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The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the
fastest and most tactile hunters described to date. The shrew’s skeletal muscle consists entirely of
fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in
large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and
is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary
and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant
Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive
manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as
short as 25–30 ms to prey movement. The speed of attacks suggests that shrews identify and classify
prey with a single touch. Large parts of the shrew’s brain respond to vibrissal touch, which is rep-
resented in at least four cortical areas comprising collectively about a third of the cortical volume.
Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cor-
tical response latencies become two to three times longer when body temperature drops from 368C
to 248C, suggesting that endothermy contributes to the animal’s high-speed sensorimotor perform-
ance. We argue that small size, high-speed behaviour and extreme dependence on touch are not
coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size
are outweighed by the advantages of being a short-range high-speed touch and kill predator.
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1. INTRODUCTION
(a) Purpose of the review: neurobiology of

shrew active touch

The purpose of this review is to summarize our
advances on Etruscan shrew active touch and put
them in perspective with other findings on the tactile
behaviour of other mammals. Specifically, we will por-
tray the Etruscan shrew as short-range high-speed
hunter. Shrews tackle a complex task: in darkness
they detect, overwhelm and kill their insect prey, a
fast moving target that is almost as big as the shrew
itself (figure 1a). Crickets are abundant in shrew
natural habitats [2] and are nocturnal, highly mobile
animals endowed with a variety of mechanosensitive
organs that mediate escape behaviours [3]. Thus, the
behavioural ecology of shrews and crickets predisposes
them towards interacting via sophisticated tactile
behaviours.
(b) Sensory implications of small body size

The Etruscan shrew, Suncus etruscus, is not only the
smallest shrew, but presumably also the smallest ter-
restrial mammal. The adult body mass of individuals
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caught from their natural environment ranges from
1.6 to 2.4 g [4]. While many authors have focused
on the metabolic implications of small body size in
mammals, few have considered the sensory impli-
cations of body size. Here we argue, however, that
such scaling relationships have important implications
for vibrissal touch. Etruscan shrews have a prominent
vibrissae array (figure 1b–d). In figure 1e, we highlight
the scaling relationship of body and vibrissa length for
diverse mammals, which are all thought to be ‘vibris-
sal’ experts. It is obvious that whiskers are relatively
longer in smaller mammals; i.e. small animals have a
relatively larger vibrissal sensing volume [1]. It may
thus not be surprising that Etruscan shrews, like
rodents, depend primarily on their well-developed
array of mystacial vibrissae for tactile information
[5–7]. If whiskers are protracted, the tips of the whis-
kers precede the snout by up to 1 cm, which is around
a fifth to a third of the total body length. Etruscan
shrew whiskers thus sense a longer distance ahead
than in the rat or mouse. This may be necessary to
avoid obstacles as the shrew locomotes very rapidly
[8]. Furthermore, a longer whiskertip to mouth dis-
tance may be advantageous both in the spatial and
temporal domain for successful shrew corrective
manoeuvres observed in response to fast prey escape
attempts [6,7]. The relatively large sensing volume
scanned by the vibrissae allows the Etruscan shrew
This journal is q 2011 The Royal Society
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Figure 1. The Etruscan shrew and its vibrissal system. (a) An Etruscan shrew and a field cricket. The E cent coin is 16.25 mm
in diameter. (b) Frontal view of the head of a shrew. (c) Etruscan shrew whisker array; the longest shrew macrovibrissae are ca
12 mm long. The scale shows millimetres. (d) High magnification view of the microvibrissae surrounding the mouth. (e) Sche-

matics of vibrissal sensing volumes [1] (grey) and body size in the Etruscan shrew, the rat (middle) and the harbour seal
(bottom). The percentage value refers to the length the longest facial vibrissa and states the percentage of body length that
this whisker reaches.
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to sample more of its direct surround, which may
partly explain why shrews act so fast during prey
capture.

Shrews have very small eyes [9,10]. It has been
suggested that owing to poor development of the
eyes and visual system vision functions merely to dis-
criminate light intensity [11–13], although in our
hands, visual cues appeared to trigger defensive
Phil. Trans. R. Soc. B (2011)
reactions. However, we never observed any evidence
that visual stimuli (i.e. crickets behind a glass screen)
trigger hunting behaviours.

Shrews have very small cochleas with only about
300 sensory hair cells in the smallest shrews investi-
gated so far [14] and correspondingly small brain
areas involved in auditory sensation [14–16]. As a
result of reduced visual and auditory capacities in
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most shrews, olfactory and somatosensory modalities
have become a highly-developed and important part
of their sensory repertoire [5,17–19].

Sensory organs and the brain claim high energetic
costs (for a review see Niven & Laughlin [20]).
Many sensory modalities such as active whisker
touch require muscular movements, which further
increase the energetic costs. Hence, sensory and ner-
vous systems are subject to two conflicting selective
pressures: the need to minimize energy consumption
and to generate adaptive behaviour under changing
environmental conditions. More specifically, in sen-
sory systems, there will be a trade-off between the
energetic costs of a sensory structure encoding a par-
ticular modality and the amount of reliable
information obtained. Trade-offs may also occur
between sensory systems: animals with a subterranean
lifestyle such as the star-nosed mole have a highly
developed mechanosensory modality with sensory
specializations and expanded cortical areas at the
expense of reduced vision with minute eyes and a
small visual cortical region [21]. Similar trade-offs
have been documented in the naked mole rat, which
has been shown to be completely blind and possesses
specialized sensory hairs along the body that might
guide its movement within tunnels [22,23].
(c) Metabolic selection pressure for efficient

sensorimotor performance

Small body size does not only directly impact on vibro-
tactile sensing, but it also results in unique selection
pressures on the Etruscan shrew’s hunting behaviour.
Because of their small size and their large surface to
volume ratio, Etruscan shrews have an extraordinarily
high-energy turnover. This presents an extreme
challenge to all functions of the body, including respir-
ation, oxygen transport, muscle parameters, but most
importantly here the sensory and neural systems.
Only because Etruscan shrews are highly efficient hun-
ters, are they able to meet these extreme metabolic
demands.

Etruscan shrews are usually homoeothermic with a
normal body temperature between 348C and 388C
[4,24]. Etruscan shrews resting at an ambient temp-
erature of 208C have a mean body temperature of
34.7+0.58C [24]. During activity, the mean body
temperature is 28C–38C higher than at rest [24,25].
However, in case of food restriction and at low ambi-
ent temperature, they can reduce their body
temperature and enter a torpid state to cut down
their resting energy expenditure. Torpor is defined as
a state of decreased physiological activity, usually
characterized by a reduced body temperature and
reduced metabolism. In laboratory conditions, daily
torpor cycles were observed with body temperatures
lowered to about 128C, in extreme cases even to 68C
[26,27]. Shrews can warm up from torpor very rapidly
at a rate of around 18C per minute by muscle shivering
and heat generation from brown adipose tissue [27].
Under normothermic resting conditions, the specific
oxygen consumption rate of S. etruscus is 67 times
higher than in humans. A maximal heart rate of up
to 1500 beats per minute exceeds all values reported
Phil. Trans. R. Soc. B (2011)
for other endothermic animals [4]. This species has
the highest mass-specific metabolic rate of all mam-
mals [28] and thus there is an immense pressure to
obtain prey. Shrews as small as S. etruscus need to
ingest food at least every hour and have to consume
up to six times their own body weight of insects
every day [29].

Muscles play a major role in the capture and
chewing of prey, but S. etruscus requires fast skeletal
muscles not only for locomotion but also for effective
heat production and for an extremely high ventila-
tion rate [28]. Skeletal muscles can contract at up
to 780 min21 for running, up to 3500 min21 for
shivering and up to 900 min21 for respiration. Both
structural and functional properties demonstrate that
the Etruscan shrew’s skeletal muscles are well adapted
to fit the needs of this animal’s extreme metabolism;
they lack slow-twitch type I fibres and consist only of
fast-twitch IID fibres. The enzymatic characteristics
of these fibres make them optimally equipped for an
almost purely oxidative metabolism [30].

With a brain mass of about 60 mg, the Etruscan
shrew has the smallest mammalian brain known [31].
In such small brains, axons are typically densely
packed, small in diameter and mostly unmyelinated.
Unmyelinated axons have high capacitance per unit
length and are energetically more expensive than mye-
linated axons [32]. In the tiny shrew, the estimated
metabolic cost for generating an action potential for
all white matter fibres averaged is an order of magni-
tude higher than in the macaque and 97 per cent of
this cost is accounted for by the unmyelinated axons.

In summary, surface to volume considerations
imply that a homoeothermic body temperature is
metabolically highly costly. The musculature of Etrus-
can shrews is specialized for fast movement, and an
increased body temperature might also offer massive
advantages in terms of processing speed (see below).
(d) Sensory ecology: Etruscan shrews

specialize in a hidden life in slits

There are more than 300 species of shrews and they
share common features, such as a small body size
and prominent whiskers on a pointed snout. Shrews
belong to the order Soricomorpha. Fossil evidence
suggests that the earliest mammals were shrew-like in
body size. Their brains were similarly small as those
of extant shrews and possibly afforded similar
behavioural capabilities [33,34].

In Europe, the Etruscan shrew is mainly found in
the Mediterranean lowlands and in Asia in a belt
extending between 108 N and 308 N [30]. Their habi-
tat includes forest, shrub and grassland environments
[35]. As for many other species in the genus Suncus,
the Etruscan shrew is most likely solitary and territor-
ial, except during the breeding season [36,37]. Being
hunted by predator birds such as owls [38], shrews
try to avoid moving uncovered in the open field, but
rather seek shelter under piles of rock, pieces of bark
or other organic material and in tunnels that they dig
in loose soil. Often they are found resting in old dry
stone walls, where they also build nests for bringing
up their young. Strikingly agile animals, shrews
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squeeze their body through tiny holes and they are able
to enter and capture prey in slits as thin as 7 mm.

Shrews are opportunist insectivores and all species
consume a wide range of prey. Studies of the feeding
habits of shrews and their prey availability demonstrate
that small size brings benefits as well as costs [39]. The
greatest advantages for small shrews are their lower
absolute food requirements and the ability to subsist
on small, numerous and accessible arthropods with
high encounter rates, available in different seasons
and low-productivity habitats. Major costs of small
size are a reduction in food niche breadth and prey
biomass resulting from restrictions on the type and
size of prey eaten, and large territory requirements
with a consequential increase in the energetic cost of
foraging and territory maintenance. Owing to their
constant food requirement, shrews have polyphasic
circadian activity patterns with frequent activity
bouts distributed evenly over a period of 24 h
[9,35,40–43]. This means that shrews have to be
able to successfully hunt in twilight as well as in dark-
ness. Vision can be furthermore limited in typical
shrew habitats, such as dense brush vegetation or
tunnels in stone walls or the soil [9] and indeed,
sight only seems to play a minor role for navigation
and prey capture [6,7,13,44].

When exploring new environments, shrews frequently
emit faint, high-pitched laryngeal calls (‘twittering’) of
unclear function [9]. While a few authors claimed that
shrews make use of echolocation [45–48], others
found no evidence for this ability [8,19]. A recent
study proposed that shrew-like calls can yield echo
scenes useful for habitat assessment at close range,
beyond the range of the shrews’ vibrissae. At the same
time, it seems unlikely that they can make bat-like use
of echolocation to search for prey [49]. In summary,
we suggest that the secret life of Etruscan shrews in
slits, where they hunt large and diverse prey, might
predispose them to rely on proximal tactile cues.
2. TACTILE PREY CAPTURE BEHAVIOUR
(a) Tactile hunting of highly mechanosensitive

cricket prey

Since the pioneering work of von Uexküll, it is clear
that understanding sensory performance of predators
requires analysis of the sensory characteristics of
their prey [50]. Crickets are found in abundance in
the natural habitat of the Etruscan shrew and therefore
are thought to be an important prey [2]. A cricket can
measure up to 35 mm (body of the Etruscan shrew
measures between 35 and 50 mm) and has very long
antennae and prominent jumping legs (figure 1a).
Crickets are fast moving prey and very capable of evad-
ing attacks. A variety of mechanoreceptors, different
kinds of receptors and mechano sensory sensilla are
found in and on the cricket body and appendages,
just as in other insects (e.g. cockroaches, locusts).
A cricket shows a range of behavioural responses to
stimulation of its mechanoreceptors, extending from
ignoring the stimulus to altering complex behavioural
sequences such as avoidance manoeuvres, orientation
and approach or fighting (see [51,52]). Furthermore,
the input from mechanoreceptors is known to inhibit
Phil. Trans. R. Soc. B (2011)
ongoing behavioural activity, e.g. singing or walking
stops when a predator approaches [53]. While the
antennae are versatile head appendages with the ability
to sense the environment up to twice its body length,
cerci, the two caudal antenna-like appendages
are mainly known to guard the rear of the insect
[54–57]. Any defensive or escape behaviour guided
by cercal mechanoreceptors depends on their
stimulation [58].

Mechanisms of escape behaviour have been studied
intensely [3,59,60]. Wind and touch stimuli have been
used to study defensive (kicking) and escape
responses. When a digger wasp makes contact with
the cricket, it first leads to a head stand (sudden raising
of the abdomen), followed by a stilt stand with the
further raising and tilted posture, which is followed
by a rapid kick with one hind leg casting the wasp sev-
eral centimetres away. The kick is completed in 100 ms
after the touch and can also be followed by a second
kick [52,61]. We observed that Etruscan shrews
quickly retracted their snout after placing attacks on
crickets, probably to avoid being kicked. The escape
response can be a turn, a jump or both and often is
followed by running.

(b) Tactile guidance of prey capture

Anjum et al. [6] studied the hunting behaviour of
Etruscan shrews in a laboratory setting. In these experi-
ments, the spatio-temporal analysis of numerous
attacks was combined with whisker removal and prey
manipulation experiments. Etruscan shrews direct
their attacks selectively to the cricket’s thorax and
manage to keep this precision regardless of the size of
the prey (figure 2a,b). They attack crickets from the
side with a narrow distribution of attack angles
around 908 relative to the cricket’s body axis. Although
most attacks are directed straight ahead, there is a slight
lateralization in the hunting behaviour towards right-
ward attacks.

(i) High speed of prey capture
Prey capture occurs very quickly, i.e. in 80–200 ms
per attack, with short inter-attack intervals. While
first attacks were distributed relatively broadly over
the cricket’s body, subsequent attacks were directed
more and more precisely to the thorax.

(ii) Whisker-dependent shape recognition
Removal experiments showed that both macro- and
microvibrissae are required for hunting [6]. Experi-
ments with dummy prey objects showed that shrews
attacked a plastic replica of a cricket but not other plas-
tic objects of similar size. Altering the shape of crickets
by gluing on additional body parts from donor animals
revealed that the jumping legs but not the head are key
features in prey recognition. Addition of such ‘ectopic’
jumping legs is highly confusing for shrews and leads
to dramatic changes in attack patterns. Thus, tactile
shape cues are both necessary and sufficient for evoking
attacks. Both the generalized effects of cricket shape
manipulation experiments and characteristics of correct-
ive manoeuvres indicate that shrew behaviour is guided
by Gestalt-like prey descriptions [6].
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Figure 2. Precision and speed of shrew attacks. (a,b) Shrew attacks are selectively placed on the thorax of crickets. Modified from
Anjum et al. [6]. (a) Attack histogram derived by analysing video sequences (n ¼ 450 shrew attacks on approx. 130 crickets). (b)

Bite mark positions (yellow squares superimposed on a cricket photograph (n ¼ 94 bite marks on 25 freshly killed, immobilized
or injured crickets)) and bite mark histogram. (c–e) Mid-attack change of direction. Modified from Munz et al. [7]. (c) Still
frames from before and at the end of the attack (time lapse between images¼ 0.23 s) are overlaid. Dots and circles are the
head positions of the shrew and cricket, respectively. Dots and circles are colour-coded for simultaneous head positions of the
shrew and cricket. (d) Head speed of the cricket (top) and shrew (bottom). Note the 29 ms lapse between the cricket’s speed

increase and the shrew’s speed increase. Black dotted lines represent 0 cm s21, red-dotted lines represent the thresholds used
to determine the time of speed increase. (e) Average of six such attacks. Black dashed lines are linear fits to the baseline accel-
eration prior to the sudden increase in cricket acceleration (t ¼ 0 ms). Shaded regions represent +1 s.e. The difference in time
between the cricket and the shrew acceleration increase was 27 ms. (e) Brown curve, cricket; blue curve, shrew.
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(c) Shrew whisking and active touch in

prey capture

We recently characterized Etruscan shrew whisking
and tactile behaviour during prey capture [7]. To this
end, we combined staged shrew–cricket encounters
with whisker tagging and high-speed videography.

(i) Basic characteristics of Etruscan shrew whisking
Like other mammals, such as mice and rats, Etruscan
shrews engage in rhythmic back and forth whisker
movements, i.e. whisking. The average power spec-
trum shows a very clear peak in the shrew whisking
at approximately 14 Hz. This is a considerably higher
whisking frequency than that of rats (approx. 8 Hz),
but is similar to mice [62]. Clearly, shrews employ peri-
odic whisking during their hunting behaviour and the
shrew whiskers are under active muscle control. Com-
pared with rats, shrews had lower amplitude whisking
(approx. 308 versus approx. 508 in rats). Interestingly,
as in rats, retraction velocity was almost double
protraction velocity.

(ii) Whisking during hunting
Etruscan shrew whisking during hunting can be
divided into phases: (i) immobile resting prior to hunt-
ing. Prior to hunting shrews often showed very little
Phil. Trans. R. Soc. B (2011)
head or whisker movement. (ii) Search phase. The
beginning of the search phase was determined by
an increase in the head velocity. Concurrent with
increased head motion the whisker set angle increased
and whisker motion increased. During the search
phase we often observed highly regular periodic whisk-
ing. (iii) Contact phase. The first whisker-to-cricket
contact defined the transition from the search to the
contact phase. This phase was kept very short by the
shrew, as crickets tried to escape before the shrew
was able to strike. Following contact, whisking ampli-
tude decreased and there was a small increase in the
whisker set angle. (iv) Attack phase. Attack was
defined by a sudden increase in head acceleration
directed towards the cricket. This is a brief behavioural
event with a sharp increase in head acceleration. The
shrew’s trunk dramatically bent during the strike and
assumed the shape of a parrot beak.

(iii) Mid-flight changes in attack direction indicate short
reaction times
As illustrated in figure 2c–e, we found that shrews were
able to react to cricket movements during the short
duration of the attack. In figure 2c, we overlaid video
images taken just before and at the end of an attack.
The dots and circles show the head positions of the
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Figure 3. Periphery of the Etruscan shrew vibrissal system. (a) Pattern of vibrissal follicles shown in a flattened preparation
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row or an arc and labelled X, Y and Z. Scale bar applies to (a) and (b). (b) Ventral view of the shrew’s brain. The trigeminal
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cricket and shrew, respectively, during the attack. The
dots and circles are colour coded to show simultaneous
shrew and cricket head positions (note that the first
four cricket head positions are nearly identical). In
this example, the shrew is initially moving upward in
the video and the cricket is still. When the cricket sud-
denly jumps backward, the shrew reacts by adjusting
its trajectory. We estimated the reaction time of the
shrew by looking at the time delay between the
cricket’s sudden speed increase, corresponding to its
attempted flight, and the shrew’s increase in head
speed as it adjusts its attack. In this example, we
found that it took the shrew only 29 ms to react to
the cricket’s escape attempt (figure 2d). On average,
the shrew’s increased head acceleration followed the
cricket’s sudden acceleration by 27 ms (figure 2e).
It was previously reported that shrews react to under-
water stimuli with a latency on the order of 20 ms, in
good agreement with the values reported here [19].
Overall, the observations from high-speed videography
strongly support the idea that shrews out-manoeuvre
their very large prey by high-speed performance.
Indeed, about 40 per cent of shrew attacks target
stationary prey and the first strike often occurs prior
to any evasive manoeuvre [6]. Both short reaction
times and short attack intervals suggest that shrews
identify and target their prey with a single touch.
3. THE SHREW SOMATOSENSORY SYSTEM
(a) Periphery

The Etruscan shrew’s prominent whisker fan has
already been introduced in figure 1. Selective whisker
removal experiments demonstrated a functional differ-
entiation of shrew whiskers in prey capture [6]. The
large macrovibrissae (figure 1c) were required for
prey targeting, whereas the small microvibrissae
around the shrew’s mouth (figure 1d) were necessary
for initiating the final strike/bite in attacks. Figure 3a
shows the left whiskerpad with the vibrissal follicles
clearly visible. The whiskers on each side of an
Etruscan shrew’s snout are arranged in a grid made
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up of six rows (A to F) and several arcs. Each row con-
tains six to nine whiskers. In addition, there are three
whiskers not contained in a row or an arc, labelled
X, Y and Z. In total, there are more than hundred
vibrissae extending like a fan from the snout of the
Etruscan shrew. In larger shrews, even higher numbers
of vibrissae have been described [60,63,64]. Differ-
ences between shrew and rodent vibrissal follicles
have been described [63,65,66].

Touch signals from the follicles are relayed to the
brainstem via the trigeminal nerve. In the long-clawed
shrew (Sorex unguiculatus), which is about 10 times
larger than the Etruscan shrew, each sinus hair follicle
is innervated by 60–100 myelinated fibres [61]. The
fibres from the sinus hair follicles join to form the
maxillary branch of the trigeminal nerve. The thick tri-
geminal nerve compared with the much thinner other
cranial nerves gives a stunning impression of the signifi-
cance of touch information from the facial region for
the Etruscan shrew. Figure 3b shows the trigeminal
nerve framed by black arrows and the optic nerve
framed by blue arrows for comparison. The differences
in macromorphology of the sensory cranial nerves are
mirrored by the number of sensory fibres contained in
those nerves. In the northern short-tailed shrew
(Blarina brevicauda), there are about 15 000 fibres in
the infraorbital part of the trigeminal nerve compared
with less than 500 fibres in the optic nerve [67].
More recently, differences in fibre distribution were
reported for the similarly sized American water shrew
(Sorex palustris), which has about 30 000 axons in the
trigeminal nerves, less than 6000 in the optic nerves
and 6000–7000 in the auditory nerves [68]. The
most extreme of the small mammals is probably
the star-nosed mole (Condylura cristata)—its touch
sensitive appendages are innervated by about 100 000
myelinated nerve fibres [69].
(b) Cortical organization: anatomy

The Etruscan shrew has the smallest brain of all mam-
mals. Its cerebral cortex is very thin, only 400 to
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500 mm on average [16,70]. As in other mammals, the
cortex of the Etruscan shrew is a cytoarchitectonically
heterogeneous sheet of tissue. The presence of distinct
cortical areas is suggested by the fact that different
staining methods (Nissl, cytochrome oxidase activity,
myelin) indicate the same areal borders. Sensory neo-
cortical areas could be clearly identified by
cytochrome oxidase and myelin staining in coronal
and tangential brain sections. In total, there are
about 10–15 cortical areas—a relatively large
number given the small size of the Etruscan shrew
cerebral cortex [71,72].

We compared volumes of cortical areas of the Etrus-
can shrew with data for the cerebral cortex of the rat,
which is 100 times larger than in the shrew. We
included all areas of the neocortex, as well as entorhinal
and piriform cortex [72,73]. The most striking differ-
ence is that entorhinal cortex and piriform cortex
comprise a much larger part of the cortical mantle in
the Etruscan shrew (approx. 42%) than in the rat
(approx. 17%). We recorded neuronal responses to
touch stimuli in somatosensory cortex, insular cortex
and perirhinal cortex of the Etruscan shrew (see §3c),
these areas combined take up about one-third of the
total cortical volume in the Etruscan shrew as well as
in the rat. In the Etruscan shrew auditory and visual
cortex comprise only about 2–3% of the cortical
volume, whereas it is four to five times more in the
rat. The differences in relative cortical volumes are mir-
rored by findings in relative cortical area sizes [74] and
neuron numbers [72]. In summary, the Etruscan shrew
devotes a large cortical volume to somatosensation,
whereas visual and auditory processing takes up only
small fractions. The superb tactile capacities are
reflected in the anatomy of the shrew cortex.
(c) Cortical organization: physiology

The neurophysiology of the Etruscan shrew is of inter-
est both because of their small brain size and their
remarkable behavioural capacities. Work on related
northern American shrew species showed that these
shrews have few sensory cortical areas, which include
a large primary and secondary somatosensory cortical
area and a primary visual and auditory cortex [15], a
pattern in line with the numerous specializations of
insectivores for somatosensation [21].

We investigated cortical organization in Etruscan
shrews by electrophysiological mapping in combin-
ation with histological verification of recording sites
[16]. We characterized cortical multi-unit responses
to auditory, visual and somatosensory stimuli. We
found that large parts of shrew cortex (7.3 mm2 of
approx. 12 mm2 total neocortical surface, i.e. approx.
60%) responded to such stimuli (figure 4a). The
true fraction of sensory cortex in Etruscan shrews is
probably substantially higher, because we did not test
for olfactory and gustatory responses and we could
only map three-quarters of the cortical sheet.

Auditory and visual stimuli activated only small
parts of Etruscan shrew cortex (figure 4a). Tactile pro-
cessing, however, appears to occur in multiple cortical
regions. Large fractions of these somatosensory areas
responded to macrovibrissae stimulation. We
Phil. Trans. R. Soc. B (2011)
identified two topographically organized somatosen-
sory areas with small receptive fields referred to as
putative primary somatosensory cortex (S1) and puta-
tive secondary somatosensory cortex (S2). A third
tactile region was located posterior-laterally, where
we observed large somatosensory receptive fields and
often polysensory responses. Furthermore, we
identified an anterior-lateral region with large unimo-
dal somatosensory receptive fields. The latter two
regions partially overlapped with piriform cortex.
Putative S1 and S2 have relatively small receptive
fields. The receptive field size of about 10 whiskers
per multi-unit recording site was similar or slightly
larger than what has been measured in other shrew
species [15] and larger than most of the receptive
field sizes reported in rodent S1 [75]. It appears prob-
able that putative areas S1 and S2 of the Etruscan
shrew are homologous to these respective areas
described in other shrews and to areas S1 and S2 in
rodents. If one compares the Etruscan shrew cortex
to that of other mammals studied thus far, it is clear
that this animal is one of the most extreme tactile
specialists studied to date. Only a few animals such
as the star-nosed mole [69] and the naked mole-rat
[76] devote a similar fraction of their neocortex to
somatosensory representations.

We also investigated the effects of body temperature
on cortical processing. These experiments were carried
out under urethane anaesthesia. In order to minimize
the stress associated with the intraperitoneal urethane
injection, animals were first lightly anaesthetized by
isoflurane inhalation. We then injected millilitres of
4 per cent 145 urethane solution in water for an adult
approximately 2.5 g shrew (a dose of approx. 0.7 mg
urethane g21 body weight). To this end, we made use
of the fact that shrews easily withstand passive cooling
during anaesthesia. Their resistance to cooling might
be related to their physiological ability to reduce
body temperature and enter a torpid state (see §1c;
[26,27]). At a low body temperature of 248C neuronal
response, latencies to whisker stimulation with a pieco-
eletric device were long and responses to stimulus offset
were absent (figure 4b). With increasing body tempera-
tures, latencies became faster and the off-response was
more prominent (figure 4b). Thus, even in a torpid
state with low body temperature, the cortex responds
reliably to sensory stimulation, albeit with longer
latencies. The exact reason for the massive increase in
response latency is not yet clear. Both neural (decreased
axonal transduction velocity and delays in synaptic
transmission) and biomechanical (changes in tissue/
whisker biomechanics through altered viscous damping
or slack) factors could play a role. The available data
suggest that transduction of force is mediated directly
by force gated channels in rodents and occurs at very
short latencies (down to 300 ms) [77,78]. Further-
more, the speed of mechanotransduction appears to
be relatively insensitive to temperature [79]. These con-
siderations point to a neural origin of the increase in
response latency.

With their specialized musculature and their extra-
ordinarily high content in brown adipose tissue,
Etruscan shrews possess effective mechanisms for ther-
mogenesis, which allow them to heat up very quickly.
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Figure 4. Etruscan shrew neurophysiology. (a) Physiologically derived map of the Etruscan shrew cortex. An average map of

cortical regions was delineated by electrophysiological mapping experiments. Dotted areas indicate macrovibrissae responses.
S1, primary somatosensory cortex; S2, secondary somatosensory cortex; V, visual cortex; A, auditory cortex; S, somatosen-
sory; RF, receptive field. (b) Whisker responses at different shrew body temperatures. Peristimulus time histograms (1 ms
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while the body temperature of the shrew varied from 368C (top) to 248C (bottom). Stimulus onset at time point 0, duration
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Review. Etruscan shrew active touch M. Brecht et al. 3033
During activity, body temperature can climb to 388C.
For a non-mammalian insect-hunting species, the diur-
nal basking lizard Lacerta vivipara, it was shown that
maintaining high body temperatures of 308C–368C
increased predatory efficiency [80]. Thus, home-
othermy might offer the shrew considerable temporal
advantage over its poikilothermic prey, which operates
at lower temperatures.
4. DISCUSSION
Comparing shrew touch to tactile sensing in other
mammals, we find both similarities and striking
Phil. Trans. R. Soc. B (2011)
differences. Human haptic sensing (reviewed in this
volume by Klatzky & Lederman [81]) is similar in
that it also extracts shape information from touch. A
striking difference is the speed of performance,
which is slow (compared with vision) in the human
haptic system, because it relies on the serial/gradual
scanning of objects with fingertips [81]. This is very
different from vibrissal touch, in which global stimulus
features appear to be extracted in a single whisker
sweep. Shrew whisker touch is breathtakingly fast
such that prey capture movies need to be slowed
down several-fold to be accessible for visual analysis.
Two factors might contribute to this difference in
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speed. First, sensing volume [1] is—compared to body
size—large for shrew whiskers, but relatively small for
fingertips. Second ecological constraints on tactile
sensing are very different in shrews and humans.
Shrews use whiskers to hunt fast moving prey, which
is not the case for human finger use. The Etruscan
shrew’s tactile prey recognition shares characteristics
of human visual object recognition [6]: (i) it is size
invariant, (ii) motion-invariant, (iii) it is based on
Gestalt-like prey descriptions. We refer to prey sensing
in shrews as Gestalt-like, because they do seem to ana-
lyse prey not in a piecewise fashion, but instead seem
to form a global construct of what a cricket is like.
As a consequence, ‘local’ manipulations of prey
shape such as the addition of another pair of jumping
legs can have ‘global’ effects and result in changes of
most shrew attacks on such manipulated prey. It is
not yet known why shrews rely on such Gestalt-like
prey descriptions. We argue that Gestalt-like prey
descriptions help them in directing prey capture
manoeuvres, where local information, such as a con-
tact with the abdomen can be used to steer an attack
towards the thorax. Furthermore, Gestalt-like prey
descriptions might help in generalizing across prey
shapes and sizes, an obvious advantage given the
diverse prey that shrews hunt in their habitats.

Touch in another highly tactile insectivore—the
star-nosed mole—is reviewed by Catania [82]. Similar
to shrews, star-nosed moles appear to be specialized to
handle prey very quickly. Different from Etruscan
shrews, however, the star-nosed mole touch seems to
be specialized for handling a large number of small
(simple) prey items rather than to focus on sophisti-
cated attack manoeuvres and the capturing and
sensing of large prey [76].

Overall, we find that the Etruscan shrew is not only
one of the smallest mammals, but also one of the fastest
and most tactile mammalian hunters. These three fea-
tures (small size, high-speed and extreme dependence
on touch) of prey capture are hardly coincidental.
Instead, we argue that the shrew has responded to the
strong selection pressures associated with the metabolic
costs of being a small mammal by taking full advantage
of the added speed that endothermy permits. It also
takes advantage of the fact that the relative vibrissal
sensing volumes seem to be inversely related to body
size and the very fast transduction via mechano-gated
channels [77,78] in the somatosensory system.
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Nasenhöhle der Hausspitzmaus, Crocidura russula
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Säugetierkunde 33, 173–185.

36 Davison, G. 1979 Some notes on Savi’s pygmy shrew.

Malay. Nat. J. 32, 227–231.
37 Nowak, R. M. 1999 Walker’s mammals of the world.

Baltimore, MD: JHU Press.
38 Hutterer, R. & Kock, D. 2002 Recent and ancient

records of shrews from Syria, with notes on Crocidura
katinka Bate, 1937 (Mammalia: Soricidae). Bonner zool.
Beitr. 50, 249–258.

39 Churchfield, S. 2002 Why are shrews so small? The costs
and benefits of small size in northern temperate
Sorex species in the context of foraging habits and prey

supply. Acta Theriol. 47, 169–184. (doi:10.1007/
BF03192486)

40 Saint Girons, M. C. 1957 Contribution à la connaissance
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50 von Uexküll, J. 1957 A stroll through the worlds of animals

and men: a picture book of invisible worlds. Instinctive
behavior: the development of a modern concept (ed. C. H.

Schiller), pp. 5–80. New York, NY: International
Universities Press.

51 Comer, C. & Yoshichika, B. 2011 Active touch in
orthopteroid insects: behaviours, multisensory
substrates and evolution. Phil. Trans. R. Soc. B 366,

3006–3015. (doi:10.1098/rstb.2011.0149)
52 Gnatzy, W. & Heusslein, R. 1986 Digger wasp against

crickets. Naturwissenschaften 73, 212–215. (doi:10.
1007/BF00417728)

53 Gnatzy, W. & Hustert, R. 1989 Mechanoreceptors

in behavior. In Cricket behavior and neurobiology (eds
F. Huber, T. E. Moore & W. Loher), pp. 198–226.
Ithaca, NY: Cornel University Press.

54 Edwards, J. S. & Palka, J. 1974 The cerci and abdominal
giant fibres of the house cricket, Acheta domesticus. I.

Anatomy and physiology of normal adults. Proc. R. Soc.
Lond. B 185, 83–103. (doi:10.1098/rspb.1974.0007)

55 Walthall, W. W. & Murphey, R. K. 1986 Positional infor-
mation, compartments, and the cercal sensory system of

crickets. Dev. Biol. 113, 182–200. (doi:10.1016/0012-
1606(86)90121-1)

56 Miller, J. P., Jacobs, G. A. & Theunissen, F. E. 1991 Rep-
resentation of sensory information in the cricket cercal
sensory system. I. Response properties of the primary

interneurons. J. Neurophysiol. 66, 1680–1689.
57 Theunissen, F. E. & Miller, J. P. 1991 Representation of

sensory information in the cricket cercal sensory system.
II. Information theoretic calculation of system accuracy
and optimal tuning-curve widths of four primary

interneurons. J. Neurophysiol. 66, 1690–1703.
58 Jacobs, G. A., Miller, J. P. & Aldworth, Z. 2008 Compu-

tational mechanisms of mechanosensory processing in the
cricket. J. Exp. Biol. 211, 1819–1828. (doi:10.1242/
jeb.016402).

59 Gras, H. & Hörner, M. 1992 Wind-evoked escape run-
ning of the cricket Gryllus bimaculatus. I. Behavioural
analysis. J. Exp. Biol. 171, 189–214.

60 Baba, Y. & Shimozawa, T. 1997 Diversity of motor
responses initiated by a wind stimulus in the freely

http://dx.doi.org/10.1007/s00359-004-0584-6
http://dx.doi.org/10.1538/expanim.51.57
http://dx.doi.org/10.1111/j.1439-0469.1984.tb00653.x
http://dx.doi.org/10.1111/j.1439-0469.1984.tb00653.x
http://dx.doi.org/10.1523/JNEUROSCI.5559-05.2008
http://dx.doi.org/10.1523/JNEUROSCI.5559-05.2008
http://dx.doi.org/10.1016/j.conb.2006.06.010
http://dx.doi.org/10.1007/BF03192486
http://dx.doi.org/10.1007/BF03192486
http://dx.doi.org/10.1515/mamm.1957.21.1.69
http://dx.doi.org/10.1159/000089693
http://dx.doi.org/10.1002/jez.1401560103
http://dx.doi.org/10.1002/jez.1401560103
http://dx.doi.org/10.1016/S0003-3472(76)80016-4
http://dx.doi.org/(doi:10.1098/rsbl.2009.0378)
http://dx.doi.org/10.1098/rstb.2011.0149
http://dx.doi.org/10.1007/BF00417728
http://dx.doi.org/10.1007/BF00417728
http://dx.doi.org/10.1098/rspb.1974.0007
http://dx.doi.org/10.1016/0012-1606(86)90121-1
http://dx.doi.org/10.1016/0012-1606(86)90121-1


3036 M. Brecht et al. Review. Etruscan shrew active touch
moving cricket, Gryllus bimaculatus. Zool. Sci. 14,
587–594. (doi:10.2108/zsj.14.587)

61 Hustert, R. & Gnatzy, W. 1995 The motor program for

defensive kicking in crickets: performance and neural
control. J. Exp. Biol. 198, 1275–1283.

62 Jin, T., Witzemann, V. & Brecht, M. 2004 Fiber types of
the intrinsic whisker muscle and whisking behavior.
J. Neurosci. 24, 3386–3393. (doi:10.1523/JNEUROS

CI.5151-03.2004)
63 Yohro, T. 1977 Structure of the sinus hair follicle in the

big-clawed shrew, Sorex unguiculatus. J. Morphol. 153,
333–353. (doi:10.1002/jmor.1051530211)

64 Muchlinski, M. N. 2010 A comparative analysis of
vibrissa count and infraorbital foramen area in primates
and other mammals. J. Hum. Evol. 58, 447–473.
(doi:10.1016/j.jhevol.2010.01.012)

65 Hyvärinen, H. 1972 On the histology and histochemistry

of the snout and vibrissae of the common shrew (Sorex
araneus L.). Z. Zellforsch. 124, 445–453. (doi:10.1007/
BF00335250)

66 Goldschmidt-Lange, U. 1975 Über die morphologischen
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