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Cyclosporine A (CSA) is an immunosuppressive agent that specifically targets T cells and also increases the percentage of pro-
tolerogenic CD4+Foxp3+ regulatory T cells (Treg) through unknown mechanisms. We previously reported that CD44, a receptor
for the extracellular matrix glycosaminoglycan hyaluronan (HA), promotes Treg stability in IL-2-low environments. Here, we asked
whether CD44 signaling also promotes Treg resistance to CSA. We found that CD44 cross-linking promoted Foxp3 expression and
Treg viability in the setting of CSA treatment. This effect was IL-2 independent but could be suppressed using sc-355979, an inhibitor
of Stat5-phosphorylation. Moreover, we found that inhibition of HA synthesis impairs Treg homeostasis but that this effect could
be overcome with exogenous IL-2 or CD44-cross-linking. Together, these data support a model whereby CD44 cross-linking by

HA promotes IL-2-independent Foxp3 expression and Treg survival in the face of CSA.

1. Introduction

In healthy individuals, immunologic tolerance is maintained
by populations of regulatory cells, including Foxp3+ regula-
tory T cells (Treg). Treg are a subset of T cells that suppress
autoreactive effector T cells (Teff). The absence or depletion
of Treg leads to multisystemic autoimmunity in mice and
humans [1]. In addition, adoptive transfer of Treg can rescue
the healthy phenotype [2, 3].

Treg rely on Interleukin 2 (IL-2) for their suppressive
function [4]. IL-2 promotes Foxp3 expression and Treg
suppressor functions via signal transducer and activator
of transcription 5 (Stat5) signaling [5-10]. However, Foxp3
suppresses autocrine IL-2 production [6], such that Treg
rely on other cell types, particularly activated Teft cells, as a
source of IL-2. Along with effects on Treg, IL-2 activates Teft
lymphocytes as well and promotes their proliferation.

In addition to IL-2, other factors are also known to
support Treg maintenance in vivo and Treg are present in
IL-27/" as well as CD257/~ mice, though both strains do
develop autoimmunity [11]. Furthermore, ambient IL-2 levels
in circulation and in peripheral tissues [12-14] are often a

fraction of what Treg require in culture. Finally, while Treg
in culture are anergic, in vivo their proliferation rate is high
(15, 16]. Together, these data suggest that additional factors
exist that support Treg maintenance in vivo.

Cyclosporine A (CSA) is an immunosuppressive agent
that inhibits T cell proliferation by suppressing IL-2 synthesis
[17]. CSA inhibits calcineurin-dependent IL-2 production by
forming a complex with cyclophilin that inhibits calcineurin
phosphatase induced upon T cell activation [18]. In turn, the
transcription factor nuclear factor of activated T cells (NFAT)
remains in a phosphorylated state and, subsequently, cannot
upregulate IL-2 gene expression [19].

The effectiveness of CSA treatment may reflect, in part,
changes in the ratio of Treg to Teft cells [20]. Previous clinical
and in vivo studies have found that treatment with CSA can
promote Foxp3 expression in Treg [21, 22]. In vivo human data
likewise suggests that CSA treatment results in higher levels
of circulating Treg than in healthy donors [23]. These data
suggest that Treg may have a survival advantage in certain
contexts over Teft cells in the face of CSA. However, the
mechanisms that underlie the relative sparing of Treg in the
setting of CSA treatment are unclear.


http://dx.doi.org/10.1155/2015/614297

One tissue factor known to promote Treg homeostasis
in low-IL-2 environments is hyaluronan (HA), an extra-
cellular matrix (ECM) glycosaminoglycan. We and others
have demonstrated that high molecular weight HA (HMW-
HA) (>1 x 10° kDa), characteristic of healing, and uninjured
tissues [24] promote the function and persistence of Treg [25-
27]. These effects are dependent on HA polymer length and
cross-linking of the primary HA receptor, CD44 [28], the
expression of which is elevated on Treg [25]. In light of these
data, we have proposed that HMW-HA cross-links CD44 and
thereby provides Treg with homeostatic signals in injured and
healing tissues [26].

We previously reported that CD44 cross-linking allows
Treg to resist CSA-mediated cell death [28]. However, the
underlying mechanisms remained unclear, as both Foxp3 and
CSA are well known to efficiently suppress IL-2 production
[6,18].

Here, we have evaluated the hypothesis that CD44 cross-
linking bypasses CSA treatment by recapitulating aspects
of IL-2R signaling in the absence of IL-2. We found that
CD44 cross-linking promotes Foxp3 expression in an IL-
2-independent but Stat5-dependent manner. Moreover, we
report that inhibition of HA synthesis impairs Treg home-
ostasis but that this effect could be overcome with exogenous
IL-2 or CD44-cross-linking. Together, these data support a
model whereby CD44 cross-linking by HA promotes IL-2-
independent and Stat5-dependent Foxp3 expression and Treg
survival in the face of CSA.

2. Materials and Methods

2.1. Mice. Foxp3-GFP C57BL/6 mice were the kind gift of
Dr. Alexander Rudensky. CD25 deficient C57BL/6 (CD2577)
mice were purchased from The Jackson Laboratory (Bar Har-
bor, ME). Foxp3-GFP mice were crossed with CD257~ mice
to generate Foxp3—GFP.CD25_/ ~ mice at our institution. All
mice were maintained in specific pathogen-free AAALAC-
accredited animal facilities at the BRI and Stanford University
and handled in accordance with institutional guidelines.

2.2. Isolation of Leukocyte Populations. Mouse leukocyte
populations were isolated from inguinal, axial, and brachial
lymph nodes and spleen cells from 6- to 8- week-old mice.
CD4+ T cell populations were isolated using a CD4+ Isolation
Kit (Miltenyi Biotec) as per the manufacturer’s instructions.
Foxp3/GFP+ and Foxp3/GFP-T-cells were then isolated using
either a FACS-Vantage Flow Cytometer Cell Sorter or BD
FACS Aria. Purity of the resulting cell fractions was reliably
>99.9% Foxp3/GFP+.

2.3. Reagents and Cell Lines. Hyaluronan of 1.5 x 10°kDa
molecular weight (HMW-HA) was provided by Genzyme.
Cyclosporine A (CSA) was obtained from Sigma-Aldrich
(St. Louis, MO). Recombinant mouse IL-2R alpha antibody
(R&D Systems), IL-2 (Chiron), and neutralizing antibody
against CD25 (3C7, BioLegend) were used. HMW-HA conju-
gated to BSA was used for plate-bound HMW-HA activation
studies, as described previously [29].
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2.4. Flow Cytometry Analysis. CD44 cross-linking of Treg
was performed as follows: 1 x 10° cells/well were cultured in
a 96-well round-bottom tissue culture plate. Cells were then
treated under different stimulation conditions as follows:
media alone, IL-2 (100 1U/mL), and/or plate-bound anti-
mouse CD44 Ab (10 ug/mL, IM7, BD). Alternatively, for
analysis following HMW-HA treatment, 1 x 10° cells/well
in 96-well round-bottom tissue culture plates were serum
starved for 2.5 hours before the assay. The cells were
then resuspended in RPMI 1640 (Invitrogen) supplemented
with 10% FBS (Hyclone, Logan, UT), 100 pug/mL Penicillin,
100 U/mL Streptomycin, 50 uM fme, 2mM glutamine, and
ImM sodium pyruvate (Invitrogen) prior to transfer to plates
previously coated with 50 yug/mL BSA-conjugated HMW-
HA. On the third day, cells were harvested and washed
prior to analysis. Where indicated, the following reagents
were incubated at 37°C in a CO, incubator with the cells 30
minutes prior to cross-linking CD44: CSA (50 ng/mL or at
concentrations indicated) and neutralizing Ab against CD25
(100 ug/mL; R&D Systems, Cat number AB-223-NA).

Flow cytometry experiments used the following fluoro-
chrome-labeled antibodies: CD3e (145-2Cl11), CD4 (RM4-5),
CD25 (PC61.5), and CD44 (IM7) from BD-Biosciences and
eBioscience. Labeled cells resuspended in FACS buffer were
analyzed on a LSRII flow cytometer. Analysis was performed
using CELLQuest (BD) and FlowJo (Treestar Inc., Ashland,
OR) software. Of note, all FACS plots and MFI values shown
were gated on live cells unless otherwise noted.

2.5. Murine Treg Activation Assays. 96-well flat bottom tissue
culture plates were precoated with anti-CD3 Ab (0.5 pg/mL)
and anti-CD44 Ab (1ug/mL) where relevant. Soluble anti-
CD28 Ab was used at 0.5 yg/mL. Coating with HMW-HA was
treated as a second step. Plates were washed with PBS and
then either 100 4L of 100 ug/mL HMW-HA or 100 4L of 10%
BSA in PBS was added and the plates were incubated at 37°C
for 2 hours. Plates were again washed with PBS prior to the
addition of 150,000 CD4+CD25+ Treg in RPMI-10 complete
medium. Where noted, CSA (50 ng/mL) or soluble IL-2R«
(5ug/mL) was added at the inception of the experiment.
No exogenous IL-2 was added unless otherwise noted. After
three days Treg were stained and analyzed by flow cytometry.

2.6. Statistical Analysis. Graphs were prepared using JMP
software (SAS Institute, Cary, NC) and GraphPad Prism (La
Jolla, CA). Significance was assessed using paired ¢ tests or
ANOVA unless otherwise noted.

3. Results

3.1. CSA Increases Treg Percentages in a CD44 Dependent
Manner. To evaluate CSA effects on Treg viability and Foxp3
expression, we used tissues isolated from transgenic mice
expressing GFP in concert with Foxp3. We purified CD4+
T cells from these animals and activated them in culture for
72 hours. Our goal was to test whether CSA increased the
fraction of Foxp3+ Treg among total CD4+ cells in vitro, as
has been reported in vivo [21, 22].
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We observed that CSA treatment significantly increased
the percentage of Foxp3+ Treg among total CD4+ T cells.
This effect was significant at a range of CSA concentrations
but was most pronounced at moderate CSA levels (50 pg/mL)
(Figure 1(a)). This effect is due to increased cell death among
the GFP/Foxp3—, conventional T cell fraction and not the
GFP/Foxp3+ Treg fraction (data not shown).

No such increase in the GFP/Foxp3 fraction was seen
in cells isolated from CD44™/~ mice (Figure 1(b)). We also
observed that CD44-cross-linking heightened the percent-
age of Foxp3+ Treg, even at high concentrations of CSA
(Figure 1(c)). These data indicate that (1) Treg are relatively
resistant to CSA, compared to Teff cells, (2) that this resistance
is CD44 dependent, and (3) can be magnified by CD44 cross-
linking.

3.2. Both CD44 Cross-Linking and IL-2 Promote Foxp3 Expres-
sion and Treg Persistence Despite CSA Treatment. The effects
of CD44 cross-linking on Foxp3 levels were analogous to
what one might expect to see with IL-2 supplementation. We
therefore directly compared the effects of CD44 cross-linking
and IL-2 supplementation on Treg cultured in the setting
of CSA. To this end, we freshly isolated CD4+GFP/Foxp3+
Treg from GFP/Foxp3 transgenic mice and activated these for
three days in the absence or presence of CSA.

We observed that Foxp3 and CD25 expression was abro-
gated by treatment with CSA but that both CD44 cross-
linking and supplementation with 100 IU/mL of IL-2 main-
tained Foxp3 expression. Indeed, CD44 cross-linking and IL-
2 supplementation were roughly equivalent in their ability to
promote Treg homeostasis in the setting of CSA (Figures 2(a)
and 2(b)). Of note, this beneficial effect of CD44 cross-
linking on Foxp3 levels was predicated on the concomitant
presence of TCR signals; CD44 cross-linking in the absence
of aCD3/28 did not promote resistance to CSA (data not
shown).

As with our observation using total CD4+ T cells in
Figure 1, CD44 cross-linking on purified Treg likewise sup-
ported maintenance of Foxp3 expression across a range
of CSA concentrations (Figure 2(c)). In addition, we saw
comparable effects when we assessed Treg viability upon
CSA treatment, as measured by 7-AAD and Annexin V
staining. However, CSA treatment of Treg in the absence of
CD44 cross-linking led to a significant decrease in viability
(Figure 2(d)).

Together, these data indicate that CD44 cross-linking and
IL-2 supplementation exert parallel effects on Treg, allowing
them to escape cell death caused by treatment with CSA.

3.3. CD44 Cross-linking Promotes Foxp3 Expression in an IL-
2-Independent Manner. We previously reported that CD44
cross-linking by HMW-HA promoted Treg maintenance in
the absence of exogenous IL-2 [26, 28]. As part of those
studies, we observed that CD44 cross-linking allowed Treg
to resist CSA-mediated cell death [28]. We had proposed that
CD44 cross-linking promoted increased IL-2 production by
Treg.

However, this interpretation of the data was problematic
for several reasons. First, Foxp3 is known to efficiently

suppress IL-2 production [6]. While we did detect IL-2
in Treg cultures [28], this may be better explained by the
propensity of some GFP/Foxp3+ Treg to revert to being
GFP/Foxp3— Teff cells capable of producing IL-2 [30]. Indeed,
upon intracellular staining of these cells for IL-2, we observed
that the IL-2 producing cells were uniformly GFP/Foxp3—
(data not shown). Second, CSA also suppresses IL-2 pro-
duction by both Treg and Teff alike in an eflicient manner
[18]. Consistent with this, the level of IL-2 we detected in
these cultures by ELISA, in the 5-20 pg/mL range, would be
insufficient to support Treg homeostasis. We therefore sought
to better ascertain whether CD44-mediated support of Treg
homeostasis was indeed IL-2 independent.

We first neutralized any IL-2 that might be produced
in our Treg activation cultures by adding recombinant
CD25 (rCD25), the high affinity IL-2 receptor, or antibodies
directed at IL-2. However, these reagents did not completely
negate the beneficial effect of CD44 cross-linking on Foxp3
expression (Figure 3(a)).

We then obtained CD4+GFP/Foxp3+ Treg from trans-
genic GFP/Foxp3 mice lacking CD25, the high affinity IL-
2 receptor (GFP/FoxP3.CD25/~ mice). We found that the
absence of CD25 had minimal impact on CD44-mediated
Foxp3 expression, as the wild type B6 mice and CD25~/~ Treg
cells had almost equal Foxp3 expression levels (Figure 3(b)).

Because IL-2 effects on Treg homeostasis are dose-
dependent, we next tested whether CD44 cross-linking
effects were additive with IL-2 supplementation from 0-
20IU/mL (0-4000 pg/mL). We found that the effects of
CD44 cross-linking on Foxp3 persistence were most pro-
nounced at low levels of IL-2 and that CD44 cross-linking
was functionally equivalent to adding high levels of IL-2 (10-
20IU/mL, equivalent to 2000-4000 pg/mL) to these cultures
(Figure 3(c)).

Together, these data support the conclusion that CD44
cross-linking potentiates Foxp3 expression of Treg in an IL-2
and CD25 independent manner.

3.4. Inhibition of HA Synthesis Impairs Treg Homeostasis
Which Can Be Overcome with Exogenous IL-2 or CD44-
Cross-Linking. We next determined whether the effect of
CD44 cross-linking on Foxp3 expression could be induced
by its natural ligand HA and whether this source of HA was
paracrine or autocrine in origin.

To test this, we incubated CD4+/Foxp3+ Treg for 72 hours
in the presence of HMW-HA, plate-bound CD44 antibody,
or IL-2, and examined Foxp3 expression. We observed that
cross-linking CD44 receptor through either plate-bound
CD44 antibody or HMW-HA promoted Foxp3 expression in
CD4+ Tregs in a manner similar to IL-2 (Figure 4(a)).

To evaluate whether the HA that promoted Foxp3 expres-
sion was paracrine or autocrine in nature, we abrogated
endogenously produced HA in CD4+ Treg by culturing them
in the presence of 4-methylumbelliferone (4-MU), a specific
hyaluronan synthase inhibitor [31]. Activated Treg cultured
with 4-MU were unable to maintain Foxp3 expression over
72 hours (Figure 4(b)). As expected, IL-2 supplementation
could completely rescue Foxp3 expression. Moreover, when
these cells were cultured with anti-CD44 antibody, Foxp3
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FIGURE 1: CSA increases Treg percentages in a CD44 dependent manner. Fold increase (FI) in the percentage of GFP/Foxp3+ cells of (a) CD44-
containing or (b) CD44-deficient, murine CD4+ T cells after 3 days of culture in the settings of anti-CD3 and anti-CD28 with or without
CSA in various concentrations. (c) Fold increase (FI) in percentage of GFP/Foxp3+ cells after 3 days of culture in the setting of anti-CD3 and
anti-CD28 alone or in conjunction with anti-CD44 Ab. n = 5 replicate wells.

expression was maintained at levels similar to controls. These
observations were confirmed in multiple experimental repli-
cates (Figure 4(c)). Taken together, these results demonstrate
that both endogenous and exogenous HA can potentiate
Foxp3 expression and that the loss of HA production can be
compensated for by cross-linking of the HA receptor, CD44.

3.5. CD44-Mediated Foxp3 Expression Is Stat5-Dependent.
Many of the cytokines known to support Treg homeostasis,
including IL-2, signal through Stat5. We therefore evaluated
whether the promotion of Foxp3 persistence by CD44 cross-
linking is mediated by Stat5 signaling.

We observed that the ability of CD44 cross-linking
to promote Foxp3 expression was lost upon treatment
with sc-355979, a selective inhibitor of pStat5 (Figure 5(a)).
This capacity of sc-355979 to overcome CD44-mediated
Foxp3 expression was dose dependent (Figure 5(b)). Finally,
whereas CSA treatment alone did not affect Foxp3 expression
induced by CD44, combined treatment with CSA and pStat5
inhibition did impair CD44-mediated Foxp3 expression
(Figure 5(c)).

Taken together, these results indicate that the CD44-
mediated promotion of Foxp3 expression and the ability of
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FIGURE 2: CD44 cross-linking and IL-2 both promote Foxp3 expression and Treg persistence despite CSA treatment. (a) Representative flow
cytometric analysis of CD25 labeled and GFP/Foxp3+ cells after 3 days in culture in the presence of anti-CD3 and anti-CD28 alone or with
the addition of anti-CD44, and with or without CSA (50 ng/mL) alone or together with IL-2 (20 IU/mL). (b) Fold increase (FI) in GFP/Foxp3
MFI after 3 days of culture in the presence of anti-CD3 and anti-CD28 alone or in conjunction with anti-CD44 Ab, with or without CSA
(50 ng/mL) alone or together with IL-2 (20 IU/mL). N = 4 independent experiments, among these are included Figure 2(a). (c) Fold Increase
in GFP/FoxP3 MFI in the presence of anti-CD3 and anti-CD28 alone, or in conjunction with anti-CD44 and increasing concentrations of
CSA. Data are representative of two experiments. (d) Fold increase in the fraction of viable GFP/FoxP3+ cells (Annexin V-, 7AAD-) upon
culture with aCD3/28 or aCD3/28/44 with or without CSA (50 ng/mL) alone or together with IL-2 (20IU/mL). N = 4 experiments among
these are included in Figure 2(a) and the other experiments are in Figure 2(b).
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FIGURE 3: CD44 cross-linking promotes Foxp3 expression in an IL-2-independent manner. (a) Fold Increase (FI) in GFP/FoxP3 MFI for Treg
activated with anti-CD3 and anti-CD28 Ab alone or in conjunction with plate-bound anti-CD44 Ab with or without anti-IL-2 Ab (Anti-IL-
2), recombinant CD25 (rCD25), or IL-2 (n = 7). (b) Representative histograms demonstrating GFP/Foxp3 expression by Treg isolated from
GFP/Foxp3 knock-in mice on a conventional B6 background mice or on a CD25”/~ background (B6 GFP/Foxp3.CD25 '~ mice) following
3 days of culture with anti-CD3 and anti-28 alone or in conjunction with plate-bound anti-CD44. (c) Representative histograms illustrating
GFP/FoxP3 expression of Treg following 3 days of culture with anti-CD3 and anti-CD28 alone, or in conjunction with plate-bound CD44 Ab,
and with or without varying doses of IL-2. Data are representative of two experiments.

CD44 cross-linking to bypass CSA treatment depend on Stat5
activation.

4. Discussion

Cyclosporine (CSA) is a widely used immunosuppressant
that selectively targets T cells, thereby preventing antigen-
specific immune processes like transplant rejection [32, 33].
There are data that suggest that CSA may selectively spare
Treg and it may be that this contributes to CSA efficacy [20-
22]. Here, we have identified a novel, CD44-mediated and
IL-2 independent mechanism for how Treg may escape CSA
suppression.

A role for CD44 in Treg persistence in the face of CSA
would be consistent with other lines of evidence supporting a
role for CD44 in homeostasis. We previously published that
CD44 and HMW-HA promote Treg homeostasis in low IL-
2 environments [25-27] and it was recently reported that
complexes of CD44 and Galectin-9 promote the stability and
function of Treg in a SMAD2/3 signaling dependent manner
[34]. CD44 also contributes to Treg function [25, 27, 29] and
the capacity to bind HMW-HA is known to characterize the
most potent subset of Treg [25]. Of note, CD44 cross-linking
did not rescue GFP/Foxp3—, conventional T cells from CSA
effects in our hands. We speculate that this may reflect the fact
that these cells are typically CD44lo. Also of note, it is highly
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FIGURE 4: Inhibition of HA synthesis impairs Treg homeostasis which can be overcome with exogenous IL-2 or CD44-cross-linking. (a)
Representative histograms of GFP/FoxP3 expression of Treg following 3 days of culture in the presence of anti-CD3 and anti-CD28 alone
or with IL-2, CD44 cross-linking, or exogenous plate-bound HA. N = 3 independent experiments. (b) Representative FACS plots illustrating
GFP/Foxp3 and CD25 expression on Day 0 immediately following isolation of CD4+GFP/Foxp3+ Treg from murine splenocytes and
following 3 days of culture with anti-CD3 and anti-CD28 Ab alone or in conjunction with plate-bound anti-CD44 Ab, the HA synthesis
inhibitor 4-MU, and/or IL-2. (c) Fold change in GFP/Foxp3 MFI for the same conditions as in (b), here for N = 3 independent experiments.
(d) Viability (the percentage of GFP/Foxp3+ cells negative for 7AAD and Annexin V) for Treg cultured in the setting of either DMSO or

4MU.
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Treg following culture in the presence of sc-35597, a selective pStat5 inhibitor. (b) Representative histograms for GFP/Foxp3 following 3 days of
culture with aCD3/28/44 together with increasing concentrations of sc-35597. (c) Representative histograms depicting GFP/Foxp3 persistence
following culture with CSA (50 ng/mL) alone or in conjunction with sc-35597. Data for (a—c) are representative of at least 3 experiments.

unlikely that expansion of Treg is responsible for this effect
given that it is generally accepted that Treg do not expand in
vitro in the absence of high dose IL-2 and potent antigenic
signals. Induction of Treg from conventional T cells is also
highly unlikely given the absence of high dose IL-2, potent
antigenic signals, and TGEf [6].

The constitutive expression of CD44 may also promote
homeostasis of additional CD44" T cell subsets. For example,
CD44 has been implicated in the homeostasis of memory T
cells, which are also CD44" [35]. In addition to total CD44
levels, the distribution of CD44 on the cell surface, and the
make-up of CD44 variant isoforms could also impact T cell
homeostasis.

These data may be relevant to understanding seemingly
contradictory data indicating that CSA does not uniformly
spare Treg (reviewed in [36]). Specifically, there are some
reports that CSA inhibits Foxp3 mRNA expression [37] and
induces the reversion of Treg to pro-inflammatory pheno-
types [38]. Similarly, in vivo studies in which mice underwent
MHC-mismatch bone marrow transplantation demonstrated
that CSA treatment impaired expansion of Treg and reduced

overall Foxp3 expression [39]. More recently, it was shown
that CSA treatment preferentially inhibits antigen-specific
Treg [40]. Miroux and colleagues found that CSA decreased
both the activity and proliferation of Treg [41]. Our data
suggest that the dose of CSA may impact the ability of Treg
to resist CSA. Consistent with this, Kawai and colleagues
demonstrated that in vivo administration of CSA inhibits
the proliferation of Treg at high doses, but not so at low
doses [42]. Besides this, our data also support roles for
antigenic signals, co-stimulation though CD44, and therefore
the local inflammatory milieu as factors that influence Treg
susceptibility to suppression by CSA.

Our data support a role for CD44-mediated, IL-2 inde-
pendent, promotion of Treg resistance to CSA and implicate
Stat5 signaling in this effect [4, 43]. Stat5 signaling is known
to be essential for both the maintenance of Foxp3 expression
and the suppressive function of Treg in vivo [44, 45]. This
is underscored by the observation that Stat5 knockout mice
exhibit a loss of Treg [46]. Additionally, overexpression of
Stat5 in IL-2 knockout mice can restore in vivo Treg num-
bers [46]. However, avenues for Stat5 signaling not directly
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involving IL-2 are likely to be important for Treg homeostasis.
Our current efforts are therefore focused on determining
whether CD44 cross-linking directly phosphorylates Stat5 or,
alternatively, whether these effects are indirectly mediated.

5. Conclusions

We have identified a role for CD44, a receptor for HA,
in promoting Treg resistance to CSA. This effect is IL-2
independent but can be suppressed by inhibition of Stat5
phosphorylation. Moreover, we find that inhibition of HA
synthesis impairs Treg homeostasis but that this effect can
be overcome with exogenous IL-2 or CD44-cross-linking.
Together, these data support a model whereby CD44 cross-
linking by HA promotes IL-2-independent Foxp3 expression
and Treg survival in the face of CSA.
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