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Introduction: In adolescents, the relationship between alcohol-related blackouts
(ARBs) and distinct cognitive changes lasting beyond intoxication is unclear. We
examined ARBs as a predictor of persistent changes in the development of learning,
memory, and executive function in participants from the National Consortium on Alcohol
and Neurodevelopment in Adolescence (NCANDA) study.

Methods: Descriptive analyses of the NCANDA sample (N = 831, 50.9% female, 12–
21 years at baseline) identified ARB patterns within participants with an ARB history
(n = 106). Latent growth curve modeling evaluated ARB-related performance changes
on four neuropsychological measures across five years, excluding baseline data to
reduce the magnitude of practice effects over time (n = 790). Measures included the
Penn Conditional Exclusion Test (PCET), Penn Letter N-back Test (PLBT), Penn Facial
Memory Test immediate (PFMTi), and delayed (PFMTd) recognition trials, and the Rey
Complex Figure Test copy (RCFTc), immediate recall (RCFTi), and delayed recall (RCFTd)
trials. Multivariate models were fit for raw accuracy scores from each measure, with ARB
history (i.e., presence of past-year ARBs) as the main independent variable. Age, sex,
race, socioeconomic status, assessment site, and alcohol use (i.e., past-year frequency)
were included as covariates. Interaction effects between ARB history and alcohol use
frequency were tested.

Results: By year five, 16% of participants had experienced at least one ARB (59%
of whom reported > 1 ARB and 57% of whom had an ARB lasting > 1 h). After
controlling for demographics and alcohol use, ARB history predicted attenuated PFMTd
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performance growth at year one. Interaction effects between ARB history and alcohol
use frequency predicted attenuated PFMTd performance growth at years one and two.
ARB history predicted attenuated RCFTi and RCFTd performance growth by year four,
but not PCET or PLBT performance over time. By contrast, greater past-year alcohol
use predicted attenuated PFMTi and PFMTd performance growth between years two
and four in adolescents without an ARB history.

Conclusion: We found that ARBs predict distinct, lasting changes in learning and
memory for visual information, with results suggesting that the developing brain is
vulnerable to ARBs during adolescence and emerging adulthood.

Keywords: blackouts, cognition, adolescents, memory, executive function, longitudinal, alcohol, development

INTRODUCTION

Alcohol-related blackouts (ARBs) are a type of anterograde
amnesia for details of a drinking event during which an
individual is consciously interacting with their environment (2).
ARBs are particularly common among younger drinkers, with
approximately 35% of high school students reporting at least one
past-year ARB and 50% of college students reporting at least
one lifetime ARB (3–6). Recent literature further suggests that
ARBs are described as a neutral or positive experience, with some
college students reporting drinking with the intention to blackout
(7, 8). The perception that ARBs are a benign or even desired
consequence of risky alcohol use is particularly noteworthy in
the context of ARBs strongly predicting adverse, alcohol-related
functional outcomes (e.g., social, emotional, occupational, and
legal) in adolescents above and beyond alcohol use disorders
(AUDs) per se (4, 9–11). Thus, consistently high ARB prevalence
rates during key periods of adolescent/emerging adulthood
development and their robust association with negative alcohol-
related consequences have highlighted this phenomenon as a
critical area of research.

Binge drinking [i.e., ≥5 drinks for males and ≥4 drinks
for females over a 2-h period; (12)] and related behaviors
common in younger drinking cohorts (e.g., pregaming and
drinking games) strongly predict ARBs (13–15). Ultimately,
ARBs occur due to a rapid rise in blood alcohol concentration
(BAC) and subsequent disruption of long-term potentiation, the
major neurochemical process considered to underlie memory
formation or the transfer of sensory information from short-
term memory to long-term storage (2). While ARBs are a marker
of acute, alcohol-induced cognitive dysfunction, neuroimaging
studies also describe blacking out as a possible indication of
neurological vulnerability to heavy alcohol use and alcohol-
related neurotoxicity in adolescents (16, 17). Findings suggest
that ARBs are most commonly associated with persistent
neurochemical and structural abnormalities in brain regions
underlying executive function and learning and memory (18–
20). However, functional imaging studies largely report ARBs as
predictive of underlying neurological changes in the absence of
overtly impaired performance on neuropsychological measures
(21, 22). As such, behavioral data associated with ARB-related
neurocognitive changes in adolescents are scarce.

The few studies examining relationships between ARBs
and performance on cognitive measures in adolescents have
focused on college students and rely on cross-sectional designs,
which precludes a concrete determination of directionality.
Findings are also inconsistent regarding patterns of ARB-related
change in specific cognitive domains. For example, a study by
Zamroziewicz et al. (23) found that, among college students,
higher ARB frequency was associated with lower performance
on an event-based prospective memory task. Findings from
another study in college students by Min et al. (24) suggested
that earlier ARB onset was related to lower non-contextual
verbal memory abilities. In contrast, a longer duration of
ARB history was associated with poor attention and executive
function. Notably, neither study controlled for alcohol use, and
the extent to which heavy, intermittent drinking confounded
these results remains unclear. There is, therefore, a paucity of
prior research exploring the relationship between ARBs and
changes in cognition persisting beyond the period of acute
alcohol intoxication which consider effects across the range
of adolescence encompassing teenage years and early twenties.
Further, to better identify the unique effects of ARBs on cognitive
function in adolescents, longitudinal research that controls for
alcohol use is required.

In the current study, we examined longitudinal data from
the National Consortium on Alcohol and Neurodevelopment in
Adolescence (NCANDA) study. The first aim was to identify ARB
prevalence patterns from adolescence to emerging adulthood
using cross-sectional data over six years of collection. The second
aim was to expand the extant literature on ARB-associated
cognitive change by using longitudinal data to identify how
ARBs impact the development of cognition in adolescents
over time while controlling for alcohol use frequency. Latent
growth curve modeling (LGM), a reliable tool for studying
cognitive development in cohorts across the lifespan, was used to
explore whether stable, past-year ARB history during adolescents
predicted attenuated cognitive development in domains of
cognition shown to be sensitive to heavy, intermittent alcohol use
during adolescents (25–30, 92). Specifically, we hypothesized that
adolescents with a history of ARBs would demonstrate attenuated
growth in performance on neuropsychological measures of (a.)
executive functioning (i.e., mental flexibility and visual working
memory) and (b.) learning and memory (i.e., facial episodic
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memory and visual learning and memory) across five years of
data collection.

MATERIALS AND METHODS

Study Sample
Participants were 831 adolescents and emerging adults (i.e., ages
12–21 years at study entry) recruited as part of the NCANDA
study across five sites in the United States [for a full description
of methods and baseline data, see Brown et al. (31)]. The
study utilized an accelerated longitudinal design to capture
developmental change across more age groups and data were
collected to reflect the demographic characteristics of each site’s
geographical location. Recruitment oversampled participants at
risk for alcohol use initiation [i.e., drinking before age 15, family
history of substance use disorder [SUD], ≥1 externalizing and
≥2 internalizing symptoms (32, 33)] and participants between
ages 12 and 15 to better evaluate critical periods of growth (34,
35). Baseline inclusion criteria were age between 12 and 21 years,
English fluency, and residence of<50 miles from assessment site.

Exclusion criteria were MRI contraindications, vision and/or
hearing impairment, lack of parental consent, medications
impacting brain function and/or blood flow, select medical
conditions (i.e., those impacting MRI results, brain development,
or study participation), early developmental problems,
psychiatric disorders interfering with protocol completion
(including substance use disorders), parental history of psychotic
disorder independent of substance use, and developmental or
severe learning disorder [see Brown et al. (31) for full description
of inclusion and exclusion criteria]. While the majority of the
sample had limited alcohol and other substance use exposure at
baseline (NON-drinkers), 17% of participants were allowed to
exceed baseline age-adjusted drinking, nicotine, and marijuana
thresholds [exceeds threshold [ET]-drinkers (36, 37)] to
ensure that individuals with a range of alcohol use severities
were sampled to create comparison groups for later analyses.
Compared to NON-drinkers (n = 692), ET-drinkers (n = 139)
tended to be older (60% aged 18–21 years) and reported earlier
age of alcohol use onset [25% reported drinking before age 15
(31)]. In the current study, both NON-and ET participants were
included in the analysis.

Since the current analyses focused on effects of ARBs on
neurocognitive development over time, it was critical to control
for learning effects in the neuropsychological test battery.
Findings from Sullivan et al. (1) suggest that significant learning
effects exist in the NCANDA sample between baseline and the
first annual follow-up which may confound future longitudinal
analyses on developmental effects, a re-test pattern that has also
been demonstrated in other studies (38) and in an analysis of
executive function in the NCANDA sample (39). Baseline data
were therefore excluded, resulting in an initial working sample of
790 participants.

Measures and Procedures
Prior to study participation at each annual follow-up visit, all
participants underwent informed consent procedures in which

adult participants or parents of minor participants provided
written informed consent and minor participants provided
assent. The Institutional Review Boards of each site approved all
NCANDA study protocols. At baseline and five annual follow-
up visits, participants completed neuropsychological testing,
neuroimaging sessions, and comprehensive psychosocial and
psychodiagnostic assessments. Demographic data were collected
at baseline and each annual follow-up [see Brown et al. (31) for
full description of demographic measures].

In the current study, demographic factors known to impact
performance on neuropsychological tests within the NCANDA
sample were analyzed longitudinally as covariates, including age,
sex, race, socioeconomic status (SES), and assessment site (1,
40–43). In longitudinal models, age was defined as the basis
for individually varying times of observation for the outcomes
and centered on 12 years (i.e., youngest age at study entry).
In doing so, participant-specific variation in duration between
annual assessments was controlled for. Age was therefore
analyzed as a continuous metric impacting growth rather than
as a categorical, fixed factor loading or traditional covariate,
which is an important consideration for examining cognitive
change during periods of rapid development (44–46). Baseline
data for sex (i.e., dichotomous, male vs. female), race (i.e.,
dichotomous, white vs. non-white), and assessment site were
included as time-invariant covariates (TICs). Baseline SES was
included as a continuous TIC, defined as the highest level of
parental education for either parent, an estimate known to be
less sensitive to changes in family income due to geographical
location, and was centered on median level of parental education
(31, 40).

Past-year ARB and alcohol use history were assessed at
baseline and each annual follow-up using the Customary
Drinking and Drug Use Record (CDDR), an interviewer-
administered, self-report questionnaire measuring current and
past alcohol and other substance use [e.g., level of involvement,
symptoms of withdrawal and dependence, and negative
consequences (31, 47)]. The current study defined ARB history
as the presence of ARBs in the past year (i.e., yes versus no)
measured by a single CDDR item [i.e., “In the past year, have
there been periods of time that later you could not remember
while drinking alcohol/under the influence?” (5, 22)]. ARB
history was included as a time-varying covariate (TVC) and
main predictor of cognitive function in all longitudinal models.
Past-year ARB frequency (i.e., number of ARBs in the past
year at each annual follow-up) and duration of longest past-
year ARB at each annual follow-up (i.e., ≥1 or <1 h) were
analyzed cross-sectionally. To better distinguish between the
effects of ARBs and alcohol use on cognition, alcohol use was
controlled for and included in longitudinal models as a TVC.
Alcohol use was defined as past-year alcohol use frequency
(i.e., number of alcohol use days in the past year at each annual
follow-up), a consumption item which reliably predicts alcohol
use consequences in adolescents (48, 49). Past-year alcohol use
was measured using a single CDDR item (i.e., “During the past
year, how many days did you drink alcohol?”) and centered
on mean number of days alcohol was used in the past year at
each time point.
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The NCANDA study’s full neuropsychological battery
consisted of computerized and traditional measures administered
at baseline and each annual follow-up selected based on
reliability, minimization of practice effects, and adequate validity
for age [see Sullivan et al. (1) for a detailed description of
test selection]. All computerized measures are subtests of the
Web-Based Computerized Neurocognitive Battery (WebCNP)
which calculates raw accuracy and speed scores for each subtest
and individual subtest trials (41). The current study analyzed
data from three WebCNP subtests and one traditional test
measuring components of the broader NCANDA target domains
of executive function and learning and memory (see Table 1 for
a summary of neuropsychological measures used). Raw accuracy
scores were modeled as the main continuous, dependent
variables in longitudinal analyses. Given that demographic
covariates were controlled for in each model, raw scores were
considered an accurate representation of each cognitive outcome
in the absence of demographic or standardized corrections.

Measures of Executive Function
Raw accuracy scores from the Penn Conditional Exclusion Test
(PCET) were modeled to measure ARB-related changes in mental
flexibility, or set-shifting (41, 50). For the PCET, participants
must use one of three sorting principles (i.e., size, shape, and line
thickness) to determine which object among four others does not
belong using only feedback given after each trial (i.e., “correct”
or “incorrect”) and little other instruction. After ten successful
trials, the sorting rule is changed, and participants must use
hypothesis testing to determine the next rule (41). PCET accuracy
scores were calculated by dividing total learning (i.e., product of
correct responses and number of learned rules) by the product
of total correct responses and total errors (51). Raw Penn Letter
N-Back Test (PLBT) accuracy scores were modeled to measure
ARB-related changes in visual working memory. On the PLBT,
participants are presented with a series of letters one at a time,
and in three separate conditions, asked to press a spacebar when
(a.) target stimuli are shown (i.e., “0-back”), (b.) target letters
match the previous letter (i.e., “1-back”), and (c.) target letters

TABLE 1 | Neuropsychological measures and associated cognitive domains.

NCANDA target
domain

Neuropsychological measure Cognitive abilities

Executive function Penn Conditional Exclusion Test (PCET)a Mental flexibility

Penn Letter N-back Test (PLBT)a Visual working memory

Learning and
memory

Penn Facial Memory Test (PFMT)a Facial episodic memory

Immediate trial (PFMTi ) Immediate facial
recognition

Delayed trial (PFMTd ) Delayed facial recognition

Rey Complex Figure Test (RCFT)b Visual incidental learning
and memory

Copy trial (RCFTc ) Psychomotor function,
visuospatial function,

executive function (e.g.,
organization, planning)

Immediate recall trial (RCFTi ) Incidental learning

Delayed recall trial (RCFTd ) Delayed visual recall

aSubtest of the WebCNP. bTraditional paper and pencil measure.

match the letter presented two letters back [i.e., “2-back” (41, 52)].
PLBT accuracy scores were defined as total number of correct
responses.

Measures of Learning and Memory
Raw Penn Facial Memory Test (PFMT) accuracy scores were
modeled to measure ARB-related changes in facial episodic
memory. On the PFMT, participants are shown 20 digitized faces
one at a time and are asked to identify them among 20 distractor
faces immediately and again 20 min later for immediate (PFMTi)
and delayed (PFMTd) recognition trials, respectively (41, 51,
53). For all recognition trials, participants are asked whether
they had seen each face before using a four-choice scale [i.e.,
“definitely not,” “probably not,” “probably yes,” and “definitely
yes;” (41)]. PFMTi and PFMTd accuracy scores were defined as
total true positive responses and included as dependent variables
in separate models (41). Raw accuracy scores from all three
trials of the Rey Complex Figure Test (RCFT) were modeled
to measure ARB-related changes in visual incidental learning
and memory. The initial RCFT copy trial (RCFTc) measures
more basic cognitive processes such as psychomotor, visuospatial,
and executive functions (54, 55). For RCFT immediate (RCFTi)
and delayed (RCFTd) recall trials, participants draw the figure
from memory immediately after the copy trial and approximately
30 min after the immediate recall trial, respectively. Accuracy
scores for all three RCFT trials were calculated based on
total number of correctly drawn figure details and included as
dependent variables in separate models.

Data Analyses
SPSS (Version 27) was used to calculate cross-sectional,
descriptive statistics for demographics and past-year alcohol
use in participants with an ARB history at each annual visit
between baseline and fifth-year follow-up. Bivariate comparisons
were also made using SPSS to examine differences at each
annual follow-up in demographics and alcohol use history
between participants with (ARB+) and without (ARB−) an
ARB history using two-tailed, independent samples t-tests for
continuous variables (i.e., age, SES, and alcohol use) and chi-
square tests of independence for categorical variables (e.g., sex,
race, and assessment site). Past-year ARB frequency and duration
variables were analyzed cross-sectionally at each annual visit
(i.e., baseline through fifth-year follow-up) to better describe
ARB patterns within the NCANDA sample. ARB frequency and
duration were excluded from longitudinal models due to low base
rates of participants reporting >2 ARBs (4.8% of total sample
at the fifth annual follow-up) and collinearity between ARB
history (yes/no) and longest duration. As such, only past-year
ARB history (yes/no) was analyzed longitudinally as the main
independent variable. Longitudinal analyses were conducted
using the MPlus version 8.5 with the robust Full Information
Maximum Likelihood (FIML) algorithm for missing data (56).
A series of LGM were specified to model the development
of cognition over time and predict how individual and group
demographic factors and alcohol use characteristics impacted
participant performance on select neuropsychological measures
across 5 years of data collection (57). The LGM intercept and
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slope parameters describe the relationship between ARBs and
cognition over time and evaluate the hypotheses that ARB history
is associated with attenuated development of executive function
and learning and memory between the first and fifth annual
follow-up assessments.

Missing Data
Figure 1 depicts the progression of attrition over time based on
the number of participants who completed WebCNP measures
and RCFT trials at each annual follow-up. Analyses of missing
data between baseline and the fifth annual follow-up found a
5-year, six-occasion retention rate of approximately 56% (i.e.,
subjects without any missing data). Sample size at each annual
follow-up for WebCNP measures were similar, with greater
variation observed between WebCNP measures and RCFT trials
at later assessment timepoints. No significant relationships were
found between dropout and past-year alcohol use or ARB history.
The FIML estimator in MPlus uses all available data without
excluding cases by list wise deletion and provides unbiased
estimates of model parameters under the conditional missing at
random assumption (58–60). Since FIML only estimates missing
data for dependent variables, multiple imputation (number of
imputations = 10) accounted for missing data on all independent
variables (61).

Growth Curve Fit
Both linear and quadratic models were considered during model
selection. Separate growth curves were fit for raw accuracy scores
from each neuropsychological measure as well as individual
trials yielding unique accuracy scores. Unconditional models
(i.e., models which do not include independent variables or
covariates) were compared using fit statistics from the Akaike
Information Criterion [AIC; Akaike (62)], Bayesian Information
Criterion [BIC; Nylund et al. (63)], Root Mean Squared Error

of Approximation [RMSEA; Hancock and Freeman (64)], and
standard root mean square residual [SRMR; Hancock and
Mueller (57)]. Model selection was based on a combination
of the lowest AIC and BIC values, RMSEA and SRMR
values < 0.08, and interpretability. Table 2 depicts fit statistics
for final unconditional models organized by cognitive domain
and neuropsychological measure. Final unconditional models for
accuracy scores from measures of executive function (i.e., the
PCET and PLBT) were modeled using linear functions while
scores from measures of learning and memory (i.e., the PFMT
and RCFT) followed a quadratic functional form.

Using unconditional growth models, intercept means and
variances estimated average initial test performance at the first
annual follow-up and variation between participants in first year
task performance. Linear slope means and variances estimated
average annual growth in test performance and variability of
linear growth rate between participants, respectively. Quadratic
slope means estimated the magnitude to which growth in
neuropsychological test performance tapered off or accelerated
over time, with variances estimating overall diversity in quadratic
growth rate. Covariances between intercept and slopes estimated
the degree to which the rate of linear or quadratic growth
related to initial test performance as well as how linear and
quadratic slopes impacted the growth rates of one another.
Once unconditional models were identified, the relationship
between both TICs and TVCs, initial neuropsychological task
performance, and subsequent performance growth over time
was then evaluated in conditional models. All covariates were
examined independently and in a multivariate manner by
including them into each model in a stepwise fashion. Age
was included first to control for individually varying times
of observation, followed by all TICs in the order of (1.)
gender, (2.) ethnicity, (3.) SES, and (4.) assessment site. TVCs
were subsequently included in each model a similar step-wise

FIGURE 1 | Attrition within the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) sample. This figure depicts sample size at each
annual follow-up across 5 years based on participants who completed WebCNP measures (solid line) and all RCFT trials (dotted line) measures.
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TABLE 2 | Fit statistics for best-fit unconditional models.

Goodness of fit statistics

Linear Quadratic

Unconditional models AICa BICa RMSEAb SRMRc AIC BIC RMSEA SRMR

Penn Conditional Exclusion Test† –7309.3 –7243.9 0.000 0.017

Penn Letter N-back Test 13628.6 13675.3 0.015 0.056 13634.4 13699.8 0.029 0.052

Penn Facial Memory Test

Immediate trial 14382.2 14428.9 0.072 0.060 14335.6 14401.0 0.000 0.016

Delayed trial 14328.3 14375.0 0.034 0.092 14313.2 14378.6 0.000 0.077

Rey Complex Figure Test

Copy Trial 13338.3 13385.0 0.035 0.172 13333.9 13399.2 0.028 0.073

Immediate Recall Trial 14855.8 14902.5 0.034 0.067 14854.3 14919.7 0.028 0.043

Delayed Recall Trial 14771.2 14817.8 0.041 0.078 14768.8 14834.1 0.036 0.032

Boldface type indicates best fit models. aLower values suggest better fit. bRMSEA and SRMR of ≤0.08 suggest good model fit. †PCET data did not converge when fitting
quadratic models.

manner (i.e., past-year alcohol use frequency was added first
followed by past-year ARB history [yes/no]) to examine their
impact on neuropsychological task performance over time while
controlling for TICs. Finally, the interaction between ARB history
and alcohol use frequency was assessed in final multivariate,
conditional models. Path diagrams for linear and quadratic
models are displayed in Figure 2. Path diagrams for models with
an interaction are omitted due to complexity.

RESULTS

Characteristics of National Consortium
on Alcohol and Neurodevelopment in
Adolescence ARB+ Participants
Cross-sectional, frequency data for having experienced at least
one past-year ARB (yes/no) at baseline and each annual follow-
up are depicted in Figure 3. Cross-sectional frequency data for
past-year ARB frequency and longest duration at baseline and
each annual follow-up are summarized in Figure 4. At baseline,
38 participants reported at least one ARB in the past-year (4.6%
of total sample). Baseline ARB+ individuals most often reported
one past-year ARB (57.9%) and 50% described their longest ARB
as ≥1 h. By the fifth-year annual follow-up, 16.4% of the total
sample (n = 106) endorsed at least one past-year ARB, with less
than half of participants endorsing only a single past-year ARB
(43%) and 56.6% describing their longest ARB as > 1 h. ARB+
participant characteristics for age, sex, race, SES, assessment
site, and alcohol use frequency are presented in Figure 5. At
baseline, mean age of ARB+ participants was 18.5 (SD = 1.8)
years, 63.2% of participants were male, 81.6% were White, mean
SES was 17.4 (SD = 2.2) years of parental education, and average
number of past-year drinking days was 35.1 (SD = 41.9). By
the fifth annual follow-up, mean age for ARB+ participants was
21.0 (SD = 2.0) years, 51.9% of participants were male, 75.5%
were White, mean SES was 17.3 (SD = 2.3) years of parental
education, and average number of past-year drinking days was

80.07 (SD = 57.24). Results from bivariate comparisons between
ARB+ and ARB− participant characteristics are presented in
Table 3. ARB history was associated with higher alcohol use
frequency at all time points (p = 0.01) and, compared to
ARB− participants, ARB+ participants were significantly older
(p = 0.01) between baseline and the fourth annual follow-up.
Inconsistent, significant differences were also found between
ARB+ and ARB− participants in sex, race, and assessment site.
No significant differences in SES were found between ARB+and
ARB− participants at any time point.

ARB-Related Changes in Executive
Function and Learning and Memory
Unconditional Growth Model Parameter Estimates:
Executive Function
Unconditional model parameter estimates for performance on
measures of mental flexibility (i.e., PCET accuracy scores) and
visual working memory (i.e., PLBT accuracy scores) are presented
in Table 4. Initial PCET performance was 0.278 (SE = 0.003),
p = 0.00, points on average and was predicted to increase linearly
by 0.008 (SE = 0.001), p = 0.00, points per year. Average initial
PLBT performance was 28.4 (SE = 0.06), p = 0.01, points, with
significant variability found between participants. Linear PLBT
performance growth was estimated to increase by 0.02 (SE = 0.27)
points per year and was not significant (p = 0.39).

Unconditional Growth Model Parameter Estimates:
Learning and Memory
Unconditional model parameter estimates for performance on
measures of facial episodic memory (i.e., PFMT trial) and visual
incidental learning and delayed recall (i.e., RCFT trial) are
presented in Table 4. Average initial PFMTi and PFMTd scores
were 34.9 (SE = 0.12), p = 0.01, and 34.7 (SE = 0.18), p = 0.01,
points, respectively, with significant variability in performance
found between participants on both trials. PFMTi and PFMTd
performance growth was predicted to increase linearly by 0.90
(SE = 0.54), p = 0.01, and 0.83 (SE = 0.12), p = 0.01, points
linearly per year, respectively. For both the PFMTi and PFMTd,
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FIGURE 2 | Path diagrams for linear and quadratic conditional models. This figure depicts the path diagrams for linear and quadratic growth models, with solid lines
depicting the original linear model and dashed lines representing additional parameters added to create the final quadratic model. Linear and quadratic models
estimated the latent intercept (i), linear slope (s), and quadratic slope (q) growth factors to predict how individual and group characteristics (i.e., demographics and
past-year alcohol use frequency and ARB history) impacted development of cognition across five timepoints. Growth factors i, s, and q are depicted in circles along
with their variances (Ψ i ,Ψ s,Ψ q) and co-variances (Ψ is,Ψ iq,Ψ sq). Demographics are included as time-invariant covariates (TICs) in boxes on the left of the figure. Time
was parameterized using age as individually varying times of observation (λ1-5). ARB history (ARB1−5) and alcohol use frequency (Alcohol1−5) are included as
time-varying covariates (TVCs) in boxes at the bottom of the figure. Observed neuropsychological test scores (Results1−5) and their residual variance (θ1-5) at each
time point are included in boxes at the top of the figure.

FIGURE 3 | The presence of past-year ARBs (yes/no) at each annual follow-up. This figure illustrates the frequency of participants at each annual follow-up who had
experienced at least one past-year ARB. Total sample size at each annual follow-up is indicated above each column.

quadratic performance growth was predicted to accelerate by
0.10 (p < 0.01), points per year at later annual follow-up
visits. Average initial RCFTc performance was 30.5 (SE = 0.13),
p = 0.01, points, and predicted to decrease at rate of -0.31
(SE = 0.13), p = 0.02, points per year. Significant variability was

found between participants for both RCFTc intercept and slope
parameter estimates. Quadratic RCFTc performance growth
predicted a 0.09 (SE = 0.04), p = 0.01, point accelerated annual
increase at later follow-up visits. Average RCFTi performance
was 21.27 (SE = 0.34), p = 0.01 points and was predicted
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FIGURE 4 | Past-year ARB frequency and longest duration at each annual follow-up. Panel (A) depicts ARB frequency at each annual follow-up (baseline through
year five). Panel (B) depicts ARB duration (less than 1 h or greater than 1 h) in participants reporting a past-year ARB history.

to increase linearly by 1.03 (SE = 0.25), p = 0.01, points
per year. Both RCFTi intercept and slope parameters varied
significantly between participants and the covariance between
RCFTi linear and quadratic growth factors was significant, -1.26
(SE = 0.56), p = 0.02, suggesting that with faster linear growth,
quadratic growth was attenuated. Average RCFTd performance
was 22.2 (SE = 0.21), p = 0.01, points and was predicted to
increase linearly by 0.65 (SE = 0.16), p = 0.01, points per year.
Both RCFTd intercept and slope parameters varied significantly
between participants and the covariance between RCFTd linear
and quadratic growth factors was significant, -0.90 (SE = 0.39),
p = 0.02.

Conditional Growth Model Parameter Estimates:
Executive Function
Figure 6 depicts final multivariate growth curve models including
all TICs and TVCs for neuropsychological test performance
for all measures between the first through fifth annual follow-
ups. Intercept and slope factor parameter estimates for TICs
from conditional growth models of performance on measures
of mental flexibility (i.e., the PCET) and visual working
memory (i.e., the PLBT) including only TICs are summarized in
Table 5. SES (i.e., higher median parental education) predicted

accelerated linear growth in PCET performance at a rate of
0.001 [SE = 0.000], p = 0.026, points. Sex and race were not
significantly associated with PCET performance. Being White
predicated accelerated growth in linear PLBT performance at
a rate of 0.107 [SE = 0.045], p = 0.018, points per year.
Sex, SES, and assessment site were not significantly associated
with PLBT performance. Slope factor parameter estimates for
TVCs from conditional growth models of performance on
measures of set-shifting and visual working memory including
both TICs and TVCs are summarized in Table 6. Initial
performance and growth in performance on the PCET and PLBT
were not significantly associated with alcohol use frequency,
ARB history, or the interaction between alcohol use frequency
and ARB history.

Conditional Growth Model Parameter Estimates:
Learning and Memory
Intercept and slope parameter estimates for TICs from
conditional growth models of performance on measures of
facial episodic memory (i.e., PFMT trials) and visual incidental
learning and delayed recall (i.e., RCFT trials) including only
TICs are summarized in Table 5. SES predicted higher initial
PFMTi and PFMTd scores by 0.251 (SE = 0.111), p = 0.024,
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FIGURE 5 | Sample characteristics for participants reporting a past-year ARB history (ARB+ participants). This figure describes ARB+ participant sample
characteristics for demographics and alcohol use frequency at baseline and each annual follow-up. The x-axis is defined as annual follow-up year in panels (A)
through (F). Panel (A) shows mean age of ARB+ participants, panel (B) shows ARB+ participants by sex, and panel (C) shows ARB+ participants by race. Panel (D)
depicts ARB+ participants by median level of parental education, panel (E) depicts ARB+ participants by assessment site, and panel (F) depicts past-year alcohol
use frequency.

TABLE 3 | Bivariate comparisons between ARB+ and ARB− participant characteristics at baseline and each annual follow-up.

Baseline Year 1 Year 2 Year 3 Year 4 Year 5

Ageb 9.55 (819)** 7.20 (764)** 7.69 (719)** 3.44 (688)** 2.72 (635)** 1.66 (642)

Sexa 2.34 (1) 0.39 (1) 0.06 (1) 0.16 (1) 6.04 (1)** 0.50 (1)

Racea 18.56 (6)** 7.79 (6) 13.00 (6)* 15.32 (6)* 17.54 (6)** 6.88 (6)

SESb 1.53 (818) 1.17 (764) 0.69 (710) 0.69 (688) 1.51 (635) 1.86 (641)

Assessment sitea 2.36 (4) 4.44 (4) 4.38 (4) 9.66 (4)* 25.88 (4)** 10.04 (4)*

Overall alcohol useb 4.71 (37.27)** 6.40 (46.85)** 8.85 (74.57)** 8.42 (100.58)** 8.13 (100.37)** 8.14 (138.93)**

aChi-square test (χ2) reported as χ 2(df). b Independent samples t-test reported as t(df); **p < 0.01; *p < 0.05.

and 0.264 (SE = 0.106), p = 0.013, points, respectively. There
were no significant associations between sex or race and
the PFMTi or PFMTd. SES predicted a higher initial RCFT
performance on all three trials (p = 0.01). Sex and race did not
significantly predict changes in initial performance or growth
on any RCFT trials. Slope factor parameter estimates for TVCs
from conditional growth models of performance on measures
of facial episodic memory and visual incidental learning and
delayed recall including both TICs and TVCs are summarized
in Table 6. Higher alcohol use frequency predicted significantly
attenuated growth in PFMTi and PFMTd performance between
the second and fourth annual follow-up visits. ARB history and
its interaction with alcohol use frequency were not significantly
associated with changes in PFMTi performance. However,

compared to ARB− participants, experiencing at least one past-
year ARB predicted attenuated annual linear growth in PFMTd
performance by -1.50 (SE = 0.39), p = 0.01, points per year above
and beyond alcohol use frequency by the first annual follow-up.
The interaction between ARB history and alcohol use frequency
significantly predicted attenuated linear growth in PFMTd
performance between the first and second annual follow-ups.
Additionally, compared to ARB− participants, experiencing at
least one past-year ARB significantly predicted attenuated annual
linear growth in both RCFTi and RCFTd performance of -1.35
(SE = 0.68), p = 0.04, and -1.07 (SE = 0.5), p = 0.04, points per
year respectively, above and beyond alcohol use frequency by the
fourth annual follow-up visit. ARB history was not significantly
associated with RCFTc performance. Alcohol use frequency and
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TABLE 4 | Intercept and slope factor parameter estimates for unconditional models.

Model Part Parameter Parameter estimate (SE†)

PCETa PLBTb PFMTi
c PFMTd

d RCFTc
e RCFTi

f RCFTd
g

Growth factor means

Intercept i 0.278 (0.003)** 28.446 (0.059)** 34.956 (0.116)** 34.731 (0.181)** 30.545 (0.132)** 21.274 (0.343)** 22.252 (0.212)**

Linear slope s 0.008 (0.001)** 0.025 (0.029) 0.901 (0.087)** 0.829 (0.124)** −0.312 (0.130)* 1.031 (0.251)** 0.655 (0.163)**

Quadratic slope q −0.154 (0.022)** −0.098 (0.021)** 0.093 (0.036)* −0.066 (0.045) −0.010 (0.043)

Growth factor variance

Intercept ψi 0.003 (0.001) 1.135 (0.273)** 6.928 (0.794)** 6.296 (2.613)* 7.609 (1.313)** 33.505 (8.226)** 26.693 (2.292)**

Linear slope ψs 0.000 (0.000) 0.079 (0.052) 0.212 (0.539) −0.269 (1.163) 1.086 (1.226) 8.022 (3.532)* 4.628 (1.804)**

Quadratic slope ψq 0.013 (0.029) −0.009 (0.031) 0.027 (0.061) 0.214 (0.094)* 0.206 (0.093)*

Growth factor covariance

Intercept ψis 0.000 (0.000) −0.054 (0.086) −0.070 (0.579) 0.070 (1.676) −0.287 (1.200) −8.721 (5.223) −2.690 (1.854)

Linear Slope ψiq −0.016 (0.125) −0.060 (0.252) −0.114 (0.257) 1.190 (0.791) 0.216 (0.405)

Quadratic Slope ψsq −0.030 (0.119) 0.068 (0.184) −0.148 (0.263) −1.264 (0.559)* −0.899 (0.393)*

†Standard error. aPenn Conditional Exclusion Test. bPenn Letter N-back Test. cPenn Facial Memory Test, immediate recognition trial. dPenn Facial Memory Test, delayed
recognition trial. eRey Complex Figure Test, copy trial. f Rey Complex Figure Test, immediate recall trial. gRey Complex Figure Test, delayed recall trial. **p < 0.01.
*p < 0.05.

its interaction with ARB history were not significantly associated
with performance on any RCFT trials.

DISCUSSION

Using the large, adolescent-focused NCANDA study, we found
that one of every six youth in the sample had experienced
past-year ARBs by year five (n = 106; cumulative total). ARB+
participants at year five ranged between 18 and 26 years,
with the majority (59.5%) reporting more than one past-year
ARB and 56.6% reporting ARBs as lasting longer than 1 h in
duration. In a series of longitudinal analyses, these data are the
first to demonstrate the unique effects of ARBs on cognitive
development in adolescence, specifically in domains of executive
function and learning and memory. Notably, these effects were
apparent even after controlling for frequency of alcohol use.
Results showing subtle patterns of ARB-related cognitive change
may ultimately inform future efforts to prevent adverse alcohol
use consequences among younger drinkers.

Alcohol-Related Blackouts in the
National Consortium on Alcohol and
Neurodevelopment in Adolescence
Sample
The prevalence rates of ARBs in the NCANDA sample are
lower than those reported in other literature, which estimates
that among emerging adults and college students, past-year ARB
incidence is at least 29.2% for females and 28.8% for males
(65). Our finding of lower ARB prevalence likely reflects the
NCANDA study design, which limited heavy drinkers at baseline.
Nonetheless, the present findings suggest that a small group of
ARB+ participants (11.60%) repeatedly experience high ARB
frequencies over time, consistent with the literature (5, 66, 67).
Additionally, while CDDR items used to measure ARB history

did not distinguish between ARB type, en bloc (i.e., EB; complete
amnesia for a drinking event) versus fragmentary (i.e., FB; partial
amnesia for a drinking event), Miller et al. (68) noted that
emerging adults define EBs as an inability to remember details
of a drinking event for episodes of more than 1 h. Thus, our
findings that more than half of ARB+ participants reported ARB
durations longer than 1 h suggest that EBs may be more prevalent
than expected (69).

With regard to demographic factors, findings that ARB+
participants were significantly older and more likely to be White
have been reported in other literature, particularly among college
students (67, 70, 71). The association between older age and
ARBs at each timepoint may reflect NCANDA inclusion criteria
which allowed a subset of older participants to exceed alcohol use
thresholds (31). While older age has been reported as a predictor
for higher ARB risk, other studies suggest that younger college
students expect to and experience more ARBs (5, 72). Results
suggesting that ARB+ and ARB− participants do not significantly
differ by sex have also been previously reported in the literature
(65, 72).

Alcohol-Related Blackouts as a Predictor
of Attenuated Cognitive Function
After accounting for demographic factors, a significant
relationship was found between alcohol use frequency and
episodic facial memory such that greater number of past-year
alcohol use days predicted attenuated growth for abilities
on immediate and delayed facial recognition tasks which
persisted over time. These results are consistent with and
expand upon findings from Sullivan et al. (73). In examining
the relationship between drinking history variables and
cognitive performance in the NCANDA sample at baseline,
the authors note that a greater number of lifetime alcohol use
days was significantly associated with lower episodic memory
composite scores.
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FIGURE 6 | Growth curves for conditional models including time-invariant covariates (TICs) and time-varying covariates (TVCs). The figure depicts spaghetti plots for
final, multivariate growth curve models including all TICs (i.e., demographics) and TVCs (i.e., past-year alcohol use frequency and ARB history) for the PCET in panel
(A), PLBT in panel (B), PFMTi in panel (C), PFMTd in panel (D), RCFTc in panel (E), RCFTi in panel (F), and RCFTd in panel (G). The x-axis for panels (A) through (G)
represents age as individually varying times of observation at each annual follow-up visit centered at 12 years, or youngest age at study entry. The y-axis represents
respective test score scales with PCET scores ranging from 0 to 1 point, PLBT scores ranging from 0 to 30 points, PFMT scores ranging from 0 to 40 points, and
RCFT trial scores ranging from 0 to 36 points. Individual participant test trajectories are represented by gray lines while the estimated growth curve is represented by
the blue line with standard error shown in gray.
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TABLE 5 | Intercept and slope factor parameter estimates for time invariant covariates (TICs).

Neuropsychological test Parameter Gender Ethnicity SES

PCETa i 0.009 (0.008)† 0.012 (0.010) 0.003 (0.002)

s −0.001 (0.001) 0.002 (0.002) 0.001 (0.000)*

PLBTb i −0.016 (0.220) −0.076 (0.259) 0.049 (0.047)

s −0.007 (0.032) 0.107 (0.045)* 0.005 (0.007)

PFMTi
c i 0.276 (0.499) −0.317 (0.532) 0.251 (0.111)*

s −0.119 (0.152) 0.272 (0.173) −0.027 (0.035)

q 0.002 (0.012) −0.014 (0.013) 0.002 (0.003)

PFMTd
d i −0.068 (0.522) 0.387 (0.518) 0.264 (0.106)*

s −0.173 (0.164) −0.022 (0.164) −0.055 (0.032)

q 0.011 (0.013) 0.006 (0.013) 0.005 (0.002)*

RCFTc
e i −0.123 (0.724)† 0.503 (0.798) 0.399 (0.151)**

s −0.052 (0.227) −0.094 (0.252) −0.020 (0.046)

q 0.001 (0.017) 0.010 (0.019) −0.001 (0.003)

RCFTi
f i 0.101 (0.851) 0.081 (0.939) 0.773 (0.198)**

s 0.084 (0.251) 0.178 (0.285) −0.063 (0.053)

q −0.014 (0.019) 0.007 (0.023) 0.001 (0.004)

RCFTd
g i −1.214 (0.947) −0.388 (1.039) 0.693 (0.213)**

s 0.313 (0.277) 0.298 (0.302) −0.045 (0.057)

q −0.021 (0.021) 0.001 (0.023) 0.001 (0.004)

Boldface font indicates significant findings. Conditional models from which results are displayed included only TICs. aPenn Conditional Exclusion Test. bPenn Letter N-back
Test. cPenn Facial Memory Test, immediate recognition trial. dPenn Facial Memory Test, delayed recognition trial. eRey Complex Figure Test, copy trial. f Rey Complex
Figure Test, immediate recall trial. gRey Complex Figure Test, delayed recall trial. i, intercept factor. s, linear slope factor. q, quadratic slope factor. †Parameter Estimate
(Standard Error). **p < 0.01. *p < 0.05.

TABLE 6 | Slope factor parameter estimates for time-varying covariates (TVCs).

Time-varying covariates Annual follow-up visit

Year 1 Year 2 Year 3 Year 4 Year 5

PCETa Alcohol use frequency 0.000 (0.000)† 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

ARB history −0.018 (0.012) −0.011 (0.009) −0.013 (0.011) −0.001 (0.010) 0.005 (0.009)

Interaction 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

PLBTb Alcohol use frequency 0.004 (0.003) −0.001 (0.003) −0.002 (0.003) 0.002 (0.002) 0.002 (0.003)

ARB history −0.198 (0.245) 0.036 (0.209) 0.118 (0.239) 0.118 (0.210) 0.038 (0.203)

Interaction 0.006 (0.007) −0.002 (0.005) 0.001 (0.006) 0.002 (0.004) −0.003 (0.005)

PFMTi
c Alcohol use frequency −0.003 (0.006) –0.010 (0.003)** –0.008 (0.004)* –0.007 (0.003)** −0.003 (0.002)

ARB history −0.876 (0.454) 0.284 (0.290) 0.348 (0.256) 0.147 (0.259) −0.229 (0.303)

Interaction −0.002 (0.013) 0.003 (0.007) 0.003 (0.006) 0.002 (0.005) −0.008 (0.006)

PFMTd
d Alcohol use frequency 0.002 (0.006) –0.012 (0.003)** –0.007 (0.003)* –0.007 (0.003)* 0.000 (0.003)

ARB history –1.489 (0.393)** 0.431 (0.285) 0.362 (0.226) 0.234 (0.273) 0.177 (0.246)

Interaction –0.03 (0.01)* –0.02 (0.01)** 0.00 (0.00) 0.00 (0.01) −0.01 (0.01)

RCFTc
e Alcohol use frequency −0.002 (0.008)† 0.000 (0.005) 0.006 (0.004) 0.001 (0.005) −0.003 (0.006)

ARB history 0.954 (0.530) 0.186 (0.411) −0.395 (0.365) −0.123 (0.543) 1.569 (0.931)

Interaction −0.001 (0.016) −0.005 (0.011) −0.003 (0.008) 0.011 (0.010) −0.005 (0.023)

RCFTi
f Alcohol use frequency 0.00 (0.01) 0.01 (0.01) 0.00 (0.00) −0.01 (0.01) −0.02 (0.01)

ARB history −0.26 (0.60) −0.89 (0.61) −0.12 (0.49) –1.35 (0.68)* 1.62 (1.32)

Interaction 0.02 (0.02) 0.02 (0.01) 0.00 (0.01) 0.00 (0.01) 0.01 (0.04)

RCFTd
g Alcohol use frequency 0.01 (0.01) 0.00 (0.01) 0.01 (0.00) 0.00 (0.00) −0.02 (0.01)

ARB history −0.12 (0.61) −0.43 (0.55) −0.47 (0.47) –1.07 (0.53)* 1.38 (1.18)

Interaction −0.01 (0.02) 0.01 (0.01) 0.00 (0.01) 0.01 (0.01) −0.02 (0.04)

Boldface text indicates significant values. Conditional models from which results are displayed included both TICs and TVCs. aPenn Conditional Exclusion Test. bPenn
Letter N-back Test. cPenn Facial Memory Test, immediate recognition. dPenn Facial Memory Test, delayed recognition. eRey Complex Figure Test, copy trial. f Rey
Complex Figure Test, immediate recall trial. gRey Complex Figure Test, delayed recall trial. †Parameter estimate (standard error). **p < 0.01. *p < 0.05.
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Perhaps our most salient and robust longitudinal findings
suggested that, as hypothesized, experiencing at least one
past-year ARB predicted significantly attenuated growth in
neuropsychological task performance above and beyond past-
year alcohol use frequency. Results found that ARB+ participants
demonstrated attenuated growth in delayed episodic facial
memory by the first annual follow-up compared to ARB−
participants. The interaction between alcohol use frequency and
ARB history further predicted attenuated growth in delayed
episodic facial memory at the first and second annual follow-
ups. Additionally, experiencing at least one past-year ARB
significantly predicted attenuated growth in visual incidental
learning and delayed recall by the fourth annual follow-up. No
significant associations were found between ARB history and
RCFTc trial performance or visuospatial and executive function
measures. Taken together, ARB-related cognitive change was
found in domains related to learning and memory for visual
information.

The finding that ARBs predict attenuated episodic facial
memory, or recognition memory, over time suggests that
underlying neurocognitive correlates of facial memory are
particularly sensitive to heavy alcohol use. Interestingly, negative,
dose-dependent effects of alcohol intoxication on episodic
memory are well-documented, with alcohol administration
studies noting that acute alcohol use is associated explicitly
with worse performance on facial recognition tasks (74–76).
Thus, in the context of prior literature, our results indicate
that changes in facial recognition persist beyond the period of
alcohol intoxication. Further, a trend for ARB-related changes in
facial recognition to remit over time despite persistent alcohol-
specific effects in this domain suggests that heavy alcohol use
resulting in ARBs alters the brain’s developmental trajectory.
In fact, drinkers may be particularly susceptible to underlying
neurological changes associated with facial recognition at earlier
developmental stages. These results are consistent with prior
literature reporting that heavy, early-onset alcohol use primes the
brain for future susceptibility to alcohol with regard to increased
neuroinflammation, neurocognitive changes, and a tendency to
experience more ARBs during future drinking events (20, 77–79).
However, our study is the first to utilize ARBs as an indicator of
vulnerability to alcohol use in domain of facial episodic memory
over time.

Additionally, we found that ARBs predict attenuated growth
in performance on visual incidental learning and delayed
recall tasks at later timepoints. Given a strong association
between heavy alcohol use and ARBs, our results extend cross-
sectional literature reporting deficits in non-verbal recall and
visuospatial functioning in alcohol dependent adolescents (80).
Our findings also suggest that repeated instances of heavy alcohol
use may result in cumulative, neurotoxic effects which impact
incidental learning and delayed recall for visual information.
Consistent with these results, functional neuroimaging studies
demonstrate a relationship between ARBs, binge drinking,
and neurochemical and morphological brain changes indicative
of alcohol-induced neurotoxicity, particularly in brain regions
undergoing significant developmental maturation [e.g., the
frontal lobes and hippocampus; (18, 19, 81–84)]. A compelling

series of studies examining gender differences in neurocognition
in adolescent drinkers further suggest that persistent, heavy
alcohol use may prevent the use of compensatory strategies and
recruitment of neural networks resulting in overt behavioral
impairment (26). Behavioral data from alcohol administration
studies in animal models also demonstrate an association
between binge drinking and persistent forms of memory
dysfunction (85). However, our findings are unique in that we
found associations between ARBs and behavioral changes over
time while controlling for alcohol use in humans.

No significant associations were found between ARB history
and performance on measures of executive function. The absence
of overt changes on executive tasks is inconsistent with cross-
sectional data from Min et al. (24), indicating that ARBs,
specifically those of longer duration, were associated with
lower executive function performance. However, our results are
consistent with findings from Wetherill et al. (86), who, using
a neuroimaging paradigm, found no significant relationship
between ARBs and behavioral changes in response inhibition
despite underlying abnormalities in frontal activation. Negative
findings with regard to a relationship between ARB history and
executive function are notable in the context of ARBs predicting
attenuated development of incidental visual learning and delayed
recall function on the RCFT. Performance on the RCFT is
mediated, in part, by the frontal lobes, with literature suggesting
that poor organization and problem-solving in participants
with chronic AUD accounts for lower RCFTi and RCFTd
trial performance (87) As such, persistent ARB-related changes
in executive abilities may only become apparent as cognitive
load increases, given that intact RCFT performance requires
more cognitive resources than the PCET. Further, given its
incidental learning component, the RCFT requires organization
and efficient learning strategies to consolidate, encode, and
retrieve visual information properly. A pattern in which ARBs
predict changes in RCFTi and RCFTd trial but not RCFTc trial
performance suggests that ARBs may be a marker of inefficient
learning related to underlying changes in frontally mediated
functions rather than difficulties processing visual information.
Prior analyses of executive control in the NCANDA sample by
Lannoy et al. (39) have also found that despite intact response
inhibition, participants with a history of heavy drinking take
longer to become proficient at the task at hand suggesting a
relationship between heavy alcohol use and inefficient learning
in adolescents and emerging adults.

Limitations and Future Directions
One limitation of this study is the ability to control for the
impact of developmental effects on cognitive performance. While
age was included in all models as the basis for individually
varying times of observation, the impact of brain development,
particularly within the frontal lobes, may have resulted in
smaller effect sizes and less robust associations between
ARBs and cognitive function over time. Indeed, within the
NCANDA sample, prior analyses have found that age contributes
significantly to performance on all cognitive measures except
for episodic and working memory (73). Given a relatively small
sample size of ARB+ participants, the current analyses may have
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lacked the power to detect subtle changes in performance growth
on executive tasks in particular relative to significant frontal lobe
development. Test-retest effects were also not included in growth
models, which may have confounded true declines in cognition
related to ARBs and heavy drinking given that several of the
cognitive measures used in the current study have been shown
to have practice effects (1).

Controlling for alcohol use frequency opposed to quantity is
another study limitation given that higher alcohol use quantity
is associated with ARB frequency (88). It should also be
acknowledged that past-year alcohol use frequency was measured
annually using a single item which can be susceptible to recall
bias. However, we selected past-year alcohol use frequency as
measured by the CDDR given that it was used by previous
studies and considered a valid and reliable metric (47–49, 73).
Finally, a limitation of this study is that we did not control
for other substance use, including marijuana use. By design,
the NCANDA study largely excluded individuals reporting a
significant substance use history at baseline, including those
whose reported alcohol use which exceeded age-appropriate
levels. Base rates for all other past-year substance use remained
low across all years of data collection (i.e.,<10% of total sample at
fifth annual follow-up; see Brown et al. (31) for detailed summary
of substances evaluated at each visit) except for marijuana use.
A closer inspection of the data revealed that 52.6% of participants
reported past-year marijuana use by the fifth annual follow-up.
Therefore, marijuana use could have biased growth curve model
estimates and future studies should explore the relationship
between marijuana, ARBs, and cognitive changes over time in
adolescent drinkers.

Prior literature has demonstrated that ARB variables such
as frequency, duration, and type (i.e., EBs versus FBs) yield
important information about predictors and consequences of
heavy alcohol use (5, 67, 89). While ARB frequency and duration
were analyzed cross-sectionally, longitudinal models were limited
to including only the dichotomous (yes vs. no) past-year ARB
history variable. As such, future longitudinal studies should
consider ARB frequency, duration, and type when examining
the relationship between ARBs and persistent cognitive change.
The distinction between ARB types is particularly important
given that EBs and FBs are likely associated with distinct
neurocognitive mechanisms and experienced at different rates
among adolescents and emerging adults. Experiencing one type
of ARB over the other may place younger drinkers at varying
levels of risk for persistent cognitive change or perhaps different
types of cognitive change.

In addition, subtests of the WebCNP and the RCFT yield
both accuracy and response time scores as measures of cognitive
function over time. Within the NCANDA sample, alcohol use
has been associated with changes in both accuracy and response
time scores, with longitudinal changes in response time thought
to reflect how efficiently participants perform tasks within
each cognitive domain, or their ability to learn the task over
time (73, 90, 91). Given that the current analyses focused on
accuracy scores, future studies should consider both changes in
accuracy and response time for each task to compare which
metric best captures development of cognitive abilities in each

domain since tasks may differ in the degree to which they are
mediated by processing speed. Finally, future studies should
expand the current findings by including functional imaging
data in longitudinal models or by longitudinally examining
the neurocognitive correlates of ARBs using functional imaging
paradigms. Identifying specific brain regions associated with
the behavioral changes observed in our study will more
precisely identify how patterns of heavy drinking impact brain
development in adolescents and emerging adults.

CONCLUSION

Taken together, our findings highlight ARBs as a predictor
of persistent changes in learning and memory for visual
information, with ARB-related attenuations in cognitive
development unique from cognitive impairment associated
with alcohol use alone and notable in younger drinkers. In
the context of the NCANDA sample, these results suggest that
brain development and subsequent cognitive abilities are highly
vulnerable to ARBs during adolescence, with lasting effects on
memory functions observed in emerging adults. Distinct changes
in cognitive profiles related to ARBs may thus represent an
important target for intervention in high-risk adolescents and
emerging adults.
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