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Abstract: Autophagy is an intracellular catabolic process that is essential for a variety of cellular
responses. Due to its role in the maintenance of biological homeostasis in conditions of stress,
dysregulation or disruption of autophagy may be linked to human diseases such as inflammatory
bowel disease (IBD). IBD is a complicated inflammatory colitis disorder; Crohn’s disease and
ulcerative colitis are the principal types. Genetic studies have shown the clinical relevance of
several autophagy-related genes (ATGs) in the pathogenesis of IBD. Additionally, recent studies
using conditional knockout mice have led to a comprehensive understanding of ATGs that affect
intestinal inflammation, Paneth cell abnormality and enteric pathogenic infection during colitis.
In this review, we discuss the various ATGs involved in macroautophagy and selective autophagy,
including ATG16L1, IRGM, LRRK2, ATG7, p62, optineurin and TFEB in the maintenance of intestinal
homeostasis. Although advances have been made regarding the involvement of ATGs in maintaining
intestinal homeostasis, determining the precise contribution of autophagy has remained elusive.
Recent efforts based on direct targeting of ATGs and autophagy will further facilitate the development
of new therapeutic opportunities for IBD.
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1. Introduction

Inflammatory bowel disease (IBD) is a complicated autoimmune disorder with multiple etiologies
including genetic predisposition, environmental factors and immune-associated pathogenesis [1].
Both Crohn’s disease (CD) and ulcerative colitis (UC), the major clinical phenotypes of IBD, are systemic
diseases associated with autoimmune manifestations [2,3]. Although the intestinal host defense is
maintained by balancing inflammation and the immune response, excessive inflammation may damage
the intestine and its mucosal barrier [1,3]. Although IBD is known to be a polygenic disorder, emerging
evidence indicates that genetic susceptibility associated with host autophagy is an important factor in
the pathogenesis of IBD [4,5].
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Autophagy is a cytosolic process that triggers lysosomal degradation of cytosolic materials
to maintain intracellular homeostasis under conditions of stress by recycling metabolic building
blocks [6,7]. Intracellular cargos sequestered by autophagosomes include damaged cellular organelles,
large protein aggregates and intracellular pathogens [8,9]. It is now clear that activation of autophagy
contributes to the amelioration of excessive inflammatory responses [10,11]. Dysfunctional or
dysregulated autophagy can lead to diverse inflammatory, immune and metabolic disorders [10,11].
Previous studies have demonstrated the involvement of genetic variations of autophagy genes,
including ATG16L1 and IRGM, in the pathogenesis of colitis [12–18]. More recently, it was shown
that autophagy-related genes (ATGs), such as optineurin (OPTN), transcription factor EB (TFEB) and
leucine-rich repeat kinase (LRRK), are associated with increased susceptibility to colitis, suggesting
that these genes are important in colonic immune homeostasis [19–25].

This review will focus on recent progress in elucidating the roles of ATGs in colonic inflammation
and their clinical relevance. We will highlight recent findings regarding several ATGs and the
mechanisms through which colitis severity is regulated.

2. Overview of Autophagy, Selective Autophagy and ATGs

Macroautophagy (herein referred to as autophagy) is an intracellular catabolic process through
which cytoplasmic cargos are sequestered and delivered to lysosomes for degradation [26].
Autophagy plays a critical role in the maintenance of cellular homeostasis during a variety of stress
responses, including starvation, hypoxia, toxicity and inflammation [27]. Although it was originally
believed that autophagy was a nonspecific process that occurred under starvation conditions, it is
now known that autophagy can target specific intracellular organelles or foreign pathogens for timely
degradation, which is known as selective autophagy. A detailed discussion of the general aspects of
autophagy is beyond the scope of this review; there are numerous excellent reviews dealing in detail
about autophagy [28,29]. Here, we briefly review nonselective and selective autophagy, as well as ATGs
(Figure 1), before focusing on the relationship of ATGs and autophagy with the pathogenesis of IBD.

2.1. Autophagy

Autophagy plays an important housekeeping function in cells through the removal of superfluous
or damaged organelles in lysosomes. The autophagic process consists of multiple stages: initiation and
biogenesis of autophagosomes, followed by maturation and fusion with lysosomes (Figure 1A) [30].
Autophagy is initiated by the formation of the phagophore, in which the edges of isolation membranes
elongate and engulf cytoplasmic cargos [30]. Once the double-membrane structure contains
cytoplasmic cargos, autophagosomes undergo maturation to form a completed autophagosome
structure and ultimately are fused with a late endosome and lysosome to initiate degradation of
cargos [31,32].

Regulation of autophagy is important to prevent cell death and pathogenic conditions [33]. It is
now clear that autophagic activity is tightly regulated by molecular machinery and transcription factors
at transcriptional and post-translational levels [33]. Recent studies have identified several nuclear
transcription factors that coordinate autophagy via transcriptional activation of ATGs [33]. For example,
TFEB plays an essential role in lysosomal biogenesis and activity during autophagy (Figure 2) [34].
We also briefly highlight the involvement of TFEB in the regulation of colonic inflammation (Figure 2).
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Figure 1. Overview of autophagy, selective autophagy and ATGs (A) Molecular machinery of 
autophagy process. After mTOR inhibition or AMPK activation, the autophagy process begins with 
the biogenesis of the phagophore/isolation membrane. The ATG16L1-ATG5-ATG12 and LC3-II-PE 
conjugates participate in autophagosome formation process. The mature autophagosomes are fused 
with a late endosome and lysosome to initiate degradation of cargos. Finally, cells recycle the released 
products in cytosol. (B) Selective autophagy clears various targets such as subcellular structure, 
bacteria, protein and lipid aggregates. 

Figure 1. Overview of autophagy, selective autophagy and ATGs (A) Molecular machinery of
autophagy process. After mTOR inhibition or AMPK activation, the autophagy process begins with
the biogenesis of the phagophore/isolation membrane. The ATG16L1-ATG5-ATG12 and LC3-II-PE
conjugates participate in autophagosome formation process. The mature autophagosomes are fused
with a late endosome and lysosome to initiate degradation of cargos. Finally, cells recycle the released
products in cytosol. (B) Selective autophagy clears various targets such as subcellular structure, bacteria,
protein and lipid aggregates.
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Figure 2. The process of autophagy flux and involved genes. The autophagy flux is depicted. A 
normal autophagic flux includes the autophagosome formation and maturation step and the 
autolysosome formation step. The possible conditions associated with involved genes are depicted: 
(1) OPTN deficiency leads to an accumulation of IRE1α and increased susceptibility of Citrobacter and 
E. coli. (2) ATG7 deletion is associated with increased inflammation. (3) TFEB deletion results in 
increased inflammation and lysosomal defect. 

2.2. Selective Autophagy 

In addition to nonselective degradation, autophagy also plays a role in the targeting and 
clearance of specific targets/substrates, that is, selective autophagy, which is named depending on its 
specific targets and includes mitophagy, xenophagy and aggrephagy (Figure 1B) [35–38]. Selective 
autophagy involves several steps, including a degradation cue, cargo recognition via selective 
autophagy receptors, ubiquitination and the recruitment of autophagosome machinery but it does 
not necessarily occur in a stepwise manner [39,40]. Several ubiquitin binding proteins, such as p62, 
neighbor of breast cancer 1 (NBR1), OPTN and NDP52/CALCOCO2, have been identified as 
autophagy receptors responsible for the delivery of ubiquitinated cargos to the autophagy system 
[41–46]. Cargo signals can be classified as ubiquitin-dependent and -independent recognition [40]. 
Autophagic cargo receptors contain the LC3-interacting region (LIR) motif, which connects cargos to 
ATG8 family proteins for selective autophagic degradation [45,46]. Despite advances in knowledge 
of the mechanisms and players involved in canonical and noncanonical autophagy, we still lack a 
clear understanding of its function in a variety of physiologic and pathologic responses. A few reports 
have demonstrated the involvement of several autophagic receptors, including p62 and OPTN, in the 
control of intestinal homeostasis. However, additional autophagic receptors or regulators of 
autophagic signaling pathways must operate to ameliorate excessive colonic inflammation. Finally, 
it will be important to investigate the mechanisms by which autophagic receptors or ATGs impact 
clinical outcomes. 

2.3. ATGs and the Control of Autophagy 

Each step of the autophagy process is highly orchestrated by numerous ATGs; nearly 40 ATGs 
have been identified in yeast and orthologs of yeast ATGs have been identified in higher eukaryotes 
with some exceptions, such as mammalian ATG101 [47–49]. Among these ATGs, certain gene groups 
are required for autophagosome formation and are shared among various types of autophagy, such 
as nonselective and selective autophagy. Mammalian ATGs can be divided into several functional 

Figure 2. The process of autophagy flux and involved genes. The autophagy flux is depicted. A normal
autophagic flux includes the autophagosome formation and maturation step and the autolysosome
formation step. The possible conditions associated with involved genes are depicted: (1) OPTN
deficiency leads to an accumulation of IRE1α and increased susceptibility of Citrobacter and E. coli.
(2) ATG7 deletion is associated with increased inflammation. (3) TFEB deletion results in increased
inflammation and lysosomal defect.

2.2. Selective Autophagy

In addition to nonselective degradation, autophagy also plays a role in the targeting and clearance
of specific targets/substrates, that is, selective autophagy, which is named depending on its specific
targets and includes mitophagy, xenophagy and aggrephagy (Figure 1B) [35–38]. Selective autophagy
involves several steps, including a degradation cue, cargo recognition via selective autophagy receptors,
ubiquitination and the recruitment of autophagosome machinery but it does not necessarily occur in a
stepwise manner [39,40]. Several ubiquitin binding proteins, such as p62, neighbor of breast cancer
1 (NBR1), OPTN and NDP52/CALCOCO2, have been identified as autophagy receptors responsible for
the delivery of ubiquitinated cargos to the autophagy system [41–46]. Cargo signals can be classified
as ubiquitin-dependent and -independent recognition [40]. Autophagic cargo receptors contain the
LC3-interacting region (LIR) motif, which connects cargos to ATG8 family proteins for selective
autophagic degradation [45,46]. Despite advances in knowledge of the mechanisms and players
involved in canonical and noncanonical autophagy, we still lack a clear understanding of its function in
a variety of physiologic and pathologic responses. A few reports have demonstrated the involvement
of several autophagic receptors, including p62 and OPTN, in the control of intestinal homeostasis.
However, additional autophagic receptors or regulators of autophagic signaling pathways must
operate to ameliorate excessive colonic inflammation. Finally, it will be important to investigate the
mechanisms by which autophagic receptors or ATGs impact clinical outcomes.

2.3. ATGs and the Control of Autophagy

Each step of the autophagy process is highly orchestrated by numerous ATGs; nearly 40 ATGs
have been identified in yeast and orthologs of yeast ATGs have been identified in higher eukaryotes
with some exceptions, such as mammalian ATG101 [47–49]. Among these ATGs, certain gene groups
are required for autophagosome formation and are shared among various types of autophagy, such as
nonselective and selective autophagy. Mammalian ATGs can be divided into several functional
clusters including the ULK1-ATG13-FIP200-ATG101 protein kinase complex, the PtdIns3K class
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III complex containing VPS34, VPS15 and Beclin 1, the ubiquitin-like ATG5/ATG12 complex and
the ubiquitin-like ATG8/LC3 conjugation system [50]. These ATGs participate in different stages
of autophagy, such as the induction of autophagosome formation, expansion of phagophores and
autophagosome completion [50,51].

Recent studies have identified and reported the roles of numerous cargo receptors including
NBR1, multi-domain scaffold/adaptor protein p62/sequestosome-1 (p62/SQSTM-1), nuclear domain
10 protein 52 (NDP52) and OPTN [41,42,44]. These selective autophagic receptors contain the
LIR motif, thereby connecting ubiquitin-tagged substrates to ATG8 family members such as
microtubule-associated protein 1A/1B-light chain 3/γ-aminobutyric acid receptor-associated protein
(LC3/GABARAP) [42,45,52].

The roles of ATGs in autophagy have been described in detail in numerous review articles [26,30].
In this review, we focus on ATGs that play essential roles in IBD pathogenesis in terms of
autophagy regulation.

3. Overview of IBD

IBD is a disease in which chronic inflammation of intestinal cells occurs due to unknown
causes [53]. CD and UC are classified according to the clinical features and characteristics of the disease.
Both diseases have similar clinical symptoms including diarrhea, abdominal pain, hematochezia and
weight loss; however, the location of inflammation, infiltration degree and complications differ [54].
In general, CD is known to mediate Th1 cell-mediated inflammatory responses and UC is known to
mediate Th2 cells [55]. Recently, loss of the suppressive functions of interleukin (IL)-17A-producing
regulatory T cells was reported to cause IBD [56]. In general, both types of IBD are treated with
anti-inflammatory drugs, such as 5-aminosalicylic acid and corticosteroids; however, in the absence
of clinical improvement following treatment with anti-inflammatory drugs, patients achieved a high
remission rate using anti-tumor necrosis factor (TNF)-α drugs [57]. However, more than one-third of
IBD patients do not respond to anti-TNF-α drugs [58]. Recently, a new therapeutic target for IBD has
emerged and the role of Paneth cells in intestinal homeostasis is discussed.

Crypts, concave structures of granulated cells clustered in the base of the small intestine,
contain 5–12 Paneth cells. Unlike ordinary enterocytes, which have an average lifespan of 3–5 days,
Paneth cells have a longer life expectancy of 20 days [59]. Paneth cells can differentiate into three
different cell lineages: enterocytes, goblet cells and enteroendocrine cells [60]. Paneth cells exhibit
antimicrobial effects by secreting secretory granules containing antimicrobial peptides (AMPs) and
other peptides including lysozymes, alpha-defensins and secretory phospholipase A1 in response
to cell stimuli to crypt lumen [61–63]. Paneth cell secretion of AMPs plays an important role not
only in clearing invading pathogens but also in maintaining the diversity and quantity of intestinal
microbiota via intestinal antimicrobial function [64]. Although Paneth cells are normally localized
to the small intestine, diseases such as chronic inflammation may result in intestinal metaplasia,
which is characterized by the localization and function of Paneth cells in aberrant sites, such as the
colon [65]. These metaplastic Paneth cells protect the colonic epithelium from bacterial invasion [59].
However, Paneth cell loss may occur in situations with acute inflammation such as Grade II/III graft
versus host disease or in CD [66,67]. In this case, Paneth cells are replaced with lysozyme-producing
mucus cells, which can be followed by the development of diseases such as IBD in the small
intestine [68].
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Paneth cells present in the intestinal epithelium are essential for maintaining the homeostasis
of normal colonizing microbes of the host. The important pathway in this process is xenophagy,
an autophagic pathogen removal process that allows the host to maintain normal metabolic
function [69,70]. However, when dysfunction of Paneth cells occurs due to environmental or
genetic influences, AMPs are not secreted properly. As a result, dysbiosis, a discrepancy in the
composition of normal intestinal microbiota, occurs, which is an important cause of intestinal disorders,
especially IBD [71]. For example, in CD patients with impaired xenophagy, adherent-invasive
Escherichia coli (AIEC) or Salmonella typhimurium colonize intestinal epithelial cells (IECs) due to
the autophagic dysfunction of Paneth cells [72–74]. Thus, the impairment of autophagy in Paneth
cells makes it difficult to treat incoming pathogenic bacteria as well as to respond to alterations in the
composition of the intestinal microbiota [75]. Ultimately, the poor xenophagy of Paneth cells makes the
intestinal epithelium hypersensitive to infiltrating microbes or their products and promotes bacterial
self-proliferation and the onset of IBD [76,77].

4. ATG Involvement in IBD Pathogenesis

The clinical diversity and heterogeneity of the IBD phenotype are likely due to the presence
of genetic heterogeneity together with environmental factors. Susceptibility to IBD may be due
to an interaction of several genes, identified by genome-wide association studies (GWASs) [78–80].
To date, over 200 loci have been identified as genetically significant loci by a meta-analysis combined
with GWAS [81,82]. Earlier independent GWASs showed that autophagy gene variants, including
autophagy-related gene 16-like 1 (ATG16L1) and immunity-related GTPase M (IRGM) are linked
to CD susceptibility highlighting the role of autophagy in controlling infection, inflammation and
cancer [13,15,83,84]. Furthermore, gene mutation or deletion studies have indicated that the autophagy
pathway affects the onset and exacerbation of IBD via several mechanisms including clearance of
invading bacteria, secretion of granules from Paneth cells, inflammasome activity, pro-inflammatory
cytokine production and endoplasmic reticulum (ER) stress. However, the role of autophagy in the
pathogenesis of IBD is still debated. Although many researchers focused on the involvement of ATGs
in IBD pathogenesis, little is known about the autophagic role of ATGs and the mechanisms that confer
intestinal inflammation. Table 2 summarizes the ATGs and transcription factors described in this
review and their functional relationships in intestinal pathogenesis.
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Table 1. Genetic models related to autophagy in intestinal pathogenesis.

Knocked-Out Gene Cell Type Mechanism Outcome Reference

ATG16L1

Intestinal epithelial cells Abnormality of Paneth cell granule secretion and
defect in the granule exocytosis pathway [76]

Intestinal epithelial cells ER stress sensor inositol-requiring enzyme
(IRE)-1α accumulated in Paneth cells Increased intestinal inflammation [85]

Intestinal epithelial cells
Elevated pro-inflammatory cytokine secretion and
increased IEC apoptosis after Helicobacter hepaticus
infection

Exacerbated murine model of chronic
colitis [86]

Myeloid cells

Production high amounts of the inflammatory
cytokines IL-1β and IL-18 via Toll/IL-1 receptor
domain-containing adaptor inducing interferon
(IFN)-β (TRIF)-dependent activation of the
inflammasome

Increased susceptibility to dextran sulfate
sodium (DSS)-induced colitis [87]

Myeloid cells

Increased reactive oxygen species production,
impaired mitophagy, reduced microbial killing,
impaired processing of MHC class II Ags and
altered intracellular trafficking to the lysosomal
compartments

Exacerbated murine model of acute and
chronic colitis [88]

Myeloid cells No effect on disease severity in murine
model of chronic colitis [86]

IRGM Intestinal epithelial cells Marked alterations of Paneth cell location and
granule morphology

Hyperinflammation in the colon and
ileum following chemical exposure [85]

LRRK2/
MUC19 Myeloid cells Activation of the transcription factor NFAT Increased susceptibility to DSS-induced

colitis in mouse models [23]

ATG7

Intestinal epithelial cells
Higher expression levels of pro-inflammatory
cytokine mRNA in the large intestine after
infection

Increased susceptibility to Citrobacter
rodentium infectious colitis in mouse
models

[89]

Intestinal antigen
presenting cells

Enhanced immunopathology and inflammatory
Th17 responses, as well as abnormal mitochondrial
function and oxidative stress

Increased susceptibility to DSS-induced
colitis in mouse models [90]

Myeloid cells Increased colonic cytokine expression, T helper 1
skewing and systemic bacterial invasion

Increased susceptibility to DSS-induced
colitis in mouse models [91]
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Table 2. Genetic models related to autophagy in intestinal pathogenesis.

Knocked-Out Gene Cell Type Mechanism Outcome Reference

OPTN Myeloid cells Decreased antimicrobial host defense (decreased
production of TNFα and IL-6) after infection

Increased susceptibility to Citrobacter
colitis and E. coli peritonitis [19]

TFEB Intestinal epithelial cells Defect in Paneth cell granules, lower expression
levels of lipoprotein ApoA1 Exaggerated colitis upon DSS injury [21]
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4.1. ATG16L1

Numerous studies have reported that genetic variation in ATG16L1 is associated with IBD risk in
ethnically diverse populations [13,14,92–96]. Notably, the rs2241880 single nucleotide polymorphism
(SNP; T300A) of ATG16L1 was repeatedly found in several Caucasian cohorts, suggesting a strong
association of this variant with the incidence of CD, although it was not frequently found in other
populations, particularly in Asian patients [13,84,96].

ATG16L1, a homolog of ATG16, is essential in the formation of autophagosomes, along with the
ATG12-ATG5 conjugate [97,98]. Importantly, Cadwell et al. showed that mice with low expression
of ATG16L1 (ATG16L1HM mice) exhibited abnormal Paneth cell granule secretion and that mice
with ATG16L1 deficiency in Paneth cells had a defect in the granule exocytosis pathway [76].
Similarly, patients carrying the ATG16L1 risk allele (T300A) had pathological features such as
disorganized granules or diffuse Paneth cell cytoplasmic lysozyme staining [76]. Using IEC-specific
ATG16L1-deficient mice and ex vivo IEC organoids, a recent study showed that ATG16L1 in IECs played
an essential role in controlling pathology, intestinal inflammation and TNF-induced apoptosis [86].
Additionally, previous studies showed that the ER stress sensor inositol-requiring enzyme (IRE)-1α
accumulated in Paneth cells of ATG16L1∆IEC mice and CD patients (T300A), suggesting that
defective autophagy leads to pathological activation of IRE1α to drive intestinal inflammation [85].
Moreover, loss of IKKα function markedly impaired the secretion of cytoprotective IL-18 and
upregulated ER stress responses through decreased ATG16L1 stabilization [99]. These data emphasize
the role of ER stress in defective ATG16L1-mediated colonic inflammation [85,99]. Indeed, IEC-specific
deletion of ATG16L1 or ATG7 led to hyper-activated ER stress, which may amplify the severity of
intestinal inflammation in autophagy-defective conditions [100].

Although IECs, particularly Paneth cells, are important in defective ATG16L1-associated intestinal
inflammation, the function of ATG16L1 in myeloid cells has also been demonstrated [87]. Saitoh et al.
showed that ATG16L1-deficient macrophages exhibited Toll/IL-1 receptor domain-containing adaptor
inducing interferon (IFN)-β (TRIF)-dependent activation of the inflammasome, resulting in the
production of high amounts of the inflammatory cytokines IL-1β and IL-18 [87]. Deficiency of ATG16L1
in hematopoietic cells resulted in an increased susceptibility to dextran sulfate sodium (DSS)-induced
colitis, suggesting an essential role for ATG16L1 in the control of intestinal inflammation [87].
Another study using mice with myeloid ATG16L1 deficiency showed exacerbated colitis with
upregulated proinflammatory responses as well as increased colitogenic bacteria, indicating that
ATG16L1 deficiency results in alterations in macrophage function that affect the severity of CD [88].

Peripheral blood mononuclear cells (PBMCs) isolated from CD patients with the ATG16L1 T300A
risk variant have been shown to exhibit increased production of the proinflammatory cytokines
IL-1β and IL-6, particularly in response to NOD2 ligands [101]. Moreover, the loss of ATG16L1
increased TRIF and its signaling, resulting in increased production of type I IFN and IL-1β [102].
Interestingly, the genetic variant ATG16L1 T300A was found to be associated with adalimumab
treatment, suggesting that this SNP affects the response to treatment with immunomodulatory
drugs [103]. Importantly, the CD risk allele T300A variant (T316A in mice) is associated with accelerated
degradation of ATG16L1 due to caspase-3 activation. Upon apoptotic stimuli or metabolic stress,
human and murine macrophages harboring T300A or T316A variants of ATG16L1, respectively,
exhibited accelerated degradation of ATG16L1, leading to decreased autophagy, defective clearance of
the pathogen and enhanced inflammation [104]. These data strongly suggest that the functional defect
in ATG16L1 is involved in the dysregulation of intestinal homeostasis and CD pathogenesis (Figure 3).
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particularly in GWASs [16,106,107]. A meta-analysis showed that the IRGM variants rs13361189 and 
rs4958847 are associated with both UC and CD in human IBD [12]. However, another study in a 
Korean population showed that selected SNPs of IRGM were associated with CD but not UC 
susceptibility [17].  

Human IRGM (syn: LRG47, IFI1), which is encoded by the immunity-related GTPase protein 
family, M gene (IRGM; 5q33.1), is thought to be distant from a class of IRGs in mice. There are more 
than 20 IRG genes (IRGM1–3, IRGN1–8, IRGB1–10 and IRGD) in mice, whereas there is only one 
IRGM gene present in humans and chimpanzees, making the study of the role of IRGs in vivo difficult. 

Figure 3. Summary diagram showing the role of ATG16L1 in the Crohn’s disease. The left panel
demonstrates the normal host defense mechanism against intracellular pathogens. Healthy cells exhibit
normal granule secretion, autophagic activity, ER stress response and permeability. The right panel
shows the ATG16L1 T300A variant cells defective in granule secretion, autophagy process, IRE1α
degradation and tight junction barrier function.

4.2. IRGM

Human immunity-related guanosine triphosphatase (GTPase) family M (IRGM) encodes the only
functional immunity-related GTPase (IRG) among IRG family members [105]. Involvement of genetic
polymorphisms of IRGM in CD and tuberculosis has been previously demonstrated, particularly in
GWASs [16,106,107]. A meta-analysis showed that the IRGM variants rs13361189 and rs4958847 are
associated with both UC and CD in human IBD [12]. However, another study in a Korean population
showed that selected SNPs of IRGM were associated with CD but not UC susceptibility [17].

Human IRGM (syn: LRG47, IFI1), which is encoded by the immunity-related GTPase protein
family, M gene (IRGM; 5q33.1), is thought to be distant from a class of IRGs in mice. There are
more than 20 IRG genes (IRGM1–3, IRGN1–8, IRGB1–10 and IRGD) in mice, whereas there is only
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one IRGM gene present in humans and chimpanzees, making the study of the role of IRGs in vivo
difficult. Earlier studies showed that the murine GTPase IRGM1 (LRG-47) was important for autophagy
activation to eliminate intracellular Mycobacterium tuberculosis [108–110]. A further study showed that
a human IRG protein, the human ortholog IRGM1 (IRGM), contributed to the control of M. tuberculosis
through autophagy activation [111]. Tiwari et al. reported an essential function of Irgm1 as an
innate effector in targeting the mycobacterial phagosome through lipid-mediated binding to enhance
phagosome maturation and the antimicrobial response [112]. Furthermore, IRGM has been shown
to regulate autophagy by translocating to the mitochondria and influencing mitochondrial fission,
which is required for autophagic defense against intracellular mycobacteria [113]. Studies using
IRG-deficient mice showed that IRGM can be induced by IFN-γ and plays a role in the clearance
of intracellular bacteria including Toxoplasma gondii, Listeria monocytogenes and Salmonella spp. as
well as mycobacteria (Figure 4) [110,114–118]. Human IRGM and murine IRGM1 contribute to
cell-autonomous defense though autophagy activation via the recruitment of both autophagic and
SNARE adaptor proteins during infection (Figure 4) [18,110,111,117,119–122]. However, IRGM favors
viral replication through autophagy activation. For example, IRGM is translocated to the Golgi
apparatus, where it regulates Golgi membrane fragmentation and is involved in virus-triggered
autophagy activation during hepatitis C infection [123].
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Figure 4. Autophagy targets adherent-invasive Escherichia coli (AIEC), Mycobacteria, Salmonella and
Listeria by different mechanisms. Stimulation with IFN-γ induce IRGM to clear intracellular bacteria.
Furthermore, IRGM can be induced by IFN-γ contribute to cell-autonomous defense though autophagy
activation via the recruitment of both autophagic and SNARE adaptor proteins during infection.

Murine and human studies have demonstrated the protective role of IRGM in the maintenance of
intestinal homeostasis. Irgm1-deficient mice have been shown to exhibit functional defects in intestinal
Paneth cells and hyperinflammation in the colon and ileum following chemical exposure [124].
In addition, the IRGM protein contributed to the limitation of CD-associated intracellular AIEC
in epithelial cells through autophagy activation and phagosomal maturation [121]. In the intestinal
mucosa, greater quantities of pathogenic AIEC, which invade IECs and induce TNF-α, are found
in CD patients than in healthy controls [72,125]. These data collectively suggest the importance
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of IRGM in CD pathogenesis via limitation of pathogenic bacteria through autophagy activation.
A recent cohort study revealed the relationship among autophagy-related IRGM variants, visceral
adipose tissue and nonalcoholic fatty liver disease, which shows an increased morbidity with CD [126].
However, there is still a debate regarding the relevance of autophagy in CD in terms of IRGM,
as autophagy activation has been observed in Paneth cells in CD patients, independently of IRGM
variants associated with CD susceptibility [127]. Moreover, RNA analysis showed that most autophagy
gene sets were downregulated by appendectomy, which contributed to protection against UC [128].
Suppression of autophagy may offer cross-reactive immunity between host antigens and microbes
through decreased antigen processing, thereby ameliorating symptoms of colitis [128].

4.3. LRRK2/MUC19

LRRK2/MUC19 is a complex protein that contains a RAS of complex proteins (ROC) GTPase
domain, a C-terminal ROC domain and a Ser/Thr kinase domain and is involved in NOD2-mediated
signaling, of which autophagy is a downstream process [129]. Because LRRK2 is a well-known gene
involved in the pathogenesis of Parkinson’s disease (PD), most earlier studies were performed in
neuronal cells [130,131]. Later, meta-GWASs identified the links between LRRK2 and CD and leprosy,
suggesting a role for LRRK2 in immune regulation during infection and inflammation [80,132,133].
LRRK2 is highly expressed in myeloid cells and B cells which is induced by IFN-γ and is involved in
the production of inflammatory cytokines and antimicrobial responses in macrophages [80,132,133].
In addition, LRRK2 is required for commensal bacteria-driven cargo sorting through recruitment to
lysozyme-containing dense core vesicles in Paneth cells, thereby participating in the coordination of
the lysozyme-sorting process in the intestine to promote symbiosis [134].

A previous genome-wide linkage analysis suggested that a locus on chromosome 12 (historically
known as PARK8) is linked to familial parkinsonism in the Japanese population [135]. Further studies
have demonstrated the involvement of LRRK2 in autosomal-dominant parkinsonism in multiple
families [130,131]. In addition, two meta-GWASs reported LRRK2 as a CD susceptibility gene [79,80].
A genome-wide conjunctional analysis revealed several novel loci, which are potentially involved
in the association between PD and autoimmune diseases [136]. For example, known PD loci
adjacent to LRRK2 (rs17467164) were proposed as overlapping susceptibility loci for UC and
CD [136]. Accumulating data in conjunction with the development of in silico analyses may identify
novel genetic variants that affect the risk of several diseases occurring in combinatorial patterns.
In a Japanese CD cohort, a defective Paneth cell phenotype was correlated with clinical characteristics
and autophagy-associated LRRK2 (LRRK2M2397T) was associated with Paneth cell defects [22].
The majority of LRRK2 SNPs, which are associated with IBD, are found in non-coding intronic
regions [24]. There is speculation that there might be a relationship between the high frequency of
non-coding region SNPs in LRRK2 and the stability/expression levels of LRRK2 [24].

Several studies have investigated the mechanistic aspects of pathogenic LRRK2 in PD models
(Figure 5). Pathogenic LRRK2 is involved in protein translation through regulation of microRNA
function (let-7 and miR-184*), which results in altered production of E2F1/DP and is critical for cell
cycle and survival [137]. The autosomal dominant mutant protein LRRK2 phosphorylates and activates
transcription of the forkhead box transcription factor FoxO1, which is crucial in the upregulation of
cell death molecules and is associated with LRRK2-mediated cell death [138]. Importantly, LRRK2
deficiency led to impairment of the autophagy-lysosomal pathway, altered expression of LC3-II
and p62 and increased α-synuclein aggregates in the kidney, in an age-dependent manner [139].
Recent studies have shown that mitochondrial RHOT1-dependent mitophagy is delayed with the PD
mutant LRRK2G2019S, suggesting a critical function of LRRK2 in the regulation of mitophagy [140].
Although LRRK2 is known to be involved in autophagic flux, the exact roles and mechanisms by
which LRRK2 controls intestinal homeostasis are not completely understood in terms of autophagy
regulation [129,139].
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The molecular mechanisms underlying how LRRK2 affects the pathogenesis of CD have not been
widely examined. An earlier study showed that LRRK2 deficiency led to increased susceptibility to
DSS-induced colitis in mouse models by negatively regulating activation of the transcription factor
NFAT [23]. In a recent study, both lymphoblastoid cells from control patients bearing a high-risk allele
of LRRK2 and dendritic cells from CD patients exhibited elevated LRRK2 expression, which resulted in
severe colitis with increased Dectin-1-mediated NF-κB activation and proinflammatory cytokine
responses [25]. As an IFN-γ target gene, LRRK2 induction and function were investigated in
immune cells [133,141]. LRRK2 was previously detected in inflamed intestinal tissues, particularly in
macrophages of the lamina propria and was shown to play a role in host defense through regulation
of reactive oxygen species generation [133]. These studies collectively suggest that the fine-tuning of
LRRK2 is required for the prevention and treatment of colitis and related infections (Figure 5).

4.4. ATG7

ATG7 is an E1-like activating enzyme that facilitates autophagosome formation through
two ubiquitin-like conjugation systems, LC3 lipidation and Atg12 conjugation. Availability of
ATG conditional deletion mice have improved our understanding of the contribution of different
ATGs in specific cells/tissues and provided insight into the role of individual ATGs in intestinal
homeostasis during colitis. In intestinal cells, the function of Atg7 has been studied using intestinal
epithelium-specific (tamoxifen-inducible) Atg7 knockout (ATG7IEC-KO) mice. An earlier study showed
that ATG7IEC-KO mice had a similar pathology in the ileum and Paneth cell abnormality with
defective granule exocytosis as those observed in Atg16L1HM and Atg5flox/floxvillin-Cre mice [142].
Consistent with these observations, ATG7IEC-KO mice exhibited decreased granule size and decreased
lysozyme levels in Paneth cells and increased production of TNF-α and IL-1β mRNA in response
to lipopolysaccharide in the epithelium of the small intestine when compared to those of control
small intestinal tissue [143,144]. A further study showed that the exacerbated experimental colitis in
ATG7IEC-KO mice was associated with abnormal microflora composition and dysregulated expression
of antimicrobial or antiparasitic peptides (angiogenin-4, Relmβ, intelectin-1 and intelectin-2), as well
as suppressed secretion of colonic mucins [145].
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ATG7 conditional knockout mice also exhibited increased susceptibility to and reduced clearance
of Citrobacter rodentium infection in the intestinal epithelium during C. rodentium infectious colitis [89].
A recent study emphasized the role of autophagy in controlling intestinal homeostasis using mice
with conditionally deleted ATG7 in CD11c+ antigen-presenting cells (ATG7∆APC), which enhanced
immunopathology and inflammatory Th17 responses, as well as abnormal mitochondrial function
and oxidative stress [90]. Another group showed that mice with myeloid cell-specific deletion of
ATG7 exhibited increased susceptibility to experimental colitis accompanied with increased colonic
inflammation [91]. Furthermore, ATG7 deletion in intestinal epithelium-specific XBP1-deficient
mice synergistically aggravated the intestinal pathology, resulting in the development of extensive
submucosal or transmural inflammation and recapitulated the features of human CD, suggesting that
autophagy contributes to a compensatory process in the intestinal epithelium during sustained ER
stress [100]. These data strongly indicate that ATG7 is crucial for controlling intestinal inflammatory
responses and defense against the virulence of enteric pathogens to maintain intestinal homeostasis
(Figure 2). However, there is little evidence that ATG7 is clinically relevant in IBD.

5. Selective Autophagic Receptors and IBD

The involvement of the autophagic receptors p62 and TFEB in IBD pathogenesis has been
reported [21,146]. Several studies have also identified SNPs of NDP52 and OPTN in individuals
with IBD [20,147,148]. Here, we discuss the current evidence regarding the role of these cargo receptors
in terms of IBD.

5.1. p62

The ubiquitin-binding protein sequestosome 1 (SQSTM1/p62) is a well-known autophagy adaptor
and was initially identified as a p56lck binding protein [149]. Mutations of p62 are known to be
associated with Paget’s disease of bone [150]. An earlier study showed that a direct interaction between
p62 and LC3/GABARAP family members led to autophagy-mediated destruction of p62-positive,
polyubiquitin-containing bodies [151]. In addition, Komatsu et al. showed the function of p62 in
selective autophagy activation via the binding of ubiquitinylated protein aggregates for delivery to
LC3 autophagosomes [152]. In canonical autophagy, accumulation of p62 in the cytoplasm is generally
regarded as a sign of reduced autophagic activity and the impaired autophagy, because increased
autophagic flux degrades p62 (Figure 2) [153]. Overall, p62 is an essential scaffold protein that can bind
a variety of partner proteins, participating in diverse biological signaling that affects innate immunity,
apoptosis, inflammatory responses and tumorigenesis [154].

Although there are a few reports on the involvement of p62 in the pathogenesis of colitis, defective
autophagy with decreased turnover of p62 levels has been observed in intestinal inflammation [155,156].
In a study performed in an epithelial cell line, the intracellular survival of AIEC LF82 bacteria, which
promote the gastrointestinal inflammatory response, was higher in cells silenced for p62 than in cells
transduced with empty vector (ShCTR) [157]. In animal and human studies, defective autophagic flux
with elevated p62 was observed in IBD tissues and models [156]. Furthermore, immunohistochemical
expression of p62 was higher in epithelial cells of damaged mucosa than in those of non-damaged
mucosa [146]. Understanding how p62 regulates intestinal homeostasis will enable the development
of more effective therapeutic strategies against IBD.

5.2. Optineurin (OPTN)

OPTN is a selective autophagy adaptor protein that plays an important role in mitophagy
and xenophagy. OPTN is involved in various biological responses including vesicular trafficking,
anti-bacterial and antiviral responses and autophagy and interacts with numerous cellular proteins
including myosin VI, Rab8 and Tank-binding kinase 1 [158–160]. The clinical relevance of OPTN has
been indicated by the genetic variants/mutations of OPTN linked to glaucoma, Paget’s disease of
bone and amyotrophic lateral sclerosis [161–163]. OPTN plays an essential role in mitophagy and is
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involved in several neurodegenerative diseases, including PD [160,164]. OPTN is also required for the
clearance of pathogens, such as Salmonella and Listeria, to promote activation of xenophagy [43,165].

A few studies have identified OPTN deficiency in CD patients [19,20]. The function of OPTN in
the regulation of intestinal homeostasis was suggested in IRE1α-driven colitis as an IRE1α-interacting
protein [85]. OPTN deficiency led to an accumulation of IRE1α, which enhanced colitis pathology
during ER stress (Figure 2) [85]. Indeed, a subgroup of CD patients with low OPTN expression has
been identified [20]. The same study showed that OPTN deficiency led to decreased production of
TNFα and IL-6 and increased susceptibility to Citrobacter colitis and E. coli peritonitis (Figure 2) [19].
Thus, these data suggest the importance of OPTN in macrophage inflammation and bactericidal
function to promote the antimicrobial host defense and may explain the link between OPTN
deficiency and increased CD pathogenesis [19]. These insights indicate that selective autophagy
and cargo receptors may play important roles in the regulation of colonic homeostasis (Figure 2).
A better understanding of the players and mechanisms underlying selective autophagy in intestinal
inflammation will aid in the discovery of new therapeutic targets for IBD.

6. Transcription Factor TFEB

TFEB, a member of the microphthalmia-associated transcription factor (MITF)/transcriptional
factor E (TFE) family, has been identified as a key regulator of autophagy maturation and lysosome
biogenesis [166–169]. TFEB activation is required for clearance of pathogenic molecular aggregates
in neurodegenerative diseases, such as α-synuclein and aberrant tau protein, to promote therapeutic
effects in PD and Alzheimer’s disease, respectively [170–172].

Our understanding of the effects of TFEB in IBD is currently in its infancy. A recent study showed
that mice with a conditional deletion of TFEB in the intestinal epithelium (TFEB∆IEC) had a defect
in Paneth cell granules, lower expression levels of lipoprotein ApoA1 and exaggerated colitis upon
DSS injury [21]. Further studies evaluating the function of TFEB and its clinical relevance in IBD
pathogenesis are needed, given the essential role of TFEB in regulating the autophagy lysosome
pathway [168]. Elucidation of the involvement of TFEB and other transcription factors in colitis
will improve our understanding of the mechanism of autophagic regulation in the complicated
pathogenesis of IBD.

7. Conclusions

Studies over the last decade have suggested that genetic variants of several ATGs are highly
associated with IBD susceptibility. Although the distinct genetic variations or manipulations provide
strong support for the causative role of ATGs in the pathogenesis of IBD, they also raise two important
questions: whether defective autophagy is a major trigger for pathogenic inflammation in IBD and what
signaling pathways control canonical and noncanonical autophagy in intestinal epithelial cells/tissues.
We focused our review on ATGs, selective autophagy receptors and transcription factors involved in
maintaining intestinal homeostasis in human and mouse studies.

Both ATG16L1 and IRGM, two important ATGs in IBD, have principally been investigated in
human and murine intestinal epithelial cells, particularly in Paneth cells, the major secretory cells of
the small intestine. Recent studies have suggested that defective ATG16L1-mediated inflammation
is due to aberrant ER stress, as upregulated IRE1α was observed in Paneth cells from ATG16L1∆IEC

mice and CD patients (T300A). The interactions between ATGs and other biological systems such
as the ER stress response may have a significant impact on the pathogenesis of IBD as well as other
inflammatory diseases. Furthermore, genetic association studies have suggested that LRRK2/MUC19
and ATG7 deficiency aggravate intestinal inflammation in a mouse model of colitis.

Selective autophagy receptors, p62 and OPTN and the transcription factor TFEB have been
suggested to play key roles in controlling intestinal inflammation and homeostasis. Future studies to
further define the mechanisms by which cargo receptors contribute to specific types of autophagy will
enhance our understanding of intestinal homeostasis in terms of autophagy regulation. This knowledge
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will ultimately aid in the development of novel therapeutic strategies and drug targets for combating
intractable chronic inflammatory diseases such as IBD.
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