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ABSTRACT

Chromatin modifications have been comprehen-
sively illustrated to play important roles in gene
regulation and cell diversity in recent years. Given
the rapid accumulation of genome-wide chromatin
modification maps across multiple cell types, there
is an urgent need for computational methods to
analyze multiple maps to reveal combinatorial modi-
fication patterns and define functional DNA
elements, especially those are specific to cell
types or tissues. In this current study, we developed
a computational method using differential chroma-
tin modification analysis (dCMA) to identify
cell-type-specific genomic regions with distinctive
chromatin modifications. We then apply this
method to a public data set with modification
profiles of nine marks for nine cell types to
evaluate its effectiveness. We found cell-type-
specific elements unique to each cell type
investigated. These unique features show signifi-
cant cell-type-specific biological relevance and
tend to be located within functional regulatory
elements. These results demonstrate the power of
a differential comparative epigenomic strategy in
deciphering the human genome and characterizing
cell specificity.

INTRODUCTION

All human cells share the same genetic information
encoded by genomic DNA sequences, regardless of the
cells’ type. However, cells exhibit dramatically diverse
phenotypes (1). In eukaryotic cells, genomic DNA is
modulated by numerous chemical modifications, thus
adding an extra layer of information to the genome
sequence. These modifications enable genomic DNA to

encode a vast and complex program of gene regulation
(2–4), giving rise to diverse protein expression patterns
and subsequent tissue-specific phenotypic diversity (5).
Discovering functional elements and understanding how
diverse modifications regulate these elements are central
challenges to elucidate global gene regulation in humans.

Cooperative binding of chromatin modifications,
including histone modifications, DNA methylation and
regulatory proteins shape the macro-environment of
DNA and affect context-dependent interpretation of it.
With the advent of chromatin immunoprecipitation
coupled with tilling arrays (ChIP-chip) or parallel DNA
sequencing (ChIP-seq), people have come genome-wide
profiling of binding sites (6). More and more data sets
are being generated for various chromatin features in
multiple cell types, providing abundant resources for
decoding chromatin modification patterns.

One popular approach used to interpret epigenomic
data is to identify and functionally characterize combina-
torial patterns and systematically define DNA regulatory
elements. For example, methylation of both lysine 4 and
lysine 27 on histone H3 is an epigenetic signature charac-
teristic of embryonic stem cells, which keeps silenced
developmental genes poised for activation (7,8). Another
example is, by applying supervised regression framework,
histone modification intensities around promoters were
shown to be predictive for gene expression (3,9).
Clustering approaches, used in early signature detection
work, grouped well-annotated promoters on the basis of
specific histone modification patterns (10). This research
has recently been adopted into two data analysis plat-
forms: seqMINER (11) and Cistrome (12). Hon et al.
(13) developed a probabilistic method, ChromaSig, to
identify histone modification signatures de novo that are
repeated across the genome, without using any existing
annotations. Jascheck and Tanay (14) proposed a spatial
clustering algorithm to identify sets of common combina-
torial modification patterns, defined over contiguous
genomic regions. More recently, the hidden Markov
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model (HMM) and Bayesian network approaches have
been used to uncover recurrent chromatin states by seg-
menting the epigenome into regions defined by character-
istic histone mark combinations (15,16). In contrast to
these clustering-type methods, Ucar et al. (17) developed
a biclustering algorithm, CoSBI, to search combinatorial
patterns involving only subsets of histone marks. Teng
and Tan (18) further described a semi-supervised version
of the CoSBI algorithm to incorporate existing knowledge
of combinatorial patterns into the mining procedure.

Although these methods facilitated the identification
and characterization of chromatin modification patterns
and functional genomic elements in the human genome,
we are far from understanding the underlying modifica-
tion patterns and biological mechanisms that dictate
phenotypes of cells and tissues. In a recent pioneering
study, Ernst et al. (19) applied the HMM method (15) to
define chromatin states of nine cell types. Furthermore,
cell-type-specific changes, which go toward elucidating
cell-type specificities and predict regulatory mechanisms
that drive gene regulation, were investigated. To date,
cell-type-specific functional regions of the genome, which
have key roles in cell diversity, have not been analyzed or
defined directly.

In this article, we aim to identify cell-type-specific regu-
latory elements (CSREs) in the human genome, by
differential Chromatin Modification Analysis (dCMA).
To this end, we developed a computational framework
capable of identifying genomic regions, containing dis-
tinctive chromatin modifications that are unique to each
cell type. We applied this method to the public ChIP-seq
data set used in (19) to demonstrate its effectiveness. We
identified CSREs for each cell type related to various
genomic features, which showed significant, cell-type-spe-
cific biological relevance and tended to be regulatory
elements. Moreover, a large majority of CSREs are
located in non-coding regions lacking annotations. These
results can shed light on experimental human genome in-
vestigations. The proposed framework demonstrates the
power of a differential comparative epigenomics strategy
in deciphering aspects of the human genome and
characterizing cell specificity.

MATERIALS AND METHODS

Materials

Genome-wide maps of nine chromatin marks and a
control case in nine cell types have been generated using
ChIP-seq in a recent study (19). These nine cell types
include embryonic stem cells (H1 ES or H1), erythrocytic
leukemia cells (K562), B-lymphoblastoid cells (GM12878),
hepatocellular carcinoma cells (HepG2), umbilical vein
endothelial cells (HUVEC), skeletal muscle myoblasts
(HSMM), normal lung fibroblasts (NHLF), normal epi-
dermal keratinocytes (NHEK) and mammary epithelial
cells (HMEC). In each cell type, nine chromatin
marks consisting of CCCTC-binding factor (CTCF),
H3K27me3, H3K36me3, H4K20me1, H3K4me1,
H3K4me2, H3K4me3, H3K27ac and H3K9ac were
profiled, and a whole-cell extract (WCE) sequencing was

conducted as control. RNA expression profiles of the nine
cell types were also generated using Affymetrix GeneChip
arrays. In this article, we downloaded these data for the
following studies.
The raw ChIP-seq data were preprocessed as previously

described in (19). Whole-genome data were divided into
non-overlapping 200 bp bins. All sequencing reads were
extended by 200 bp in the 30 direction, to capture actual
binding sites and then assigned a unique 200 bp bin accord-
ing to their middle points. We had an integer for each bin,
which summaries neighboring read counts. Next, the
integers were binarized using a Poisson null model.
Specifically, the null hypothesis of a ChIP-seq experiment
is that all reads distribute uniformly across the genome;
therefore, the mean of the Poisson distribution can be
calculated by dividing the total read counts by the
number of 200 bp bins in the human genome. A threshold
of 10�4 was chosen to transform the integers into binary
values. After binarization, we observed that many 200 bp
bins have no signals in all cell types, which may consist of
sequences with low ‘mappability’ (20). Those consecutive
regions with length>10 kb were removed from the genome
(20.7% of the whole genome) in the analyses. Finally, we
obtained nine binary matrices of size 10 (nine chromatin
marks and WCE) by N (the number of 200 bp bins in
human genome). Cytosolic RNA was isolated and
quantified using Affymetrix GeneChip arrays (19). The
raw data stored in CEL files were processed with RMA,
and replicate expression values were averaged. The result-
ing expression profiles were processed using quantile
normalization (21) across the nine cell types.

Methods

After data preprocessing, we obtained binary modification
profiles for all cell types (Figure 1A). We introduce the
following steps to identify CSREs. We have implemented
this method and made a package called dCMA, which can
be easily used for other researchers (Supplementary
Methods).
Step 1: Calculation of the differential modification score.

For each genomic position (a 200 bp bin), hamming
distance was used to measure differences of the modifica-
tion characteristics between each pair of cell types
(Figure 1B). Suppose there were K cell types and M chro-
matin marks and the human genome was divided into N
200 bp bins. Let biðcÞ denote the mark occurrence profile
at genomic bin coordinate c in cell type i (a binary vector
with M components). Then, the Differential Modification
Score (DMS) for a particular cell type t at genomic coord-
inate c was the summation of hamming distances between
this cell type and others, which can be represented as
DMSðt,cÞ ¼

PK
i¼1 HDðbtðcÞ,biðcÞÞ, where HD represents

the hamming distance operator. After these calculations,
we had a DMS profile across the human genome in each
cell type.
Step 2: Normalization and correction of the DMSs.

First, we normalized the sum of squares of each cell
type’s DMS profile to a constant. We further calculated
the Z-score of DMSs for each bin among all cell types:

zðt,cÞ ¼ DMSðt,cÞ��ðcÞ
�ðcÞ , where �ðcÞ and �ðcÞ are the mean and
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the standard deviation of the DMS at genomic position c,
respectively. The normalized DMS were then multiplied
by the corresponding Z-scores to get the corrected scores.
DSðt,cÞ ¼ DMSðt,cÞ � zðt,cÞ (Figure 1C). The corrected

scores reflect both the scale and relative size of the original
scores.
Step 3: Wavelet smoothing and CSRE extraction. The

wavelet transform is a widely used filtering and smoothing
technique, which has been comprehensively applied in
computational biology (Figure 1D). It has been used in
applications such as noise removal from microarray data
(22) and normalization of diverse data types to a common
scale in integrative analysis (23). We applied the maximal
overlap discrete wavelet transform (24), a modification of
discrete wavelet transform, to the corrected DMS profiles
to further reduce noises and enhance the signal-to-noise
ratio (Figure 1D). The genomic regions corresponding to
smoothed DSs peaks in each cell type are defined as
CSREs and can be directly extracted with given height
and length parameters. Finally, the results with
height=1.5 and length=12 were used to illustrate the
strong biological relevance of CSREs. As to the selection
of these two parameters, we performed enrichment

analysis on CSREs identified from four other groups of
parameter settings to show their robustness
(Supplementary Methods).

Step 4: Measuring the statistical significance of CSREs.
The null hypothesis in defining CSREs is chromatin marks
occupy the 200 bp bins with equal probability in all nine
cell types. We estimated the probability of occurrence for
the marks in each bin and simulate data under null
hypothesis, according to the estimated probabilities. The
summation of the DMS, within the CSRE, was chosen as
the testing statistic, and then the right-sided probability in
the null distribution (fitted by a Gaussian distribution)
was computed as P-value. P-values were corrected for
multiple hypothesis testing by Benjamini–Hochberg
correction (25).

Mapping CSRE bins to various genomic features

The CSREs were identified in a comparative manner, and
we examined their functional potential roles by mapping
them to known genomic features. All base pairs of the
human genome were categorized into six classes:
promoter, 50 UTR, exon, intron, 30 UTR and intergenic.

A

C D

B

Figure 1. Illustration of the framework used in identifying CSREs. (A) The data profiles of nine cell types as characterized by nine marks and one
control. The raw ChIP-seq reads were mapped to 200 bp bins and the signals were binarized using a Poisson null model. (B) For each bin, the
dissimilarity of the resulting binary vectors between two different cell types was measured using hamming distance. For each cell type, the DMS of a
bin was the summation of pairwise hamming distance (sPHD) computed between it and other cell types. (C) The DMS profile of each cell type was
normalized across the genome. Then, each column of the matrix was multiplied by the corresponding Z-scores to consider the variance in the
column. (D) Wavelets smoothing strategy was adopted to smooth the resulting differential profile of each cell type. CSREs were extracted by
selecting suitable height and length parameters. Statistical significance (P-value) of each CSRE was calculated by a non-parametric test.

9232 Nucleic Acids Research, 2013, Vol. 41, No. 20

5
 (Figure 1D)
]
]
(MODWT) 
]
 (DWT)
cell-type specific regulatory elements (
)
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt712/-/DC1
-
4
]
'
'


Specifically, base pairs within 2 kb from a known RefSeq
transcription start site (TSS) were labeled as promoter,
and those located further than 2 kb from any RefSeq
gene were labeled as intergenic. We purposefully defined
intergenic regions in this loose fashion to allow us to cover
the majority of the human genome using these six
categories. The CSRE bins were then classified into six
feature categories according to their bins’ feature annota-
tions, as described earlier in the text. The CSREs bins were
classified in a hierarchical fashion, i.e. if the bins of a
CSRE belong to more than one features, it was processed
according to the order: promoter >50 UTR >30 UTR >
exon > intron > intergenic. For each kind of genomic
region, the corresponding proportion in CSREs was
divided by the genome-wide proportion to determine the
fold enrichment. The statistical significance was evaluated
with Fisher’s exact test.

Overlap analysis of the CSREs between cell types

To test whether the CSREs of each cell type are cell-type
specific, we calculate the overlap of CSREs between any
two cell types. Two CSREs A and B are defined to be

overlapped if lengthðA\BÞ
minðlengthðAÞ,lengthðBÞÞ > 0:1, where length(X) rep-

resents the number of bins in fragment X. Then, for each
pair of cell types, namely, i and j, we can determine the
number of CSREs in cell type i overlapped by those in cell
type j. To test the statistical significance of the overlap,
Fisher’s exact tests were applied (left-sided and right-sided
P-values for significant less and more overlaps,
respectively).

Enrichment analysis

To investigate the biological relevance of CSREs, we
conducted housekeeping gene, biological function and
network enrichment analysis. CSREs were mapped to
RefSeq genes first (version hg18, downloaded from
UCSC Genome Browser). Specifically, a CSRE was
mapped to a gene when it overlaps the gene region.
Here, the gene region starts from the TSS and ends at
the transcription end site. We call the overlapping gene
as the neighboring gene of this CSRE.

To assess whether the CSREs are cell-type-specific regu-
latory elements, we calculated the overlap between CSRE
neighboring genes and housekeeping genes. We down-
loaded the housekeeping gene list generated in (26), and
3218 genes were obtained after mapping to the RefSeq
gene list (version hg18). Fold enrichments of the
overlaps were obtained, and the corresponding statistical
significance was evaluated using Fisher’s exact test.

Gene Ontology (GO) terms enrichment analysis was
performed using STEM (27) where Fisher’s exact test
was used and the Bonferroni corrected q-values were
reported. For each cell type, the top five enriched GO
terms associating 5–500 genes were selected (Figure 3E).
A human protein–protein interaction network consisting
of 13 207 proteins and 64 549 interactions was downloaded
from the BioGRID website (28). For each cell type, a sub-
network was determined by mapping CSRE neighboring
genes to the protein–protein interaction, and we let m be
the number of interactions observed therein. The expected

number of interactions in the sub-network was

EI ¼
n
2

� �
M

N
2

� �, where N and n are the numbers of

nodes in the whole network and the sub-network, respect-
ively, and M is the number of observed interactions in the
whole network. The fold enrichment was m

EI. The statistical
significance of the fold enrichment was calculated using
right-sided Fisher’s exact test.

Relationship between CSREs and disease-associated
variants

The NHGRI’s collection of trait/disease-associated SNPs
from published genome-wide association studies were
downloaded from UCSC genome browser (July 12,
2012) (29,30). There were 7899 SNPs associated with 575
traits in total. For each cell type, we extract a subset of
SNPs corresponding to CSREs. The traits of the set of
SNPs are used to investigate their characteristics. We
aimed to investigate the relevance between the selected
SNPs’ traits and each cell type, based on the identified
CSREs. To this end, we tested whether SNPs associated
with a trait are significantly located in CSREs of a cell
type through the Fisher’s exact test. P-values were cor-
rected for multiple hypotheses testing by Benjamini–
Hochberg correction.

Relationship between CSREs and DNase I hypersensitive
and EP300 binding sites

DNase I hypersensitive sites (DHSs) peaks in eight of
the nine studied cell types (except HepG2) and EP300
binding peaks for three cell types (H1 ES, GM12 878
and HepG2) were obtained from the UCSC browser
(http://genome.ucsc.edu). Cell-type specific peaks are
defined by filtering out those peaks appearing in other
cell types. Considering the chromatin modifications
happened on nucleosomes, while the DHSs and transcrip-
tion factor binding sites are usually located in nucleosome
depleted regions, we extended these cell-type-specific
peaks by 2.5 kb in each direction to their upstream and
downstream, respectively. (We have also tested this with a
more stringent criterion and get similar results, see
Supplementary Methods and Supplementary Figure S1.)
CSREs that overlapped, by at least 1 bp, the extended
peaks were considered as DHS or EP300 proximal. For
genome-wide background, we randomly selected 1000 sets
of CSREs for each cell type with length and chromosome
attributes reserved and calculated the corresponding
number of DHS or EP300 proximal ones. One-sample
Wilcoxon test was used to evaluate the statistical signifi-
cance of the real number.

RESULTS

We have developed a multi-stage method to identify
CSREs, which are likely to be cell-selective regulatory
regions (Supplementary Table S1). We applied our
method to the data set generated in (19) for nine cell
types. Analysis of these data sets defined, on average,
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4110.8 CSREs per cell type (ranging from 1701 in NHLF
to 6659 in GM12878; Supplementary Figure S2A)
spanning an average 0:53% of the genome. On average,
92% of CSREs in each cell type are statistical significant
with q< 0.0001. The median lengths of CSREs across the
nine cell types was similar (�3Kb), except two of them
(K562 and GM12878) are slightly longer than the others
(Supplementary Figure S2B). The total numbers of base
pairs, found in cell-type specific CSREs, varies from �7.5
(NHLF) to 28.5Mb (GM12878) (Supplementary Figure
S2C). The number of genes near to CSREs also varies,
from �1546 (NHLF) to 4907 (GM12 878) (Supplementary
Figure S2D). These diverse distributions may imply the
functional complexity of these cell types (Supplementary
Figure S2).

CSREs relate to various genomic features

We explored the relations between CSREs and various
genomic features to illustrate their potential functional
roles. The proportion of CSREs in different genomic
regions varied across the cell types (Figure 2A). The
CSREs were significantly enriched at well-known regula-
tory regions, such as promoters, 50 and 30 UTRs
(P < 0:0001, Fisher’s exact tests) (Figure 2B). Exon and
intron regions were also enriched in CSREs, suggesting
that part of a gene body may serve as regulatory
elements, such as enhancers, for its own expression (31).
The strong enrichments of CSREs in promoter regions
(P < 0:0001, Fisher’s exact tests) demonstrates underlying
modifications acting in promoter regions play critical roles
in regulating gene expression. In particular, CSREs in the
promoter regions of H1 ES cells were substantially
enriched when compared to those found in the other cell
types. These results imply more promoter regions are
under epigenetic regulation in embryonic stem cells. As
discussed later in the text, many promoters in H1 ES are
marked by H3K27me3, a repressive chromatin modifica-
tion, but these regions are tuned in poised status. These
characteristics are consistent with the unique cellular
context of pluripotent cells.
Although CSREs were not enriched in intergenic

regions, this group constitute �36.4% (averaged across
the nine cell types) of total CSREs. Moreover, CSREs in
intronic regions made up �25.5% (averaged across the
nine cell types) of the total CSREs. These results highlight
the potential regulatory roles of non-coding regions and,
also, the power of a comparative epigenetics strategy in
investigating functional roles of the human genome.
Intuitively, we hypothesized most of the CSREs target
their neighboring genes. The distances are significantly
shorter than those found in the genomic background,
which, to some extent, verifies our assumption
(Figure 2C and Supplementary Figure S3).
We further explored the distribution of CSREs in all 23

chromosomes (1–22, X) in each cell type (Figure 2D).
Specifically, we calculated the normalized proportion of
CSREs, with respect to chromosome length, for each cell
type. We used the coefficient of variation (CV) to quantify
the dispersion of the proportions and found that the CVs
of two cancer cells (K562 and HepG2) are apparently

larger than those of the others (Figure 2E). We observed
significantly more CSREs in K562’s chromosome 22 and
in HepG2’s chromosomes 16, 17 and 20. Interestingly, a
reciprocal translocation between chromosome 9 and 22 in
leukemia cells (32) has been well studied. The transloca-
tion results in the oncogenic BCR-ABL gene fusion, which
is a highly sensitive marker for leukemia (33). For HepG2,
chromosome translocations involving chromosomes 16
and 17 have been observed with spectral karyotyping.
Moreover, chromosomes 2, 14 and 20 were found to be
amplified (34). These previous studies confirm the inform-
ative nature of CSREs. In this case, it is non-uniform dis-
tribution of CSREs, in K562 and HepG2 cells. These
observations demonstrate that the CSREs defined by
chromatin modifications may relate to the structural
abnormity of chromatin, which contributes to cancer pro-
gression, as well as other disorders.

In total, we identified 34 721 distinct CSREs in the
human genome (collectively spanning 4.62%), most of
which (94.1%) were specific to a single cell type with only
5.9% being found in two or more cell types (Figure 3A).
Next, we calculated the number of overlapping CSREs
between cell types (Figure 3B). As expected, most pairs
of cell types exhibit significantly less overlaps
(P < 0:0001, left-sided Fisher’s exact tests). In contrast,
significant overlaps (P < 0:0001, Fisher’s exact tests) of
CSREs occurred between NHEK and HMEC cell lines.
This observation is not surprising, given NHEK are
keratinizing epithelial cells, and their functions are more
similar with HMEC than other cell types.

We observed protein products of genes near to CSREs
tend to interact with each other in each cell type
(P < 0:0001, Fisher’s exact tests) (Figure 3C and
Supplementary Figure S4). This result suggests genes
near CSREs are more likely to work in a cooperative
fashion to carry out biological functions. We also
analyzed any overlaps between CSRE neighboring genes
in each cell type and housekeeping genes. As expected, in
seven cell types, CSRE neighboring genes tend not to be
housekeeping genes (P < 0:054) (Figure 3D and
Supplementary Figure S5). This observation implies
genes near to CSREs are likely to execute cell-type-specific
biological functions.

CSREs are defined as genomic regions exhibiting dis-
tinctive modification patterns, relative to those in other
cell types. It is a reasonable assumption that these
CSRE neighboring genes are involved in cell-type-specific
biological processes. We mapped CSREs to RefSeq genes,
and a gene set was obtained for each cell type. Using GO
enrichment analysis, we found overrepresented GO terms
were highly relevant to the functions of corresponding cell
types, showing distinct cell-type specificity (Figure 3E and
Supplementary Tables S2–S5). For example, terms related
to development such as ‘brain development’ and ‘regula-
tion of nervous system development’ are enriched in
embryonic stem cells (H1 ES); terms related to immune
response such as ‘lymphocyte activation’ and ‘immune
response-regulating signaling pathway’ are enriched in
B-lymphoblastoid cells (GM12 878). As shown in the
overlap analysis, NHEK and HMEC are highly related
cell types; this is also seen in the functional enrichment
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analysis data. Functional categories enriched in NHEK
are likely to be enriched in HMEC. These results suggest
that CSREs act in the regulation of cell-type-specific bio-
logical processes, which highlights the role of chromatin

modifications in controlling and maintaining differential
cell-type gene expression patterns.
Numerous genome-wide association studies have

provided a plethora of links between common genetic

Figure 2. Relationship between CSREs and various genomic features. (A) The distribution of CSREs in six different genomic regions, including
promoter, 50 UTR, 30 UTR, exon, intron and intergenic regions. (B) The fold enrichments of the CSREs in the six different genomic regions. (C) Box
plot of the distance between the intergenic CSREs and the nearest TSSs, compared with those of randomly generated ones. For each intergenic
CSRE, the random one was an arbitrarily selected genomic element from the same chromosome with the same length. Then, the distances between
the random regions to their nearest TSS were computed. (D) The normalized proportion of CSREs in each chromosome (1–22, X) in all cell types.
(The bar of chromosome 22 in K562 was truncated to 0.03 for visualization, and its real number is 0.056) (E) Bar plot of the CV (defined as the ratio
of the standard deviation to the mean) of normalized proportion of CSREs in each cell type.
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variants to their resulting traits and diseases. However, the
mechanisms behind these links are ill defined, and research
needs to be done to explore the downstream effects of
disease-associated SNPs (30). To this end, we identified
overrepresented traits in each cell type where their
associated SNPs were located in the CSREs. We found

characteristics of identified traits are consistent with
their associated cellular contexts (Figure 3F and
Supplementary Table S6). For example, SNPs with the
trait ‘hematological and biochemical traits’ and ‘soluble
levels of adhesion molecules’ are significantly located in
CSREs in erythrocytic leukemia cells (K562). We also

Figure. 3. Functional relevance and cell-type specificity of CSREs. (A) The proportion of CSREs belonging to single, two or more cell types. (B)
Overlaps of CSREs between each pair of cell types. The values in the diagonal correspond to the number of identified CSREs in nine cell types and
the value in row i column j records the number of CSREs in cell type i overlapped by those in cell type j. (C) CSRE neighboring genes tended to be
more significantly connected than was expected, with P < 0:0001 indicated by (asterisk). (D) CSRE neighboring genes are more likely to be non-
housekeeping genes with the exception of those in K562 and GM12878. Dashed vertical line on the left side represent the P-value threshold
(log10ð0:05Þ ¼ �1:3). (E) CSRE neighboring genes show distinct functional enrichments highly relevant to the corresponding cell type contexts.
We chose the top five enriched GO terms in each cell type, and �log10ðPÞ was used to generate the heat map. (F) Enriched phenotypes of SNPs
located in the CSREs in three cell types.
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found variants relating to immunological diseases, such as
‘primary biliary cirrhosis’ (35), ‘systemic lupus
erythematosus’ (36) and ‘Rheumatoid arthritis’ (37), are
significantly located in CSREs in B-lymphoblastoid cells
(GM12 878). These observations suggest SNPs may
change the binding surface of nucleic acids in CSREs
altering gene expression patterns, and ultimately disturb-
ing downstream transcriptional regulation. These findings
demonstrate that chromatin modifications charactering
CSREs help define underlying mechanisms of downstream
functional effects of DNA variants including those in non-
coding regions.

CSRE neighboring genes reveal diverse transcriptional
behaviors

Next, we investigated the transcriptional behavior of
CSRE neighboring genes in the nine cell types studied.
Each cell type was divided into two groups: ‘CSRE neigh-
boring’ group denotes CSRE neighboring genes, and
‘other’ group denotes genes that are not in a proximal
location to CSREs. Only genes that could be mapped to
Affymetrix probes are involved in this analysis.
Transcription levels were compared between these two
groups in all nine cell types. All ‘CSRE neighboring’
groups except that of H1 ES had significantly higher tran-
scriptional levels than the corresponding ‘other’ groups
(P < 0:0001, two-sample Wilcoxon tests) (Figure 4A).
We also found that the neighboring genes for all cell
types expect H1 ES contains significantly more
highly expressed genes than expectation (P< 0.001)
(Supplementary Figure S6). In comparison, we checked
the overlaps between CSRE neighboring gene set and
downregulated gene set in each cell type. We found they
did not show significance in any cell type (Supplementary
Figure S7). These results indicate most chromatin modifi-
cations defining CSREs play a role in gene activation to
accomplish specific biological functions. In contrast,
CSRE neighboring genes in H1 ES exhibit significantly
lower transcription level than the ‘other’ group
(P ¼ 1:2e–7, two-sample Wilcoxon tests), suggesting that
chromatin modification defining CSREs in H1 ES have a
repressive role in neighboring gene transcription. As
expected, H3K27me3, a repressive chromatin modification
mark, had a stronger mean intensity in H1 ES CSREs
than in the other cell types (Figure 4B). Furthermore,
we analyzed the extent of transcription diversity of genes
labeled as ‘CSRE neighboring’ in at least one cell type.
These genes behaved in a more diverse fashion, based on
RNA expression levels, than the remaining genes did
(Figure 4C), supporting the proposed potential cell-type-
specific roles of these genes.

CSREs have proximity to DHSs and EP300 binding sites

DHSs are marks of regulatory DNA and have been
extensively used to map regulatory DNA regions in
diverse cell lines (38). Moreover, it was reported that dif-
ferential DNase I hypersensitivity is predictive for perturb-
ation-induced transcription factor-binding sites (39),
highlighting the role of DHSs in investigating regulatory
DNA. Nucleosomes flanking DHSs have been shown to

acquire various covalent modifications, such as methyla-
tion and acetylation, facilitating the binding of regulators.
We expected CSREs were most likely to lie adjacent to
DHSs. Surprisingly, we found most CSREs to be DHS
proximal in all eight cell types we tested, which further
demonstrates CSREs, as well as their underlying modifica-
tions, could play important regulatory roles (Figure 5A).
Moreover, �61.9% of CSREs are located in intronic and
intergenic regions, and they are more likely to act as en-
hancers or facilitate enhancer activities. EP300 is an
enhancer-binding transcriptional co-activator and has
been used to identify enhancers, genome-wide, through
chromatin immunoprecipitation experiments (40). We
found that the CSREs overlap EP300 ChIP peaks signifi-
cantly more than random ones do (Figure 5B), indicating
that many CSREs are adjacent to enhancers.

CSREs reveal epigenetic mechanisms of cellular
dysfunction in cells: two case studies

The first case study we will explore is known as the
Philadelphia translocation. The Philadelphia translocation
is a chromosome abnormality involving chromosomes 9
and 22, which results in an oncogenic fusion gene BCR-
ABL, and is a hallmark of chronic myelogenous leukemia
(41,42). In the erythrocytic leukemia cells (K562), both
pieces of the BCR-ABL fusion gene (BCR on chromo-
somes 22 and ABL1 on chromosomes 9) contain
CSREs, demonstrating distinctly different epigenetic
profile from the other cell types (Figure 6A). Specifically,
BCR contains a CSRE consisting of 766 200 bp bins and
ABL1 contains five adjacent CSREs. We found three
marks including H3K27me3, H3K36me3 and
H3K20me1 have distinctive characteristics at these
regions (Figure 6A and B). We observed that
H3K27me3, a histone modification associated with
Polycomb-repressed regions (43), appears upstream of
the BCR transcriptional start site and downstream of
the ABL1 transcriptional termination site; however, this
modification is almost absent in both gene bodies. In
contrast, H3K36me3, a histone modification related to
transcribed regions (6), had strong signals across the
gene body of both genes, exhibiting a mutually exclusive
occupancy pattern to that of H3K27me3. These observa-
tions imply that there is precise epigenetic control on the
transcriptional boundaries of this fusion gene. Another
histone modification, H3K20me1, also related to
transcribed gene regions (6), is present in the region
ranging from upstream of BCR to downstream of
ABL1; moreover, it does not demonstrate any exclusivity
with H3K27me3 or H3K36me3, suggesting a different
functional role. Finally, CTCF, H3K27ac and H3K9ac
exhibit stronger signals across the BCR-ABL regions in
K562 cells than those observed in the other cell types
examined. These distinctive chromatin modification
patterns highlight specialized epigenetic regulation of
these two genes; any dysfunction in them may be
directly related to transcription of the fusion gene.
Our second case study is insulin-induced gene 1

(INSIG-1), a membrane protein, which plays a critical
role in cholesterol homeostasis; it is expressed in almost
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all tissues and highly expressed in the liver (44). Previously
reported lower INSIG-1 expression levels in HepG2 were
confirmed here (Supplementary Figure S8), and it correl-
ates to dysregulation of sterol regulatory element-binding
protein (45). As we expected, the INSIG-1 promoter
region contains a CSRE, consisting of 24 200 bp bins, in
which there are almost no modification signals (Figure 6C
and D). In the other cell types examined, this correspond-
ing region is marked by active histone modifications
including H3K4me1/2/3, H3K27ac and H3K9ac. The
dramatic loss of necessary epigenetic modifications may
result in lower INSIG-1 expression in HepG2 cells. Both
of these examples illustrate the identified CSREs are rele-
vant to biological processes with respect to cell types, and
the chromatin modifications characterizing the CSREs
may provide clues to explain their underlying mechanisms.

DISCUSSION

The wealth of accumulated ChIP-seq data regarding
various chromatin marks (e.g. DNA methylation,

histone modifications), in diverse cellular contexts (e.g.
cell types, tissues, conditions), provide a unique opportun-
ity to investigate the intrinsic regulatory layer of the
human genome. Here, we propose genomic regions, ex-
hibiting distinctive chromatin characteristics, across dif-
ferent cell types contribute to cell-type-specific gene
regulation. In this article, we developed a powerful
method to identify CSREs within the human genome
using dCMA. As a proof of principle, we used it to
analyze public data consisting of nine chromatin marks
in nine different cell types. Extensive analyses revealed
that identified CSREs demonstrate distinct and cell-type
specific roles. Their underlying modification patterns may
be a key to understanding their potential role in cell-type-
specific regulatory mechanisms. These results suggest
comparative epigenomics is a promising strategy in
deciphering aspects of the human genome.

Compared with related methods (14,15,17), our method
specifically looks at differential modifications, which were
not addressed by previous ones. These previous methods
were designed for jointly analyzing chromatin maps of a

Figure 4. Transcription levels of CSRE neighboring genes. (A) Boxplots comparison of ‘CSRE neighboring’ and ‘Other’ genes. The significance of
the difference was calculated using two-sample Wilcoxon tests with P < 0:0001. The ‘CSRE neighboring’ gene group had higher expression levels,
with exception of the H1 ES cell line. (B) Bar plot of the mean intensity of H3K27me3, a repressive chromatin modification, among all CSREs.
(C) The comparison of transcription diversity of all CSRE neighboring genes and remaining genes. For each gene, the CV was used to measure the
diversity of expression levels across the nine cell types examined. Boxplot comparison of the CV was shown, and the statistical significance was
evaluated using two-sample Wilcoxon test.
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single cell type or cell line. However, our method was
designed for jointly analyzing chromatin maps of
multiple cell types directly. Second, among previous
methods, only Ernst et al. (19) have further applied their
method onto chromatin maps of multiple cell types.
However, the results of these two studies are different.
The study of Ernst et al. identified 15 chromatin states,
whereas ours discovered �4111 cell-type regulatory
elements for each cell type on average. Third, the
previous methods may potentially be applied for the
task we are approaching here. However, it cannot be
used directly; we have to compare the state of genomics
elements of a cell type with those of others
(see Supplementary Methods and Supplementary Figures
S9–S12). This is not a trivial issue. How to determine the
number of hidden states to control the model complexity
for the HMM-based method is difficult too. Moreover, the

data matrices corresponding to different cell types are
simply concatenated, which may ignore the heterogeneity
among cellular contexts. In contrast, our method is
essentially non-parametric, requiring no model assump-
tion, and hence the results are data-driven. Lastly, the
application of our method on chromatin maps of
multiple cell types does have novel biological findings,
which have not been recovered by previous studies. For
example, in the two case studies, the identified CSREs are
corresponding to interesting biological phenomena. The
HMM-based method by Xu et al. (46) was designed to
find differential histone modification sites between ChIP
libraries, and it was limited to do comparison between two
cell types for a single mark. However, our method was
designed for finding genomic elements that are specific
to a single cell type by comparing its modification
profiles of multiple marks to the same modification

Figure 5. Relationship of CSREs to DHSs and EP300 binding sites. The CSREs overlap (A) DHSs in eight cell types and (B) EP300 ChIP peaks, in
three cell types, significantly more than randomly simulated ones. The histograms showing the overlap distributions are calculated based on random
simulated CSREs, and the red curves are plotted based on kernel density estimate. The black arrows indicate the true number of overlaps. Statistical
significance is measured by one-sample Wilcoxon test with P < 2:2e–16 for all cases.
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information of other multiple cell types. It is not limited
by the numbers of cell types and epigenetic marks. We
note that the study by Xu et al. cannot be directly
extended to address our task.
Here, we found the chromatin modifications of different

marks defining CSREs demonstrate interesting properties.
For example, H3K27me3 is highly represented in H1 ES
CSREs, but not in any other cell type examined. In
contrast, the H3K27ac modification had strong signals
in all cell types except for H1 ES. Taking into account
that H3K27ac is an active regulatory mark and
H3K27me3 is a repressive regulatory mark, these
findings may indicate that most of the CSREs play
active roles in gene regulation, except in H1 ES. This is
consistent with H1 ES cellular characteristics, in which
most genes carrying out specific biological processes or
that are active in the early steps of embryogenesis are
poised for activation (47). Moreover, H3K9ac, another
chromatin mark associated with active regulatory
regions (48), exhibits an intensity pattern resembling that
of H3K27ac.
The accuracy of identifying CSREs relies on the number

of known chromatin marks and the number of cell types
used in the comparison study. We evaluated the import-
ance of each chromatin mark in defining CSREs by

removing them from the data sets and then testing how
many CSREs were recovered (Supplementary Table S7).
As expected, removal of the control sequencing experi-
ment, WCE, almost has no effect on the results (average
recovery=98.8%), suggesting that our method did not
rely on controls. Removal of CTCF marginally affected
the results (average recovery=97.6%), implying that
CTCF binding sites are relative stable across all cell
types, which was confirmed in a recent study by directly
comparing the binding sites of CTCF in 11 different
human cell lines (49). In contrast, removal of four marks
related to enhancer regions, H3K4me1, H3K4me2,
H3K27ac and H3K9ac, resulted in dramatic changes to
the results (average recovery=79.4, 85.6, 73.8, 86.1%,
respectively). Thus, we speculate enhancer activity
dynamics control cell-type-specific gene regulation.

In this study, we have preprocessed the data using a
binarization way. We note that real-value and binarization
ways both have their own advantages and disadvantages.
The real-value way can keep more information, but it may
not be robust to noise. It is difficult to model real-valued
signals using common probability distributions such as
Gaussian because there are many extremely high values
in the signals, causing distorting effects. In a recently pub-
lished nature article aiming at genome segmentation (16),

A

B D

C

Figure 6. Illustration of two distinctive modification patterns revealed by CSREs: the BCR-ABL fusion gene and the INSIG1 gene. (A) The left two
plots show the binary modification profiles of the two component genes that make up the BCR-ABL fusion gene in all nine cell types investigated.
BCR and ABL gene are covered by one and five CSRE, respectively. Five red bottom lines indicate those five adjacent CSREs covering ABL gene.
The top right two plots show the corresponding detailed modification patterns in K562, where the Philadelphia translocation results in the fusion
gene. (B) The average intensity comparison of three marks before and after the BCR gene TSS. (C) Binary modification patterns of the CSRE
encompassing the promoter region of the INSIG1 gene. (D) The dramatic loss of five active marks including H3K4me1/2/3, H3K27ac and H3K9ac
in HepG2 (note that the heights of corresponding bars are almost zero). The modification intensity in the ‘others’ group was calculated based on the
combination profiles of the other eight cell types.
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raw real-valued signals are first transformed with the
inverse hyperbolic sine function to reduce the distorting
effects and then modeled by Gaussians. Moreover, as the
authors pointed that the real-valued model (16) requires
much more training time, the authors only trained the
model in 1% of the genome. Although the binarization
process may loss some information, it does have some
advantages. First, the binarization procedure implicitly
normalizes the ChIP libraries. As for the raw read
counts, cross experiments normalization is still a
challenging problem. Second, the binary representation
is more robust, insensitive to outliers in the raw read
counts. Third, the binarized representation of the data
enables the use of a simple and computational tractable
method to solve this problem, and the results are more
interpretable. In this study, we used Poisson as null
model to transform the raw real-valued signals into
binary values. It has been argued that the Poisson distri-
bution is not perfect to model sequencing reads distribu-
tion for its incapability in describing over-dispersion. As it
is still debatable, we will investigate the effects of different
null models. More specifically, we are trying locally null
model fitting, considering that the chromosome structures
are more stable within some small regions.

We expect the promising method presented here to
become a useful tool in analyzing complex chromatin
modification data across multiple cell types. Moreover,
the method also has the potential to identity distinct, bio-
logically relevant, functional DNA elements in the
genome, as more genome-wide epigenetic data become
available and more cell types are systematically profiled.
Specifically, with the progresses of several large-scale
epigenome efforts [e.g. ENCODE (50), modENCODE
(51) and Epigenome Roadmap project (52)], our dCMA
strategy can play a valuable role in deciphering the human
epigenome and its implications in human disease. We
should also note that the chromatin states of a single
cell type are changing over the lifetime of a cell, which
may lead to some variations in the current analyses.
Further, as more time-series epigenetic data are available,
our method can be extended to explore the regulatory
elements that are specific to the development stages or
conditions of a single cell type in the same way.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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