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Abstract Although the measurement of working memory
capacity is crucial to understanding working memory and its
interaction with other cognitive faculties, there are inconsisten-
cies in the literature on how to measure capacity. We address
the measurement in the change detection paradigm, popular-
ized by Luck and Vogel (Nature, 390, 279-281, 1997). Two
measures for this task—from Pashler (Perception & Psycho-
physics, 44, 369-378, 1988) and Cowan (The Behavioral and
Brain Sciences, 24, 87-114, 2001), respectively—have been
used interchangeably, even though they may yield qualita-
tively different conclusions. We show that the choice between
these two measures is not arbitrary. Although they are
motivated by the same underlying discrete-slots working
memory model, each is applicable only to a specific task; the
two are never interchangeable. In the course of deriving these
measures, we discuss subtle but consequential flaws in the
underlying discrete-slots model. These flaws motivate revi-
sion in the modal model and capacity measures.
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Introduction

Working memory refers to information consciously available
for a brief interval in time. It is well known that there are limits
on working memory, but elucidating the nature, causes, and
correlates of these limits remains timely, topical, and
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controversial (Cowan, 2001; Miyake & Shah, 1999; Osaka,
Logie, & D’Esposito, 2007). Current research addresses not
only the nature of working memory itself, but how working
memory subserves other domains of mental life, including
long-term memory, language comprehension, and problem
solving. Researchers explore how capacity limits in working
memory affect processing and performance in these other
domains.

To explore the nature and role of working memory in
cognition, researchers study the effects of experimental
manipulations on capacity, as well as the relationship
between capacity and other performance measures, physi-
ological signals, and participant variables (e.g., age). A
conventional paradigm for measuring visual working
memory capacity is the change detection paradigm, first
introduced by Phillips (1974) and popularized by Luck and
Vogel (1997). As is shown in Fig. 1, there are two versions
of the paradigm. In both versions, a set of items is
displayed for study. In Fig. 1, the items are squares with
stripes of various orientations. After study and a brief
retention interval, a test display is presented. In the
paradigm on the left, called single-probed recognition,
one target is presented at a studied location. This target is
either the studied item or a novel item. The participant must
make a recognition judgment, and the correct answer for
the example in Fig. 1 is that the target is novel.' In the
paradigm on the right, called whole-display recognition, a
full set of items are presented at test. Either this set is the
same as the original studied set, or, alternatively, one item is
novel, as it is in Fig. 1. The difference between the tasks is
that in single-probed recognition, the participant knows
which item may change, if one does. Hence, the participant
need only evaluate the status of a single item. In whole-
display recognition, the participant does not know which

"In a variant, participants are presented all items at test, and one is
cued as the target.
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Fig. 1 Change detection
paradigms. In both paradigms,
participants briefly study a set of
objects and, after a brief delay, +
are tested. a Single-probe
recognition. b Whole-display
recognition %
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item may change and, consequently, must evaluate the
status of all items. Given this difference in demands, it is
not surprising that the two tasks yield somewhat different
outcomes, with better performance in the single-probed
recognition paradigm (Wheeler & Treisman, 2002).

One popular conceptualization of working memory is that
it consists of a limited number of slots (e.g., Cowan, 2001),
although there are alternatives that are discussed subsequent-
ly. Within this discrete-slots conceptualization, researchers
may study how the number of available slots changes across
conditions and participant variables. There are two formulae
for measuring the number of slots. Pashler (1988) proposed
the following measure, denoted E,, for a whole-display task:

- h—7
kp:N<1—_j;>, (1)

where and? are observed hit and false alarm rates and N is
the number of to-be-remembered items, referred to as the set
size. Cowan proposed an alternative measure, denoted 7(}, for
the single-probe task:
ke=N(h-7). (2)

Although measures %p and %C were proposed for different
tasks, they are commonly seen as competitors, or at least as
different alternatives for measuring the same construct.
Consider the following inconsistencies in the field. Some
researchers using the whole-display recognition have opted
for ?c\p (e.g., C. C. Morey, Cowan, Morey, & Rouder, in
press; Palva, Monto, Kulashekar, & Palva, 2010; Sligte,
Scholte, & Lamme, 2009), while others using the same
paradigm have opted for Ec (e.g., Saults & Cowan, 2007,
Vogel, McCollough, & Machizawa, 2005). Most researchers
using single-probe recognition have opted for E (e.g., Awh,
Barton, & Vogel, 2007; Cowan, Fristoe, Elliott, Brunner, &
Saults, 2006; Rouder, Morey, Cowan, Zwilling, Morey, &
Pratte, 2008), whereas Treisman and Zhang (2006) opted

for ?c\,,. Some researchers have even reported both measures
for the same data set (e.g., Lee et al., 2010; Vogel,
Woodman, & Luck, 2006).

The choice between Ep and E may prove critical in
assessing how capacity covaries with other factors. Consider,
for example, the data and analysis of Cowan, Fristoe, Elliott,
Brunner, and Saults (2006), who assessed whether capacity
changes across set size in 11-year-old children, using the
single-probe recognition task. Cowan (2001) advocated a
model in which capacity is a fundamental latent property that
does not change with stimulus variables such as set size.
Fig. 2a shows the observed hit and false alarm rates from 52
children. We computed values of Ep and k. for each child at
each set size. The averages of these capacity measures are
shown in Fig. 2b. As can be seen, capacity is nearly constant,
as predicted by Cowan’s (2001) model, if measured by E.. If
capacity is measured with %p, however, capacity increases
with set size, seemingly violating Cowan’s model.

In summary, although the measurement of capacity may
prove critical in assessing topical questions, there are
inconsistencies, with different researchers opting for differ-
ent formulae in identical paradigms. The choice of capacity
measure is consequential, since different measures may
yield different conclusions. Fortunately, this choice is not
arbitrary, and here we provide the appropriate guidance.
First, we show that both the Pashler and Cowan formulae
are not competitors but may be derived from a common
discrete-slots assumption. We consider measures to be
principled if they can be logically derived from a
reasonable processing model of a specific task and
unprincipled if there exists no corresponding processing
model. Measure Ep is principled for whole-display recogni-
tion. Measure %c is principled for single-probe recognition.
Conversely, E, is unprincipled for single-probe recognition;
k. is unprincipled for whole-display recognition. Second,
we show that there are subtle but important flaws in the
common model underlying both formulac. We propose
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modifications of this model and discuss capacity estimation
in light of these modifications.

A discrete-slots working memory model

The theoretical basis for both capacity measures is a
discrete-slots working memory model, first advocated by
Miller (1956). The main postulate is that working memory
consists of a small number of slots that holds a single item
or a single chunk of bound items. In the change detection
task, where the stimuli are simple, presented in parallel, and
held for about a second or so, it is reasonable to assume that
items are not grouped or chunked and that performance
reflects the small number of slots. When there are more items
than slots, some items are represented in a slot, and others are
not. When an item is unrepresented in working memory,
participants have no knowledge whatsoever about it.

The discrete-slots assumption may be used to derive
estimates of capacity in a variety of tasks. For the change
detection tasks, it is common to use items that are highly
distinguishable, such as categorically different colors. For
such highly distinguishable stimuli, it makes sense to
couple the discrete-slot assumptions with a threshold
assumption. If an item is in memory, we assume that there
is sufficient information to correctly assess whether it
matches a probe item at test.

This threshold assumption is appropriate for the change
detection tasks with highly distinguishable stimuli. It is not
appropriate for other stimuli, such as those that may differ
subtly (Olsson & Poom, 2005). Likewise, the threshold
assumption is not appropriate for other tasks, such as
Zhang and Luck’s (2008) production task, in which the
participant must indicate which color was studied by
endorsing an option on a smoothly varying color wheel. In
these cases, a discrete-slot memory model may be coupled
with a finite-precision assumption in which color information
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for items in memory is represented up to some finite precision
(e.g., Awh et al., 2007; Zhang & Luck, 2008). We focus on
the change detection task with distinguishable stimuli
because these are commonly used to assess changes in
capacity across manipulations and group variables.

The discrete-slots memory model is not the only
approach to modeling working memory. There are
alternatives in which working memory reflects a limit
of resources, which are spread more thinly as more items
enter working memory (e.g., Bays & Husain, 2008;
Wilken & Ma, 2004). There are two main advantages to
considering the discrete-slots model for measurement
purposes. First, the model receives support from diverse lines
of inquiry (e.g., Awh et al., 2007; Rouder, Morey, Cowan,
Zwilling, Morey, & Pratte, 2008; Vogel, McCollough, &
Machizawa 2005; Xu & Chun, 2006; Zhang & Luck, 2008).
Second, capacity is conceptualized as a limit in the
number of slots, which is a highly interpretable quantity
that may be compared across different conditions and
groups. In limited-resources models, in contrast, there is
no single natural capacity measure. For example, in Bays
and Husain’s power law theory of resource distribution,
capacity consists of two parameters that describe how
resources are allocated. These two parameters are domain
specific, and patterns of variations across domains are
not as interpretable as a number-of-slots measure.

Single-probed recognition

For single-probed recognition, the participant need only
consider the status of the probed item. The participant’s
performance on each trial is conditional on whether the
probed item is in memory or not. If the probed item is in
memory, the participant performs perfectly, and the hit and
false alarm rates from these probes are 1 and 0, respectively.
When the item is not in memory, the participant guesses, and
we denote the rate of change responses from guessing as .
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Let d denote the probability that the probed item is in
memory. Combining yields

h=d+u(l-d), (3)

f=u(l-d). (4)

The equations above describe a double-high threshold
model. It is straightforward to show that the maximum-
likelihood (ML) estimator of d is given by d="h f (see
Egan, 1975), so long as h Zf The probability that the
probed item is in memory, d, is k£ / N if the set size exceeds
capacity and 1.0 if set size is no larger than capacity. These
two conditions are expressed as

dzmin(%,l). (5)

It is straightforward to show that the ML estimator
of k is

E:N(fo),ng,sz. (6)

This estimator is the Cowan measure, subject to the
qualification that £ < N and n Zf. The last qualification
is of little importance, since observed hit rates almost
always exceed false alarm rates in empirical studies. The
first qualification, & < N, has important ramifications,
which are discussed subsequently. Kyllingsbaek and
Bundesen (2009) described the statistical properties of
the measure.

Whole-display recognition

The participant’s behavior in the whole-display recognition
task is conditional on whether the participant has detected
that one of the items has changed or not. The threshold
assumption, discussed above, is very convenient for
derivations. It guarantees that participants detect change
only when it truly happens, no matter how many items
are in the display. For change trials, the probability that
the participant detects the change is d, the probability that
the changed item is in memory. For same trials, the
probability that the participant detects a change is
necessarily zero. If a change is detected, the participant
responds accordingly. If a change is not detected, the
participant must guess whether the trial is a same trial or
whether a change occurred in one of the items not in
memory. We denote the probability of responding change
when engaging in this type of guessing as g. The predicted
hit and false alarm rates are

—d)g, (7)

f=g (8)

h=d+ (1

The equations above describe a high-threshold model;
the maximum-likelihood estimator of d is given by d=
(Z —f) / (l —f) for h 2? (Egan, 1975). It is straightfor-
ward to show that the ML estimator of & is

z_N<h‘{>,k< NisF i<l o)
1-f

This estimator is the Pashler measure, subject to the
qualification that k < N, n Zf, andf < 1. Implications of
the first qualifier are important and are discussed below.

Guessing in whole-display recognition is qualitatively
different from guessing in single-probe recognition. In
the single-probe paradigm, guessing is uninformed, and
this uninformed rate is denoted by u. In whole-display
recognition, however, the guessing rate may be informed
by the capacity and set size. To see how this information
affects guessing, consider a participant with £ =3 and N =
4. This participant will detect the majority of changes
when they are presented. For this participant, observing
that all items are the same indicates one of two
possibilities: Either there was no change in the display,
or the change occurred in the one item that was not in
working memory. Whereas not storing the specific item is
a low-probability event (.25 in this example), the partic-
ipant has relatively high confidence that there was no
change in the display. Consequently, g should be low. If
this participant was presented many more items—say, N =
10—then most of the changes would occur in items that
are not in working memory. In this case, the value of g
should be higher, because it is increasingly probable that
changes were missed. Hence, the value of g should reflect
the set size and capacity.

While the discrete-slots model is agnostic to the guessing
strategies across set sizes, it is helpful to describe normative
behavior of g in assessing performance. The normative
predictio is”

B (1 —d)u
ST 0 —dur(—u)

The dependence of informed guessing (g) on set size,
capacity and uninformed guessing (u) is shown in Fig. 3. If

(10)

% In the ideal model, we interpret g as the subjective probability that
the item has changed, given that no changes were detected. Hence,
g = P(C|M;), where C is the event that the there was a change in the
display, M is the event that all items in memory are the same across
test and study. An application of Bayes’s theorem yields g =
P(C|M,) = (Mv\(C))( ). The term P(M,|C) is the probability that
the changed item is not in working memory on a change, (1 - d).
P(C) is the uninformed guessing rate, u. The denominator, P(M), is
evaluated by conditioning on change and same trials and may be
expanded as P(M,) = P(M;|C)P(C) + P(M,|S)P(S), where S is the
event that the trial is a same trial. This term evaluates to
P(M,) = (1 —d)u+ (1 — u). Substituting yields Eq. 10.
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Fig. 3 The dependence of informed guessing, g, on set size, capacity,
and uninformed guessing base rate (1) in the whole-display paradigm

capacity is at least as large as set size, then g = 0. As a smaller
percentage of items are in working memory, g increases. In the
large set size limit, this informed guessing probability con-
verges to u, the uninformed guessing rate. Whether participants
follow such a normative prescription remains unexplored.

Problematic averaging

The derivations above show that the Pashler and Cowan
measures are valid only when the set size N is as big as or
bigger than true capacity k. If k£ > N, the estimates are
limited by N, which, by definition, is biased too low.

The qualification that £ < N is especially problematic
when capacity is averaged across a group of participants.
To see this, consider a set of participants who have
capacities of three, four, and five items, in equal numbers.
The true average capacity is, therefore, 4.0. Suppose there
are four items at study—that is, N = 4. For the two thirds of
the participants with true capacities of three and four items,
the closed-form estimators yield valid estimates. For the
one third with a capacity of five items, however, the
estimator may be no larger than N, which is 4 in this
example. In the large sample limit, the average across the
sample has a value of 3.67, which is below the true average.
The easiest solution is to use designs with only larger set
sizes or to ignore estimates from smaller set sizes. This
solution may not be practical, since it is not always obvious
which set sizes are sufficiently large. A more principled
solution comes from R. Morey (2011), who developed a
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hierarchical version of the discrete-slots model for use
across several participants and across several set sizes. In
Morey’s version, each individual has his or her own
capacity k, but these are not unconstrained. Instead, each
is assumed to come from a common parent distribution.
When people display perfect performance, the estimate of
capacity is not N. Instead, it is adjusted upward by an
amount reflecting the estimated parent distribution, and this
process yields accurate averaged estimates.

The problematic prediction of error-free performance

The discrete-slots model, as specified, makes a surprisingly
problematic prediction. If capacity is larger than set size,
performance is perfect. Conversely, if observed perfor-
mance is not perfect, then, as a matter of mathematical
logic, capacity must be less than the set size. This
implication is problematic, since participants do make an
occasional mistake in the small set size condition. For
example, in Rouder et al. (2008), 23 participants performed
change detection with two items. Every single participant
made at least one error out of 180 trials. The presence of
errors implied that capacity must be less than two, even
though this estimate does not accord well with capacity
estimates measured from larger set sizes.

We believe that it is reasonable to assume that
participants will eventually make a mistake even in small
set size conditions, due to a momentarily lapse in attention
or intention. Unfortunately, such lapses dramatically affect
the capacity estimate. A principled solution is to explicitly
model stray errors. Rouder et al. (2008) provided perhaps
the simplest modification. In their model, attention was
modeled as an all-or-none process: Either attention was
paid on a trial, in which case the responses reflected the
discrete-slots model, or was not, in which case the
responses reflected an uninformed guess. The probability
that attention was paid on a trial is denoted by a. This
attention-mixture model for single-probed recognition is

h=ald+ (1 —d)u] + (1 —a)u,
f=al(1 —=d)u] + (1 — a)u.

The same model for whole-display recognition is

h=ald+ (1 —d)g]+ (1 — a)u,
f=ag+ (1 —a)u.

Note that, in whole-display recognition, guessing is
informed if the trial is attended and is uninformed otherwise.
Although the attention-mixture model avoids the
predicted-perfect-performance pitfall in a principled manner,
capacity cannot be estimated by convenient closed-form
equations such as (1) and (2). Instead, algorithmic approaches
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are needed. Rouder et al. (2008) used numerical methods to
maximize likelihood across several conditions simultaneous-
ly. R. Morey (2011) proposed hierarchical versions of the
models that allow for individual attention, capacity, and
guessing parameters. These parameters are assumed to result
from parent distributions, and this hierarchical structure
provides for stable and accurate estimation of these
parameters and their dependence on covariates.

Critical benchmarks

The main tenet of the underlying discrete-slot model is that the
number of slots in working memory, the capacity, is fixed. The
current models provide a means of measuring this capacity as
a function of set size. The critical benchmark in each is that
capacity should remain constant across changes in set size.
This benchmark has been tested fairly thoroughly for the
single-probe task. Cowan et al. (2005) showed an approxi-
mate constancy for set sizes between 4 and 12. Rouder et al.
(2008), using some of the advanced measurement models
discussed above, showed the same for set sizes between 2
and 8. Rouder et al. also showed the constancy of capacity
across different base-rate conditions. To our knowledge,
there are no published assessments of capacity constancy in
the whole-report task across set size manipulations.

A secondary issue is whether guessing in each model
follows a prescribed form with changes in set size. When
the pattern of guessing is easily understood and makes
theoretical sense, the capacity estimate has increased
interpretability. If guessing rates fail to follow such a
pattern, the capacity estimate may still be interpreted, but in a
qualified manner. Rouder et al. (2008) showed an invariance
of u to set size manipulations in the single-probe task. To our
knowledge, there is no corresponding detailed assessment of
whether g follows the predictions in (10). Given that the
single-probe task and the associated model have been
benchmarked better than the whole-display task, researchers
at this date can have more confidence in the capacity
estimates from the former than in those from the later.

Recommendations

The analysis above of the discrete-slots model yields the
following practical recommendations for the measurement
of capacity.

1. The Pashler and Cowan capacity measures are derived
from the same discrete-slots model. The Pashler
measure is principled for the whole-display recognition
paradigm; the Cowan measure is principled for the
single-probe recognition paradigm. Contrary to popular

usage, these measures are not competitors or alternatives,
and their use is strictly dictated by the paradigm. It is
unprincipled to report k. for whole-display designs or to
report E, for single-probe designs.

2. There are two problems with the closed-form estimators
Ep and %c. First, they are contingent on large set sizes
(k < N), and this constraint poses challenges to
estimating average capacity across a group of partic-
ipants. Second, and perhaps more important, the
discrete-slots model predicts error-free performance
for small set sizes. As a consequence, occasional errors,
which may occur from occasional lapses in attention,
greatly affect capacity measurements. One solution for
both of these problems is to simply ignore small set
size conditions. A more principled solution is to adopt
R. Morey’s (2011) hierarchical discrete-slots model.
This model explicitly models attentional lapses, as well
as variations across participants and conditions.
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