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Abstract: Antimicrobial resistance is a global health problem with strong social and economic 

impacts. The development of new antimicrobial agents is considered an urgent challenge. In this 

regard, Antimicrobial Peptides (AMPs) appear to be novel candidates to overcome this problem. 

The mechanism of action of AMPs involves intracellular targets and membrane disruption. Al-

though the exact mechanism of action of AMPs remains controversial, most AMPs act through 

membrane disruption of the target cell. Several strategies have been used to improve AMP activity, 

such as peptide dimerization. In this review, we focus on AMP dimerization, showing many exam-

ples of dimerized peptides and their effects on biological activity. Although more studies are neces-

sary to elucidate the relationship between peptide properties and the dimerization effect on antimi-

crobial activity, dimerization constitutes a promising strategy to improve the effectiveness of 

AMPs. 
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1. INTRODUCTION: ANTIMICROBIAL PEPTIDES 
(AMPs) 

 The occurrence of pathogenic microorganisms resistant 
to antibiotics has been increasing, while few new antibiotics 
have been discovered and approved for commercialization 
[1]. This situation has led to a global health problem, with 
strong social and economic impacts [2]. Therefore, there is 
an urgent need for new molecules to control diseases caused 
by these resistant microorganisms. Among these molecules, 
Antimicrobial Peptides (AMPs) appear to be an interesting 
alternative since they act through mechanisms in which the 
pathogens rarely develop resistance [3]. In contrast to con-
ventional antibiotics, which exert their toxic activity by bind-
ing to specific targets, most AMPs have been considered 
membrane-destabilizing molecules. 

 Antimicrobial peptides usually show a broad spectrum of 
action against gram-negative and gram-positive bacteria [4-
8], fungi  [9], viruses [10] and tumor cells [11, 12]. Although 
the main mechanism of action is membrane disruption [13], 
other mechanisms include inhibiting intracellular targets, 
such as DNA and RNA, and inhibiting protein synthesis and 
microbial enzymes (Figure 1). The exact mechanism of ac-
tion of AMPs in the membrane of the target cell remains 
controversial and is dependent on the peptide concentration 
and the lipid composition [14, 15]. 
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 The broad spectrum of action, the rapid microbicide ac-
tivity and the ability to be used in combination with other 
antibiotics make studies with AMPs an increasing line of 
research, showing the high potential of these molecules [16, 
17]. The number of publications related to AMPs is growing 
exponentially, indicating that research on this topic is a cur-
rent and important subject (Figure 2). 

1.1. AMPs Properties 

 Despite the remarkable biological diversity from which 
the AMPs were discovered, these molecules have certain 
characteristics in common. Membrane-active AMPs exhibit 
common physicochemical properties that characterize them 
as a special group of biomolecules: 1) normally consist of 12 
to 50 amino acid residues, 2) have a net positive charge, 3) 
have approximately 50% hydrophobic residues, and 4) form 
an amphipathic α -helix in contact with the membrane. 
Cationicity is due to the presence of basic amino acid resi-
dues such as arginine and lysine. Many models show that 
this character is crucial for the initial attraction of AMPs on 
the membrane surface. Amphipathicity is characterized by 
the separation of the α-helix in a hydrophobic and a hydro-
philic face. The amphipathic character is formed by a peri-
odic sequence of polar and apolar residues in a range of three 
to four amino acid residues. Thus, the polar and apolar side 
chains of amino acid residues are positioned appropriately 
for their segregation between opposite faces [18-21]. 

 

1875-5305/19 $58.00+.00 © 2019 Bentham Science Publishers 

http://crossmark.crossref.org/dialog/?doi=10.2174/0929866526666190102125304&domain=pdf


Dimerization of Antimicrobial Peptides Protein & Peptide Letters, 2019, Vol. 26, No. 2    99 

1.2. Mechanism of Action of AMPs 

 The molecular understanding of the mechanism of action 
of AMPs is still not entirely clear [22, 23]. The model known 
as "barrel-stave" pores (Figure 1A) describes the formation 
of barrel-shaped pores, where each stave can be represented 
by a peptide chain. In this model, the hydrophobic face of the 
peptide interacts with the hydrophobic chain of the phos-
pholipids, while the hydrophilic surface remains oriented 
inside the pore. According to the "toroidal pore" (Figure 1B), 
the peptides remain associated with the head groups of the 
phospholipids, inducing a curvature in the lipid bilayer. This 
model differs from the "barrel-stave" model because in addi-
tion to the peptides, the polar head groups of the lipids also 
form part of the pore. An alternative to the classic “toroidal 
pore” is the so-called “disordered toroidal pore”, which pre-
dicts that the inside of the pore would not be well structured, 
showing higher entropy (Figure 1D). Finally, the mechanism 
called “carpet-like” or “detergent-like” model (Figure 1C) 
proposes membrane permeabilization by the means of the 
detergent action of the peptides without the formation of 
pores. Thus, when a "threshold concentration" of the peptide 
molecules on the surface of the membrane is reached, micel-
lar aggregates occur, starting the process of solubilization. It 
has been suggested that this mechanism can be considered an 
extreme form of the “toroidal pore” mechanism [24-27]. 

 Even though widely studied for the last three decades, the 
mechanism of action of AMPs remains elusive [28, 29]. The 
knowledge of the mechanism of action of a particular bioac-
tive molecule is always an essential issue to support its activ-
ity and is important in the design of new molecules. In this 
regard, various techniques have been used to evaluate the 
mechanism of action, especially nuclear magnetic resonance,  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Evolution of the number of publications about AMPs 

(Source: PubMed, 2018. Search criteria: “antimicrobial peptides” in 

title/abstract). 

 

molecular dynamics, isothermal titration calorimetry, optical 
microscopy, leakage of carboxyfluorescein, fluorescence 
spectroscopy and circular dichroism, and others [30-33]. 

2. RATIONAL DESIGN OF AMPs: DIMERIZATION 

 Innumerable synthetic variants of AMPs have been pro-
duced, but few are able to reach clinical application. The 
main reasons are the low stability in physiological conditions 
and the lack of selectivity to prokaryotic cells [34, 35]. To 
increase the stability of AMPs against proteases, different 
strategies have been addressed, highlighting peptide dimeri-
zation. Many studies have shown that regardless of the 
mechanism of action, the aggregation/oligomerization of 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mechanism of action proposed for AMPs: “barrel-stave” pore (a); “toroidal pore” (b); “detergent-like” (c); “disordered toroidal 

pore” (d) and intracellular targets (e). 
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AMP molecules is a prerequisite for its action. Therefore, in 
addition to the factors described above, it is currently sug-
gested that peptide oligomerization also contributes to its 
activity and selectivity [25, 36-40]. Considering these stud-
ies, several AMPs were dimerized to increase their antimi-
crobial activity and selectivity [41-47]. In addition, dimeric 
versions have the potential to be more resistant to proteases 
compared to monomers. The peptide A3-APO is an example; 
it retains full antibacterial activity in the presence of mouse 
serum [48]. 

2.1. Strategies for AMPs Dimerization 

 Different strategies have been applied for the synthesis of 
dimeric peptides. Dimers have been synthesized mainly by 
disulfide bonds, by incorporating cysteine residues in any 
position of peptide, and by amide bonds, by incorporating 
lysine or glutamate residues in the C- or N-terminal position, 
respectively (Figure 3) [37, 41, 43, 49-56].  

 

 

 

 

 

 

 

Figure 3. Common dimerization strategies. Peptides linked by a 

disulfide bond. The figure shows cysteine residues at the C-terminal 

position but residues could be at any position (a). C-terminal lysine-

linked peptides (b). N-terminal glutamate linked peptides (c). 

 

 In the case of disulfide bond-linked peptides, cysteine 
residue can be incorporated as an extra residue (if not present 
as a constituent residue of the peptide) or by substituting a 
particular residue (generally a serine residue, if present, due 
to the similar side chain structure). The substitu-
tion/incorporation can be in any position of the peptide se-
quence, given the possibility of testing several dimer ana-
logs. However, it is important to note that disulfide dimer 
synthesis involves an additional step after peptide chain 
elongation. Cysteine residues must be oxidized to produce 
the dimeric molecule. This procedure is generally achieved 
by air oxidation and significantly reduces the yield of peptide 
synthesis [55, 57, 58]. On the other hand, amide bond linked 
peptides can be produced by the incorporation of a lysine 
residue for C-terminal dimerization or glutamate residue for 
N-terminal dimerization. The first approach uses the alpha 
and epsilon amino groups of a lysine residue to produce am-
ide bonds with the alpha amine groups of the first residue of 
the two-peptide chains. Fmoc-Lys(Fmoc)-OH can be used 
for this purpose by attaching it to the resin, and after alpha 
and epsilon-Fmoc group deprotection, the two peptide chains 
are simultaneously elongated. The second approach requires, 
before the cleavage from resin, the use of Fmoc-Glu-OH 
with its alpha and delta carboxylic group without the protec-
tion group, to link two elongated peptide chains [37, 52, 59]. 
It must be considered that C-terminal dimerization produces 
a dimeric molecule with two free N-terminal amines (posi-

tively charged at biological pH) from the first residue. On the 
other hand, N-terminal dimerization produces only one free 
N-terminal amines when an amino acid like glutamate is 
used as a linker. This difference could be responsible for the 
different antimicrobial activities of these analogs. It is well 
established that N-terminal modifications could affect the 
activity of AMPs [60-62]. We have showed that the charge 
of the N-terminus plays an important role in driving the se-
lectivity of the AMP peptides. By modification of N-
terminus, the peptide was active only against Gram-positive 
bacteria [61]. In this manner, dimerization on N-terminus is 
not a good strategy to improve biological activity. 

2.2. Linker and Spacers 

 Linkers and spacers are molecules used to link and sepa-
rate other molecules to avoid interactions among them, once 
biological activity can be affected by the distance between 
the molecules. In nature, they are used to connect and sepa-
rate many protein domains without interfering in their func-
tions [63]. They are also employed to link peptides to form 
multimeric molecules such as peptide dimers, trimers, 
tetramers and oligomers [64, 65]. For the dimerization of 
peptides, linkers are used to attach two molecules, which can 
be identical or different, resulting in homodimers and het-
erodimers, respectively. As an example, in Figure 3, lysine 
and glutamic acid are used as linkers for the formation of a 
homodimer peptide. The linkers possess functional groups as 
carboxyl or amine groups, which are responsible for attach-
ing to the C or N terminus of peptides. In addition, spacers 
can be used, but they are not essential in the dimerization of 
peptides; nevertheless, they are very useful, especially when 
the molecules require space between them to conserve or 
improve its biological activity (Figure 4). 

 Lorenzón and coworkers reported the effects of different 
spacers used for Ctx-Ha peptide dimerization (sequence: 
Gly-Trp-Leu-Asp-Val-Ala-Lys-Lys-Ile-Gly-Lys-Ala-Ala-
Phe-Asn-Val-Ala-Lys-Asn-Phe-Leu-CONH2). The dimeric 
forms were obtained by the addition of a Lys residue at the 
C-terminus of the peptide Ctx-Ha. The Fmoc-8-amino-3,6-
dioxaoctanoic acid contains an ethoxy group and was used as 
a polar spacer, while the Fmoc-8-amino-octanoic acid con-
tains methyl groups and was used as an apolar spacer; how-
ever, both spacers are the same size. The antimicrobial activ-
ity was better for the peptide containing the polar spacer, 
which was due to the additional interaction with the head 
groups of the membrane phospholipids or cell wall. The apo-
lar group decreased the initial interaction and the biological 
activity [49]. Thus far, the results demonstrate that linker 
flexibility and polarity play key roles in hemolytic and bio-
logical activities in antimicrobial peptide dimers [49, 56, 64]. 
Linkers and spacers can be used to synthesize dimeric forms 
of peptides efficiently; however, they need to be carefully 
designed, with consideration of the polarity, length and posi-
tion, to assure that they do not decrease the biological activ-
ity of the peptides. 

3. DIMER vs MONOMER 

3.1. Magainin 2 Dimers 

 The AMP Magainin 2 (MG2) was one of the first AMPs 
discovered and might be one of the most studied since its 

a) b) c) 
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discovery by Michael Zasloff in 1987. MG2 belongs to the 
magainin family, which are AMPs isolated from the skin of 
Xenopus laevis [14, 66, 67]. In addition to most AMPs, MG2 
lacks a defined secondary structure in water but adopts an 
amphipathic helical structure in the presence of membrane 
mimetics or secondary structure-inducing solvents. In terms 
of biological activity, the peptide has a wide spectrum of 
action against gram-positive and gram-negative bacteria, 
fungi, protozoa, and even cancer cells [68-70]. This multi-
functional activity makes MG2 a very interesting molecule 
to study, with great potential as a new drug. Since its discov-
ery, a large number of MG2 analogs have been synthesized 
in an attempt to increase its biological activity and improve 
its pharmacotechnical properties [71-74]. MG2 dimerization 
has led to an increase in its antimicrobial activity. Table 1 
shows the effects of dimerization on the antimicrobial activ-
ity of MG2 dimers. The molecules are slightly different, al-
though the three versions correspond to molecules dimerized 
by the extreme C-terminus 

 Lysine-linked MG2 dimers showed an increased antibac-
terial activity of 8-16 times when compared to the mono-
meric MG2 peptide. This C-terminal lysine-linked increased 
the proximity and orientation of peptide chains. On the other 
hand, both cysteine-linked dimers showed an increased anti-
bacterial activity of 2-4 times. It is important to note that the 
linkage of chains by a lysine comprises four aliphatic car-
bons, while a disulfide bond comprises just one. This differ-
ence in length could affect the interactions and flexibility of 
the chains. Specific modifications of the sequence (F12W, 
N22C, and the addition of βA) might also be responsible for 
the differential increase in antimicrobial activity of the di-
meric versions. N-terminal dimerization using glutamic acid-
linked did not promote the increase of antimicrobial activi-
ties of MG2 [52]. This result showed that the best linkage 

position to produce a dimeric molecule is the C-terminus 
position. The C-terminal dimerization preserve two free N-
terminal amines charged positively while N-terminal dimeri-
zation could affect the charge and the initial interaction with 
the membrane. The dimerization of (MG2)2K did not change 
the peptide structure and initial interaction and/or mechanism 
of action, but promote the proximity of the peptide chains 
and decrease the number of molecules required to pore for-
mation and increase the biological activity.     

3.2. Aurein 1.2 Dimers 

 Several AMPs from the aurein family, which were origi-
nally isolated from the Australian frogs Litoria aurea and 
Litoria raniformis, have been extensively studied. One of the 
most active peptides of the aurein family is aurein 1.2 (AU), 
a short 13-residue peptide with a molecular mass of 1480 g 
mol

-1
. Aurein 1.2 is active against microorganisms and tumor 

cells and possesses low toxicity against red blood cells [52, 
75]. Lorenzón and coworkers synthesized two AU dimers: 
(AU)2K and E(AU)2, with lysine and glutamic acid residues 
used as linkers, respectively. Circular dichroism spectra indi-
cated that these AU dimers have a “coiled coil” structure in 
water, while AU displayed a typical spectrum for disordered 
structures. Hemolytic and vesicle permeabilization assays 
showed that AU has a concentration-dependent activity, 
while this effect was less evident for the dimeric versions. In 
addition, carboxyfluorescein release experiments with LUVs 
showed that both dimer and monomeric peptides were able 
to permeabilize vesicles, although the ratio of leakage re-
sponse to increases in peptide concentration were different. 
Optical microscopy experiments showed that both versions 
induced pore opening and promoted the burst of the vesicles. 
In addition, isothermal titration calorimetry on the LUVs 
also showed significant differences in peptide membrane 

 

 

 

 

 

 

Figure 4. Examples of spacers with different lengths and polarities that can affect the biological activity of a peptide. 

 

Table 1. Antimicrobial activity of MG2 dimers. 

Increase in Antibacterial  

Activity
a
 Peptide Name Sequence 

E. coli S. aureus 

References 

(MG2)2K (GIGKFLHSAKKFGKAFVGEIMNS)2K 16X 8X [59] 

MG2-CC (GIGKFLHSAKKWGKAFVGEIMNSβAC)2 2X 2X [50] 

(MG2N22C)2 (GIGKFLHSAKKWGKAFVGEIMCS)2 2-4X ND [51] 
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interactions. Together, these data clearly demonstrated that 
dimerization changes the mechanism of action of AU [52]. 

 As shown in Table 2, dimerization of aurein 1.2 de-
creases the ability of the peptide to inhibit the growth of bac-
teria and fungi. (AU)2K was unable to inhibit the growth of 
C. albicans but promoted the aggregation of cells, which was 
elucidated as an interaction of the peptides with yeast cell 
wall carbohydrates called mannans [76]. In addition, its abil-
ity to aggregate yeast cells makes the dimeric versions of AU 
a promising future drug candidate for preventing C. albicans 
adhesion to biological targets and medical devices, such as 
prostheses and catheters, preventing diseases caused by this 
fungus [75, 76]. 

Table 2. Antimicrobial activity of AU dimers. 

MIC (µmol/L) 
Peptide 

E. coli S. aureus C. albicans 

AU 16 8 32 

(AU)2K 128 >128 >128 

E(AU)2 128 >128 >128 

 

 These results indicated that the effect of the dimerization 
on biological activity of peptides could change the AMP 
mechanism of action and their biological activity. The 
change of the structure in solution support different initial 
interactions with the cell wall and change the mechanism of 
action of aurein 1.2. Melittin peptide also exhibited the same 
behavior (as mentioned below).  

3.3. Other Peptides 

 Several research groups have studied the effects of di-
merization on the biological activity of AMPs. In addition to 
the increase in antimicrobial activity and its velocity 
achieved, researchers were also attracted by the potential 
increase in other properties promoted by dimerization. Table 
3 and 4 shows various AMPs that have been used as a tem-
plate for studying the effects of dimerization. Specifically, 
we showed some peptides properties and the effects of di-
merization on antimicrobial and hemolytic activities. The 
effects of dimerization on the biological activity of AMPs 
showed that the increase in biological activity is not a gen-
eral rule. It is clear that dimerization affects the biological 
activity of the peptides, sometimes by increasing the antimi-
crobial activity, sometimes decreasing. In addition, some 
dimeric versions are hemolytic. According to some authors, 
the improvement in antimicrobial activity is correlated with 
an increase in hydrophobicity and net positive charge of its 
surface area, which enhances LPS binding and neutralization 
[77-79]. Furthermore, the ability to aggregate and to adopt a 
well-defined structure could be important to enhance the 
antimicrobial activity of dimers [54], since dimerized pep-
tides have a lower concentration dependence for reaching the 
permeabilization threshold compared with the monomers. 
The "preassembling state" of peptide dimers leads to a re-
duced number of molecules necessary to form effective pore 
structures in membrane bilayers. Additionally, the peptide  
 

chain proximity imposed by dimerization could also reduce 
the time required to form those pore structures. However, 
some studies have shown that dimeric peptides could lose 
their microbial properties. An acceptable explanation is that 
the dimers could be inhibited from passing through the cell 
walls of microbial cells [49, 80]. Moreover, the interaction 
with cell wall components, the conformational changes or 
the peptide aggregation prior to membrane binding could 
explain the lower capacity of some dimeric AMPs reaching 
the membrane of microorganisms [75]. These controversial 
studies show that the effects of dimerization of AMPs need 
to be better studied. Then, further work is needed to deter-
mine the parameters that must be taken into account when 
choosing an AMP to be dimerized. 

 The data presented in Tables 3 and 4 showed that most of 
the peptides that have an increased antimicrobial activity 
have been dimerized at the C-terminus. As discussed for 
Magainin 2, C-terminal dimerization preserve two free N-
terminal amines charged positively, while N-terminal di-
merization decrease the positive charge, affecting the initial 
interaction with the membrane. Dimeric peptides derived 
from 1037 and anapolin(J-AA)/RW are exceptions because 
those peptides were dimerized by N-terminus and have an 
increased activity. In the case of peptide 1037, N-terminus 
dimerization were achieve by the use of a cysteine (not glu-
tamate) preserving two amines charged positively [81]. J-
AA/RW dimers have lost N-terminus positive charges, but 
the overall charge/length ratio is high enough to minimize 
the reduced charge due to dimerization [82]. In our under-
standing, there is not a clear pattern of the effect of the 
charge/length relationship. However, the higher charge/size 
ratio may favor the activity of dimeric versions by the elec-
trostatic repulsion of the peptide chains, preventing aggrega-
tion. The peptide secondary structure changes imposed by 
dimerization also affect biological activity. Dimeric peptide 
with increased antimicrobial activity has in common the 
same structure in solution and in membrane mimetics than 
monomer. The proximity of the peptides chains and decrease 
the number of molecules required to pore formation may 
explain the increase in activity. In this case, we believe that 
the mechanism of action is the same for both peptides.  

 It is interesting to note that dimerization of Ctx-Ha, 
aurein 1.2 and melittin peptides decreased the antimicrobial 
activity but increased the hemolytic activity and the percent-
age of membrane permeabilization. The red blood cells and 
vesicle have only lipids on the surface, lacking the compo-
nents of bacterial cell walls, as peptidoglycan. The change of 
the structure in solution promote different initial interactions 
with the cell wall, as polysaccharide, and change the mecha-
nism of action [76]. Peptide di-K18Hc is the only one with 
reduced toxicity, plus retained antimicrobial activity in ele-
vated concentrations of NaCl or MgCl2 [53].   

CONCLUSION 

 Several AMPs were linked together as dimers to improve 

the antimicrobial activity, although, for some AMPs, dimeriza-

tion results in a decrease of activity. It appears that the assem-
bled-state of dimers contributes to the proximity and orientation 

of peptide chains, enhancing pore formation and antimicrobial  
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Table 3. Dimeric antimicrobial peptides with increased activity. 

Peptide 
Linker 

Unit/Position 
Sequence Length Charge 

Charge/ 

Length 

MON and DIM  

structure 

(Aqueous/ 

Membrane Mimetic) 

Antimicro- 

bial Activity 

Hemolytic 

Activity 

Other 

Effects 

Referen 

ces 

DH 

(histatin) 
K/C-term KRKFHEKHHSHRGY 14 +8 0.67 No information 

Increased  

against 

 S. aureus 

Not deter-

mined 

Same “in vivo” 

activity 

[41] 

Ctx-Ha 
K-AEEAc/C-

term 
GWLDVAKKIGKAAFNVAKNFL 21 +4 0.19 

MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Increased  

against gram- 

Increased Higher  

velocity and 

percentage of 

membrane 

 permeabilization 

[49] 

Magainin 2 βAC/C-term GIGKFLHSAKKFGKAFVGEIMNSAC 25 +4 0.16 No information 

Increased  

against gram- 

 and gram+ 

Increased Higher  

membrane  

permeabilization 

[50] 

Magainin 2 C/C-term GIGKFLHSAKKFGKAFVGEIMCS 23 +4 0.17 

MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Increased  

against gram- 

Increased Higher  

membrane  

permeabilization 

[51] 

Magainin 2 K/C-term GIGKFLHSAKKFGKAFVGEIMNS 23 +4 0.17 

MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Increased  

against gram- 

 and gram+ 

Increased Higher velocity 

 and percentage 

 of membrane 

permeabilization 

[59] 

di-K18Hc C/C-term WLNALLKKGLNCAKGVLA 18 +4 0.22 

MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Increased  

against  

antibiotic- 

resistant  

bacteria 

Decreased Active in  

elevated  

concentrations 

 of NaCl or  

MgCl2 

[53] 

V2-dimer K/C-term RGRKVVRRKK 10 +7 0.7 No information 
Increased  

against gram- 

Not deter-

mined 

Broader  

spectrum of 

antimicrobial 

activity 

[54] 

p-BthTX-I C/C-term KKYRYHLKPFCKK 13 6+ 0.46 

MON: random  

coil/random coil 

DIM: random  

coil/random coil 

Increased  

against gram- 

 and gram+ 

Similar None 

[55] 

J-AA/ J-RR 
Htrz (triazole) 

/N-term 
GLLKRIKTLL / RRWWRF 10/6 4+/4+ 0.4/0.67 

MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Increased Similar None 

[82] 

cys-

pep1037 
C/N-term KRFRIRVRV 9 6+ 0.67 No information Increased 

Not deter-

mined 
None 

[81] 
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Table 4. Dimeric antimicrobial peptides with decreased activity. 

Peptide Linker 

Unit/Position 

Sequence Length Charge Charge/ 

Length 

MON and DIM 

structure 

(Aqueous/Membrane 

Mimetic) 

Antimicrobial 

Activity 

Hemolytic 

Activity 

Other 

Effects 

References 

Ctx-Ha K/C-term GWLDVAKKIGKAAFNVAKNFL 21 +4 0.19 MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Decreased 

against gram+ 
Increased 

Higher velocity 

and percentage of 

membrane 

permeabilization 

[49] 

Ctx-Ha K-Aoc/C-term GWLDVAKKIGKAAFNVAKNFL 21 +4 0.19 MON: random 

coil/helicoidal 

DIM: random 

coil/helicoidal 

Decreased 

against gram+, 

gram- and 

yeast 

Increased 

Higher velocity 

and percentage of 

membrane 

permeabilization 

[49] 

Aurein 

1.2 

K/C-term GLFDIIKKIAESF 13 +1 0.08 MON: random 

coil/helicoidal 

DIM: coiled-

coil/helicoidal 

Decreased 

against gram+, 

gram- and 

yeast 

Increased 

Dimerization 

changes the 

mechanism of 

action 

[83] 

Aurein 

1.2 

E/N-term GLFDIIKKIAESF 13 +1 0.08 MON: random 

coil/helicoidal 

DIM: coiled-

coil/helicoidal 

Decreased 

against gram+, 

gram- and 

yeast 

Similar 

Dimerization 

changes the 

mechanism of 

action 

[83] 

PST13-

RK 

C/C-term KKKFPWWWPFKKK 13 +7 0.54 MON: ND/β-turn 

DIM: ND/β-turn 

Decreased 

against gram+ 

and gram- 

Not 

determined 

Mammalian cell 

toxicity 

[37] 

PST13-

RK 

K/C-term KKKFPWWWPFKKK 13 +7 0.54 MON: ND/β-turn 

DIM: ND/β-turn 

Decreased 

against gram+ 

and gram- 

Not 

determined 

Mammalian cell 

toxicity 

[37] 

Melittin C/middle of 

polypeptide chain 

GIGAVLKVLTTGLCALISWIKRKRQQ 26 +5 0.19 MON: random 

coil/helicoidal 

DIM: helicoi-

dal/helicoidal 

Decreased 

against gram+ 

and gram- 
Increased - 

[56] 

ND: Not Determined 

 

activity. The factors that lead a monomeric AMP to become a 

more active dimeric molecule are not well established. How-

ever, several factors must be considered for the design of a new 
dimeric antimicrobial peptide. The examples analyzed in this 

work showed that peptide N-terminus charge, linker position, 

structure, and interaction with cell wall components could affect 
the biological activity of dimeric peptides. In summary, dimeri-

zation constitutes a promising strategy to improve the effective-

ness of some AMPs, although more studies are necessary to 
elucidate the relationship between peptide properties and the 

dimerization effect on antimicrobial and hemolytic activity. To 

date, hundreds of synthetic AMPs are in clinical development, 
and even more are in advanced stages of preclinical develop-

ment. These AMPs, and new AMPs isolated from natural or-

ganisms or designed by computational methods, could have 
their antimicrobial activity optimized by dimerization. 
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