).
Glutathione is a tripeptide comprised of cysteine, glutamate
and glycine (Townsend et al. 2003) and CTH is essential to
the production of glutathione. CTH catalyzes the conver-
sion of cystathione to cysteine in the transulfuration
pathway. The production of gamma-glutamylcysteine is
the rate limiting step in the production of GSH (Maher
2006), due to the limited availability of cysteine (the
oxidized form of the amino acid cystine). Cysteine can be
acquired from other sources, such as the diet or produced
through the transulfuration of homocysteine (Wang et al.
2004); however, stressful conditions requiring high levels
of GSH would be more harmful in individuals without
the full capacity of CTH. In summary, CTH provides one
source of cysteine, whose bioavailability is required for
synthesis of GSH. These results could suggest a decrease
in the function of this enzyme therefore causing a
decrease in the availability of one source of cysteine.
This in turn would reduce GSH levels thereby potentially
affecting an individual’s ability to combat oxidative

stress. However, results from the small independent
sample do not confirm this finding and replication and
further characterization of CTH is necessary to identify a
potential role in autism risk.

Glutaredoxins were first identified for their ability to
transfer electrons to ribonucleotide reductase, an essential
enzyme in DNA synthesis (Lillig et al. 2008), but they have
additional roles including counterbalancing oxidative stress.
Glutaredoxins are the enzymes responsible for formation
and reduction of protein thiols and GSH, or glutathiony-
lated proteins and therefore regenerating the activity of
these proteins (Maher 2006; Lillig et al. 2008). They are
involved in a glutathione redox couple with GSH/GSSG,
glutathione reductase and NADPH (Lillig et al. 2008). An
example of one such reaction involves ascorbatic acid (one
form is commonly known as vitamin C), an important anti-
oxidant, which GLRX can regenerate in a GSH-dependent
reaction following its oxidation (Lillig et al. 2008).

Glutatredoxins may play a role in nerve cell function in
the presence of oxidative stress (Maher 2006) and there is
evidence of GLRXs in oxidatively stressed neurons (Lillig
et al. 2008). Conditions such as Parkinson’s disease (PD),
Alzheimer’s disease (AD) and hypoxia have been previ-

Fig. 5 Presentation of known interactions between glutathione-related
genes using String (http://string-db.org/). Genes demonstrating a
marginally significant P value in the single gene analyses are noted

with a blue star (and include CTH, ADH5, GCLC, and GLRX3
(TXNL2)) and the three-way interaction is denoted with an ‘I’ and
includes CTH, GLRX3 (TXNL2), and GLRX
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ously associated with oxidative stress. Furthermore, com-
parisons of AD versus control brain samples revealed a
reduction in GLRX1 expression levels (Lillig et al. 2008).
Similarly, a protective role of GLRXs in PD has also been
observed (Lillig et al. 2008). Glutaredoxin 1 is also induced
during pregnancy and expression levels have been associ-
ated with preeclampsia and growth restriction (Lillig et al.
2008). The role of GLRX3 has been primarily identified for
its role in the life cycle of viruses and may have a role in
cell activation associated signaling pathways or in response
to stress signals (Lillig et al. 2008).

One advantage of logic regression is the ability to detect
gene–gene interactions even in the absence of marginal
effects, therefore enhancing gene discovery. While several of
the SNPs in our final interaction models did show significant
marginal effects (suggestive marginal associations (p<0.05)
were observed between several SNPs located in four genes
including: CTH, ADH5, GCLC, and GLRX3), others did not
including: rs11135434 (GLRX), with a marginal effect p
value=0.89, rs2608615 (GSTA2), p value=0.74, as well as
the suggestive SNP rs10439143 (GPX4) which had a
marginal effect p value=0.11. A second advantage is an
ability to discover interactions that may not have been found
using traditional interaction models in logistic regression. For
example, our two-SNP model revealed an interaction between
SNPs in CTH and GLRX3. However, using traditional
stepwise conditional logistic regression methods, we would
not have been able to model this as a multiplicative
interaction since there are no individuals who are recessive
for both the CTH and GLRX3 SNPs simultaneously.

The potential implications of variation in the remaining
genes with borderline marginal significance, including
GCLC and ADH5, are worth mentioning. As with CTH,
GCLC is vital in the production of glutathione. In addition
to the significant association in the primary data set, two
SNPs of GCLC, rs524553 and rs761141, approached
nominal statistical significance in independent AGRE
samples, with similar odds ratio profiles. There are two
enzymes responsible for the synthesis of glutathione and
include gamma-glutamylcysteine lygase (GCL; formally
called synthetase) and glutathione synthase (Townsend et
al. 2003). GCL catalyzes the first and rate-limiting step in
GSH synthesis. Gamma-glutamyl cysteine ligase is com-
posed of two subunits, a regulatory (GCLM) and catalytic
subunit (GCLC; Maher 2006). Gamma-glutamyl cysteine
ligase catalyzes the integration of L-glutamate and cysteine
forming gamma-glutamyl-cysteine. This is the final product
prior to the addition of glycine to form the full tripeptide of
glutathione. In mice, a GCLC deficiency leads to embry-
onic death (Maher 2006). In studies of rat neurons, the
absence of either the regulatory or catalytic subunit of GCL
led to cell death in the presence of nitric oxide or glutamate
(two neurotransmitters), suggesting particular importance inT
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neuronal cells (Maher 2006). Small changes in GCLC
resulting from polymorphisms would be expected to have
more subtle effects.

Despite only one nominally significant SNP, ADH5
contained two other SNPs with borderline significance
including one SNP (rs1154415) with a significant odds ratio
(OR=1.54, 95% CI: 1.06, 2.24) comparing the homozygous
GG genotype to the homozygous AA (Figs. 3 and 4).
Alcohol dehydrogenase 5 oxidizes glutathione conjugates,
most importantly formaldehyde–glutathione (Koivusalo et al.
1989) thereby eliminating the formaldehyde and allowing
GSH to be available for further reduction reactions. ADH5
protects from nitrositive stress and is specific for nitro-
soglutathione (Liu et al. 2001). In addition, ADH5 and other
alcohol dehydrogenases have been studied in association
with alcohol metabolism and dependence (Edenberg 2007).
Oxidative stress has been implicated as the mechanism by
which alcohol causes detrimental affects to the fetus
(Henderson et al. 1999) and altered alcohol metabolism due
to variations in alcohol metabolizing genes, could increase
oxidative stress. However, it should be noted that the ability
of ADH5 to oxidize ethanol is limited.

Each of these results should be interpreted with caution,
as we did not adjust for multiple comparisons. Adjusting
for multiple testing is an ongoing debate in genetics
research. Traditional adjustments include those that control
the family wise error rate (FWER), such as Bonferroni and
Sidak. However, for our analyses, these adjustments are
overly conservative given the correlation between SNPs
(Fallin and Matteini 2009) and the assumption of a global
null hypothesis. While methods exist to take the correlation
into consideration, for example estimating and adjusting for
the number of independent tests rather than the overall
number of tests, even these aim to protect the FWER,
which controls for the probability of at least 1 significant
result assuming all tests are truly null (Fallin and Matteini
2009 Jan). However, given the a priori gene selection and
prioritizing with consideration of multiply associated genes,
as well as SNP selection focusing on coverage as well as
potentially functional SNPs, this global null hypothesis may
not be appropriate. Therefore, we have displayed unadjust-
ed p values and encourage both replication and biological
plausibility as validation techniques for these initial find-
ings. The interaction modeling should be considered as
hypothesis generating in its origin, and is thus not directly
amenable to the multiple testing frameworks. In the trioLR
analyses, we relied on permutation testing to gage whether
signals occurred by chance, and again encourage both
replication and biological plausibility as additional mile-
stones for validation.

It is important to note that we did not observe associations
with glutathione genes previously implicated in ASDs (James
et al. 2006; Buyske et al. 2006; Williams et al. 2007; Ming et

al. 2010). We believe our pathway approach has advantages
over looking gene-by-gene and may not have replicated
these particular findings due to differences in samples.
Further, we did not replicate some of our single-gene
findings in the independent set of AGRE families. This is
however difficult to interpret since many of our SNPs/genes
were not well represented on the GWAS panels available.
Nevertheless, our interaction approach should be considered
exploratory and provoke more attention to glutaredoxins via
replication and functional analyses.

In conclusion, our results confirm that variation in
glutathione pathway genes, perhaps through multiple gene
effects, may contribute to autism risk. Using novel
methods, we were able to detect potential gene–gene
interactions, in some cases in the absence of marginal
effects. This demonstrates the importance of evaluating
gene–gene interaction in future genetic studies of autism
and further characterizing the role of oxidative stress in the
etiology of autism.
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