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Abstract
Evidence from previous studies suggests that the male reproductive system can be dis-

rupted by fetal or neonatal exposure to diethylstilbestrol (DES). However, the molecular

basis for this effect remains unclear. To evaluate the effects of DES on mouse spermato-

cytes and to explore its potential mechanism of action, the levels of DNA methyltrans-

ferases (DNMTs) and DNA methylation induced by DES were detected. The results

showed that low doses of DES inhibited cell proliferation and cell cycle progression and

induced apoptosis in GC-2 cells, an immortalized mouse pachytene spermatocyte-derived

cell line, which reproduces primary cells responses to E2. Furthermore, global DNA methyl-

ation levels were increased and the expression levels of DNMTs were altered in DES-

treated GC-2 cells. A total of 141 differentially methylated DNA sites were detected by

microarray analysis. Rxra, an important component of the retinoic acid signaling pathway,

and mybph, a RhoA pathway-related protein, were found to be hypermethylated, and

Prkcd, an apoptosis-related protein, was hypomethylated. These results showed that low-

dose DES was toxic to spermatocytes and that DNMT expression and DNAmethylation

were altered in DES-exposed cells. Taken together, these data demonstrate that DNA

methylation likely plays an important role in mediating DES-induced spermatocyte toxicity

in vitro.

Introduction
Diethylstilbestrol (DES) is an active synthetic estrogen that was used to prevent miscarriage
and premature deliveries between 1947–1971[1]. Almost immediately after uterine dysfunction
and reproductive tissue cancers were discovered in young individuals exposed to DES in utero,
the U.S. Food and Drug Administration (FDA) banned its use for pregnancy support[2]. Nev-
ertheless, DES continues to be used to treat prostate and breast cancers[3]. It has also been
used as a feed supplement or subcutaneous implantation for cattle, sheep, and poultry to
improve weight gain and produce leaner meat. As a result, it was present as a contaminant in
food sources for years after the FDA banned its use in humans[4]. In addition to exposure to
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DES through its usage as a drug and ingestion of residues present in food, individuals may
potentially be exposed to this compound during its manufacture and during product formula-
tion. The concentration of DES in ambient air samples obtained from plants involved in its
manufacture has ranged from 0.02 to 24 μg/m3[5].

In recent years, the significant relationship between low-level DES exposure and toxic
effects has attracted the attention of many researchers. Large numbers of studies have demon-
strated that in utero and/or neonatal exposure to DES decreases the fertility of adult males and
male rodents[6, 7] by causing morphological alterations of the genital tract, including cryptor-
chidism, hypospadias, seminal vesicle and testis alterations, and impaired spermatogenesis[7–
10]. Cryptorchidism is the absence of one or both testes from the scrotum. Hypospadias refers
to a birth defect of the urethra in the male where the urinary opening is not at the usual loca-
tion on the head of the penis. These developmental abnormalities in the male reproductive
tract induced by DES is a result of DES’ estrogen effect. Current epidemiological investigation
and laboratory research indicated that DES exerts its estrogen effects mainly through classical
ER(estrogen receptor) signaling[11]. Nevertheless, the level of DES exposure assessed in the
majority of these studies was a high dose—-10−5 M[12, 13], and few reports have considered
low-dose DES exposure and its effects on reproductive toxicity.

In molecular mechanistic studies, genetic and epigenetic pathways have been implicated in
DES-induced reproductive developmental abnormalities[14, 15]. As a well-characterized epige-
netic modification, DNA methylation is important for gene regulation, transcriptional silenc-
ing, development, and tumorigenesis[16]. The methylation of genomic DNA is catalyzed by
DNAmethyltransferases (DNMTs), including Dnmt1, Dnmt3a, and Dnmt3b. Dnmt1 is the
primary enzyme responsible for maintenance of DNAmethylation patterns during DNA syn-
thesis, and Dnmt3a and Dnmt3b function as de novo enzymes during development[17].
Abnormal DNMT expression has been associated with DNA hypomethylation and hyper-
methylation, which could lead to aberrant genomic responses and ultimately, to altered cellular
functioning[18]. Sato et al. have reported that perinatal DES exposure alters DNMT expression
and DNA methylation in the mouse uterus, leading to the development of vaginal clear cell
adenocarcinoma[19]. A study of another neonatal mouse model of DES exposure has indicated
that the expression of Dnmt3a and methylation of some genes are altered in the mouse seminal
vesicle[20]. Moreover, some researchers have revealed that gestational DES exposure affects
cardiac structure/function in adult male mice and leads to increases in cardiac Dnmt3a expres-
sion and DNA methylation in the CpG island within the calsequestrin 2 promoter in the heart
[21].

Given the evidence that DES alters the developmental programming of spermatogenesis
and induces changes in epigenetic modification as a possible mechanism underlying DES-
induced diseases, the aim of this study was to examine the effects and mechanism of low-dose
DES exposure on DNAmethylation in spermatocytes. To this end, mouse spermatocyte-
derived GC-2 cells were exposed to 2×10−7~2×10−5 M DES, and changes in global DNA meth-
ylation and DNMT expression were assessed. Furthermore, differentially methylated genes
were screened using microarray analyses and confirmed by methylation-specific PCR (MSP).

Materials and Methods

1 Materials
DES was purchased from Santa Cruz Biotechnology, Inc. (CA, USA), diluted in DMSO
(dimethylsulfoxide) to 500 M and stored at -20°C. The final concentrations used here were
2×10−7, 2×10−6, and 2×10−5 M, and they were freshly diluted with DMEM to their final con-
centrations. Controls were treated with the same amount of DMSO (0.04%) used in the
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corresponding experiment. A TRIzol Reagent Kit was obtained from Invitrogen (Carlsbad, CA,
USA), and a PrimeScript RT Reagent Kit was purchased from Takara (Otsu, Japan). GoTaq
Hot Start Green Master Mix was obtained from Promega (Wisconsin, USA). Dnmt1, Dnmt3a,
and Dnmt3b antibodies were obtained from Santa Cruz Biotechnology, Inc. An HRP-conju-
gated(horseradish peroxidase-conjugated) secondary antibody, an enhanced chemilumines-
cence kit and an Annexin V–FITC(fluorescein isothiocyanate) Apoptosis Detection Kit were
purchased from Beyotime (Shanghai, China). An EDU(5-Ethynyl -2’- deoxyuridine) Cell Pro-
liferation Kit was obtained from Ribo (Guangzhou, China), and an EZ DNAMethylation-Gold
Kit was purchased from Zymo Research (Orange, CA, USA).

2 Cell Culture
Mouse spermatocyte-derived GC-2 cells were purchased from the American Tissue Culture
Collection (ATCC, Rockville, MD, USA). Cells were grown in DMEM (dulbecco's modified
eagle medium) high-glucose medium (Hyclone, Logan, UT, USA) supplemented with 10% FBS
(fetal bovine serum) (Sijiqing, Hangzhou, China), 100 units/ml penicillin and 100 μg/ml strep-
tomycin. Cultures were maintained in a humidified atmosphere with 5% CO2 at 37°C.

3 Cytotoxicity
The viability of GC-2 cells after DES treatment was examined by CCK8 (cell counting kit-8)
assay. GC-2 cells were seeded in 96-well plates and grown in DMEM with 10% FBS at a density
of 4000 cells/well. After cells were synchronized by growth in DMEM without FBS for 18 h,
they were treated with various concentrations of DES (0~10-4M) for 24, 48, or 72 h, and 100 μl
CCK8 solution (diluted in DMEM) was added to each well. Cells treated with DMSO without
sinulariolide were used as blank control cells. The plates were then incubated at 37°C for 1 h,
and optical density (OD) was measured at 450 nm using a microtiter ELISA (enzyme-linked
immuno sorbent assay) reader (Bio-Rad, Hercules, CA), with DMSO used as a blank. All
experiments were repeated four times.

4 Cell Proliferation
GC-2 cells cultured in 96-well plates were treated with 2×10−7, 2×10−6, or 2×10-5M DES for 48
h, and DMSO was added to control cells. Cell proliferation was assessed according to the EDU
Cell Proliferation Kit manual. Cells were photographed under a fluorescence microscope
(OlympusCK40-32PA, Chinetek Scientific, Hong Kong, China).

5 Cell Cycle
GC-2 cells were seeded in 60 mm plates and grown in DMEM with 10% FBS at a density of
4.3 × 103 cells/cm2. They were then treated with various concentrations of DES (0.2, 2, or
20 μM) or 0.04% DMSO for 48 h. All treated and control cells were fixed with ice-cold 75% eth-
anol for 24 h and were then stained, following the cell cycle kit protocol.

6 Apoptosis Evaluation by Flow Cytometry and Hoechst 33258 Staining
To examine DES-induced apoptosis in GC-2 cells, an Annexin V–FITC Apoptosis Detection
Kit and Hoechst 33258 stain were used to assess the apoptosis rate and cell morphology. Flow
cytometry was performed according to the Annexin V–FITC Kit protocol. Cells used in mor-
phology analysis were fixed with 4% paraformaldehyde in PBS solution for 10 min, washed
with PBS and then stained with Hoechst 33258 for 10 min at 37°C.
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7 RNA Extraction and Real-Time PCR
Total RNA was extracted from GC-2 cells using a TRIzol Reagent Kit. Reverse transcription
was performed using a PrimeScript RT Reagent Kit with gDNA Eraser (Promega, Madison,
WI, USA). The mRNA expression levels of rxra, mybph, and prkcd were determined by real-
time PCR, as in our previous study[22]. Primers were designed using the pubmed database.
Real-time PCR was performed with a iQ™5 Real-Time PCR Detection System (Bio-Rad, Hercu-
les, CA, USA), using the SYBR Green I detection method. Fold induction was normalized to
GAPDH expression.

8Western Blot Analysis
The treated and control samples (80 μg) were separated by 10% SDS-PAGE and then trans-
ferred onto a PVDF membrane for 1.5 h at 100 V. The membranes were incubated with 5%
dehydrated skim milk to block nonspecific protein binding and then incubated with primary
antibodies against Dnmt1, Dnmt3a, and Dnmt3b at 4°C overnight. An HRP-conjugated sec-
ondary antibody was added, and the membranes were incubated for 1 h at room temperature.
Finally, they were visualized using an enhanced chemiluminescence kit.

9 Analysis of Global DNAMethylation
Total genomic DNA was extracted from GC-2 cells using a DNA Isolation Kit. The genome-
wide methylation level was detected by 5-Methylcytosine DNA blot hybridization following
the manufacturer’s protocol. The mouse Anti-5-Methylcytosine monoclonal antibody has been
developed to facilitate differentiation between methylated and non-methylated cytosines in
DNA.

10 Microarrays Analysis
Gene promoter methylation was analyzed using an Affymetrix Mouse Promoter 1.0R Array.
Microarray experiments and data analyses were performed by the Gminix Company (Shang-
hai, China). The original files were mapped to the chromosome hg19, and then we got the cor-
responding original data. Then by Loess standard method the raw data was standardized. And
based on the standard data of experiment group and control group, we can calculate the ratio
between experiment group and control group, the absolute methylation level and relative
methylation levels of each promoter in each sample. We used the CMARRT algorithm to calcu-
late the enrichment region of the probe peak, the value p was calculated by the Gauss distribu-
tion. And then the promoter region of the gene was annotated, the annotation file was
according to the hg19 database. Compare the differences in the methylation of excremental
group and control group, and thus we obtained the difference between these groups[23]. The
sites of differential DNA methylation with the highest fold changes were selected, and their
respective results were confirmed by MSP (methylation-specific PCR) and real-time PCR.

11 Bisulfite Conversion and MSP
DNA was extracted from GC-2 cells using a DNA Isolation Kit and was chemically modified
using an EZ DNAMethylation-Gold Kit (Zymo Research, Orange, CA, USA). Primer pairs
that specifically amplified either methylated or unmethylated sequences spanning the CpG
islands of selected genes were used for MSP, as detailed in S1 Table. MSP was carried out as in
our previous studies[24].
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12 Statistical Analysis
All results were expressed as the mean ± SE. Data were analyzed by one-way ANOVA
(P<0.05). All univariate and regression analyses were performed using SPSS Software Package
(Version 16.0, 2007).

Results

1 Effects of DES on GC-2 Cell Viability and Proliferation
To explore the potential cytotoxic effects of DES on GC-2 cells, cell proliferation was assessed.
GC-2 cells were treated with various concentrations (0~10−4 M) of DES for 24 h, 48 h, or 72 h.
As shown in Fig 1A, DES exposure clearly reduced the viability of GC-2 cells in a dose-depen-
dent manner within a certain concentration and time range. In addition, cell proliferation was
significantly decreased when cells were exposed to different DES concentrations. According to
Fig 1B, the proportion of newborn (newly divided) cells decreased with increasing DES concen-
trations, indicating that the DNA replication capacity of GC-2 cells was decreased following
DES exposure. Notably, even at a DES concentration of as low as 2×10−7 M, the proportion of
newborn cells was lower than that in the DMSO group, suggesting that low doses of DES had
adverse effects on mouse spermatocytes.

2 Effect of DES on GC-2 Cell Cycle Progression
Cell cycle progression is an important factor influencing cell proliferation. We analyzed the
influence of DES on cell cycle progression to evaluate its antiproliferative activity. The propor-
tion of cells in S phase increased for the DES-exposed cells compared with that for the DMSO-
exposed cells (Fig 2). In particular, the proportion of S phase cells for the DMSO group was
28.97±1.21%, while those for the 2×10−7, 2×10−6, and 2×10−5 M DES-treated groups were
33.72±3.35%, 35.68±3.50%, and 43.44±3.65%, respectively. These results showed that DES
changed the proportion of cells in the S cell phase and affected GC-2 cell cell cycle progression.

3 DES Induced Apoptosis in GC-2 Cells
Apoptosis is another important factor contributing to cell proliferation. Thus, we further
examined apoptosis in GC-2 cells treated with or without DES. Apoptotic cells were recognized
by their fragmented, degraded nuclei and apoptotic bodies. DES-treated GC-2 cells showed
nucleolus pyknosis, and at increasing doses of DES, more nuclear fragmentation was observed
(Fig 3A). Flow cytometric analysis also produced similar results (Fig 3B). After treatment with
0, 2×10−7, 2×10−6, and 2×10−5 M DES, the apoptosis rates were (1.3±0.52)%, (2.4±0.95)%,
(2.7±0.68)%, and (16.8±1.34)%, respectively. Altogether, these results demonstrated that DES
induced apoptosis in GC-2 cells.

4 Effects of DES on Global DNA Methylation in GC-2 Cells
Given the important effects of DNA methylation on gene regulation, transcriptional silencing
and development, we sought to determine whether the DNA methylation patterns varied
between GC-2 cells with and without DES exposure. We performed 5-mC dot blot DNA
hybridizations to analyze the methylation statuses of GC-2 cells with and without exposure to
this compound. Fig 4 showed the results of this analysis, with the density of band indicating
relative DNAmethylation levels, the global DNA methylation level in GC-2 cells was slightly
increased following exposure to 2×10−7 and 2×10−6 M DES, and it was significantly increased
in GC-2 cells exposed to 2×10−5 M DES. These data indicated that the global DNAmethylation
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Fig 1. Effects of DES on GC-2 cell viability and proliferation. a.GC-2 cells were treated with 0~10−4 M DES for 24, 48 or 72 h. Cell viability was measured
by CCK8 assay. b.GC-2 cells were treated with the indicated concentrations of DES for 48 h. The fluorescent thymidine analog EdU was used to identify GC-
2 cells by the labeling of their DNA. Hoechst-labeled nuclei was shown in blue, and EdU-labeled newborn cells were shown in red.

doi:10.1371/journal.pone.0143143.g001
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level increased with increasing concentrations of DES. They further suggested that DNA meth-
ylation might be crucial for the GC-2 cell toxicity observed following low-dose DES exposure.

Fig 2. Effect of DES on GC-2 cell cycle progression.GC-2 cells were treated with the indicated concentrations of DES for 48 h. Cell cycle distribution was
assessed by the propidium iodide method using flow cytometry.

doi:10.1371/journal.pone.0143143.g002
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5 Effects of DES on DNMT Expression
Because DNMTs were found to play important roles in establishing and maintaining DNA
methylation patterns, we determined the expression levels of Dnmt1, Dnmt3a and Dnmt3b.
Compared with the control, Dnmt1 and Dnmt3a expression was slightly increased in GC-2
cells exposed to 2×10−7 M DES and significantly increased in cells exposed to 2×10−6 and
2×10−5 M DES. In contrast, Dnmt3b expression decreased sharply with increasing doses of
DES (Fig 5).

6 Analysis of Differential DNA Methylation following DES Exposure
To further explore DES-induced alterations in methylation, we screened differentially methyl-
ated DNA sites using an Affymetrix Mouse Promoter 1.0R Array. The results of differential
genome-wide methylation profiling of the DES-treated and control groups are shown in Fig 6.
Data are available at GEO datasets (GEO number: GSE71311). A total of 141 differentially
methylated sites (including 130 hypermethylated and 11 hypomethylated sites) were found in

Fig 3. DES induces apoptosis in GC-2 cells. a.GC-2 cells were treated with the indicated concentrations of DES for 48 h. Apoptosis assay was also
carried out using Hoechst 33258 staining. b.GC-2 cells were treated with the indicated DES concentrations for 48 h. Apoptosis assay was performed using
flow cytometry after Annexin V-FITC/PI staining. Viable cells are shown in the lower left quadrant, early apoptotic cells are shown in the lower right quadrant,
late apoptotic and necrotic cells are presented in the upper right quadrant, and nonviable necrotic cells are shown in the upper left quadrant. The data
represent the mean ± SD; *P<0.05 and **P<0.01 compared with the DMSO-treated group.

doi:10.1371/journal.pone.0143143.g003
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cells with and without 2×10−5 M DES exposure (fold change>3) by microarray analysis, some
of which are listed in Table 1. As shown in Fig 7, the methylation statuses at some differential
methylation sites were verified by MSP, and mRNA expression levels were detected by real-
time PCR. In brief, compared with control cells, retinoid X receptor α (rxra) was hypermethy-
lated in cells exposed to 2×10−7, 2×10−6, and 2×10−5 M DES and its mRNA expression was
downregulated with increasing doses of DES. Myosin-binding protein H (mybph) was hyper-
methylated in cells exposed to 2×10−5 M DES, and its expression level was also reduced signifi-
cantly. Protein kinase C δ (prkcd) was hypomethylated in cells exposed to 2×10−5 M DES, and
its mRNA expression was increased. These results indicated that the methylation statuses of
these genes were inversely correlated with their mRNA expression levels in DES-exposed GC-2
cells, suggesting that DNA methylation was involved in the regulation of mRNA expression in
these cells.

Fig 4. Effects of DES on global DNAmethylation in GC-2 cells. The DNA 5-mC level was estimated by dot blot analysis. The gray values indicated DNA
methylation levels.

doi:10.1371/journal.pone.0143143.g004
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Discussion
The present study has provided several lines of evidence demonstrating that low doses of DES
induce spermatocyte toxicity by triggering apoptosis, inhibiting proliferation, and affecting cell
cycle progression. We have further found that DNAmethylation might play an important role
in DES-induced spermatocyte toxicity.

DES has long been known to affect the male reproductive system by causing alterations,
such as reproductive organ dysplasia, and germ cell damage[3]. With regard to germ cells,
abnormal spermatogenesis is the most common type of DES-induced effect. Some researchers
have found that exposure of mice to 5 μg DES results in major morphological alterations to the

Fig 5. Effects of DES on the protein expression of DNMTs in GC-2 cells. *P<0.05 versus the DMSO-treated group, and **P<0.01 versus the DMSO-
treated group.

doi:10.1371/journal.pone.0143143.g005
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testes, as reflected by the absence of germ cells in several tubules[7]. Another study has
reported that this compound (1.0 mg/kg) induces spermatogenic apoptosis in adult male rats
[48]. In our study, the apoptosis rate of GC-2 cells exposed to 2×10−5 M DES was significantly
increased compared with that of DMSO-treated cells, and these results are in agreement with
those of previous studies. GC-2 cell cycle progression was also altered following exposure to
2×10−5 M DES. Specifically, the percentage of DES-treated cells in the S phase of the cell cycle
was greater than that of DMSO-treated cells, indicating that DES induced S phase arrest in
spermatocytes. Further analysis using an EDU Cell Proliferation Kit indicated that the percent-
age of newborn cells was decreased following DES exposure, even at a DES concentration of as
low as 2×10−7 M. EDU is readily incorporated into cellular DNA during DNA replication.
Mammalian spermatogenesis is a unique process involving successive differentiation steps,
including spermatogonial mitosis, spermatocyte meiosis and spermiogenesis. Each primary
spermatocyte duplicates its DNA and subsequently undergoes meiosis I to produce two hap-
loid secondary spermatocytes, which later divide once more into haploid spermatids[49]. Inter-
estingly, EDU incorporated into DES-treated spermatocyte cells less frequently than untreated
cells. Based on these data, we proposed that low doses of DES can cause spermatocyte toxicity.

DNA methylation has been implicated in the regulation of spermiogenesis[50]. DNAmeth-
ylation at promoter regions plays a role in gene silencing, and during spermiogenesis, methyla-
tion occurs to silence retrotransposons and imprinted genes[51]. Therefore, we proposed that
DNAmethylation might be involved in DES-induced spermatocyte toxicity. First, we detected
the genome-wide methylation statuses of GC-2 cells exposed to 2×10−7, 2×10−6, or 2×10−5 M

Fig 6. Chromosomal distributions of hypomethylated and hypermethylated genes in GC-2 cells exposed to 2×10−5 M DES. The red indicated the
promoter of some genes was hypermethylation, and the blue showed that was hypomethylation in GC-2 cells were exposed to 2×10−5 M DES.

doi:10.1371/journal.pone.0143143.g006
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DES and found a tendency of increased methylation in these cells, even following exposure to
low doses of DES. DNMTs, including Dnmt1, Dnmt3a, and Dnmt3b, were found to be
involved in DNA methylation. Dnmt1 is responsible for the maintenance of DNAmethylation
during DNA synthesis, and Dnmt1-deficient embryos have been shown to have 30% less geno-
mic methylation than that found in embryos[52]. This phenomenon was also embodied in our
experimental results. Dnmt1 protein expression was increased in GC-2 cells treated with
2×10−7, 2×10−6, or 2×10−5 M DES, consistent with the increase in the global DNAmethylation
level. Previous studies demonstrated that ERα could upregulate Dnmt1 expression by directly
binding to the DNMT1 promoter region in ER-positive human breast cancer cells MFC-7 cells
[53]. DES has strong estrogenic activity, can activate ERα, and increase the expression of
Dnmt1, which is coincidence with our results. Dnmt3a and Dnmt3b are de novo enzymes that
establish methylation patterns. Spermatogonia deficient in Dnmt3a and Dnmt3b display varia-
tions in methylation patterns at paternally imprinted regions, which may impair spermatogen-
esis to an extent[54, 55]. Our results showed that low doses of DES were toxic to spermatocytes
in vitro and caused alterations in the Dnmt3a and Dnmt3b protein expression levels. Taken
together, our results suggest that DNA methylation plays a role in low-dose DES-induced male
reproductive toxicity[20].

To further explore the potential mechanism of action of DES, DNA microarray technology
is a useful tool for mapping methylation changes at multiple CpG loci[56]. Microarray analysis
performed in this study revealed the presence of thousands of variations in DNA methylation
between GC-2 cells with and without DES exposure. The genes that were found to be differen-
tially methylated are involved in the following processes: DNA repair, including mnd1 and

Table 1. Microarray analysis of differentially methylated genes in GC-2 cells treated with 2×10-5M DES.

Position Name Description Function Fold
change

Chr17 Rnf5 ring finger protein 5 cell survival[25] and autophagy[26] 4.0

Chr17 agpat1 1-acylglycerol-3-phosphate O-acyltransferase 1 myoblast differentiation[27] 4.0

Chr3 mnd1 meiotic nuclear division protein1 DNA repair in meiosis[28] 4.0

Chr5 otop1 otopetrin 1 regulation of cellular calcium[29] 3.7

Chr10 lrp1 low-density lipoprotein receptor-related protein 1 Cellular growth and cellular signaling[30] 3.5

Chr1 Mybph myosin-binding protein H Reduces cell motility, metastasis[31], and hypospadias
development[32]

3.5

Chr12 hbp1 HMG box-containing protein 1 correlated with mitotic arrest in germ cells[33] 3.4

Chr14 Prkcd protein kinase C, delta Cell proliferation[34] and cell death[35] 3.4

ChrX nono Nono transcription, RNA processing, and DNA double-strand
break repair[36]

3.4

Chr9 dusp7 dual-specificity phosphatases 7 regulation of kinase (ERK) signaling[37] 3.4

Chr13 ccno cyclin O apoptosis, cell cycle progression, and DNA damage[38] 3.3

ChrX cd99l2 CD99-related molecule CD99-like 2 inflammatory response[39] 3.2

Chr7 chp2 calcineurin B homologous protein isoform 2 cell growth and metastasis[40] 3.2

Chr3 cldn11 claudin 11 azoospermia[41] 3.3

Chr3 jtb jumping translocation breakpoint mitochondrial function, cell growth and cell death[42] 3.2

Chr16 mpv17l mpv17 mitochondrial membrane protein-like mitochondrial oxidative stress and apoptosis[43] 0.3

Chr9 nlrx1 nlr family member X1 prevents mitochondria-induced apoptosis[44] 3.2

Chr2 prex1 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac
exchange factor 1

cell motility[45] 3.3

Chr12 psen1 presenilin 1 mitochondrial structure[46] 3.1

Chr9 rhoa ras homolog gene family, member A proliferation[47] 3.0

doi:10.1371/journal.pone.0143143.t001
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nono; cell cycle progression, including hbp1 and ccno; apoptosis and proliferation, including
rnf5, prkcd, jtb, nlrx1, mybph and rhoa; male reproductive development, including mybph,
cldn11 and fkbp6; and other processes. The MSP assay results confirmed that the methylation
statuses of some of the abovementioned genes were associated with low-dose DES-induced
GC-2 cell toxicity. Rxra, an important component of the retinoic acid signaling pathway, is a
key regulator of embryonic development and has been linked to several birth defects[57]. Rxra
knockout animals showed an increase in apoptosis, resulting in abnormal morphogenesis dur-
ing development, in addition to abnormal cell proliferation, cell differentiation, and cell death
processes in adult differentiated tissues[58]. The two zinc fingers of the rxra DNA binding
domain fold to form a single structural domain that consists of two perpendicularly oriented
helices, which resembles the corresponding regions of ER[59]. What’s more, Angelika Rose-
nauer et al indicated that transient expression in ER-negative human breast cancer cells
MDA-MB-231 of wild-type ER directly stimulated the transcriptional response to RA(retinoic
acid). Importantly, this activation was greater than that obtained by transfection of RAR(RA

Fig 7. Effects of DES on the DNAmethylation of rxra, mybph, prkcd.U, unmethylated-specific primers; M, methylation-specific primers; PC, positive
control; NC, negative control. *P<0.05 versus the DMSO-treated group; and **P<0.01 versus the DMSO-treated group.

doi:10.1371/journal.pone.0143143.g007
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receptor), RXR(retinoid X receptor), or RAR combined with RXR, and the DNA binding
domain of ER plays a key role in the response to RA-induced transcription[60]. These
researches suggested that ER had relation with rxra, and DES, as a strong ER agonist, had effect
on the express of rxra. Mybph directly inhibits rock1 and plays important roles in cell motility
and proliferation[31]. In our study, the rxra and mybph promoters were hypermethylated, and
their mRNA levels were reduced in low-dose DES-treated GC-2 cells. Accordingly, the viability
of DES-treated cells was decreased, suggesting that decreases in the mRNA levels of rxra and
mybph due to hypermethylation played important roles in low-dose DES-induced GC-2 cell
toxicity. Prkcd is involved in the regulation of a variety of cellular functions, including apopto-
sis and cell growth and differentiation. Its overexpression has been shown to induce phenotypic
changes indicative of apoptosis in several cell types[61]. Our results indicated that prkcd was
hypomethylated and that its high expression in DES-exposed cells was correlated with the
increased apoptosis rate, similar to the previously reported theoretical results. These findings
suggested that DNA methylation played an important role in low-dose DES-induced male
reproductive toxicity.

As is known to all, DES has multigenerational effects. Some researches found that there is a
high prevalence of hypospadias in the sons of women exposed to DES in utero[62]. A nation-
wide cohort study in collaboration with a French association of DES-exposed women showed
that a significant proportion of boys born to DES daughters exhibited hypospadias with no
other molecular defects identified. DES-induced changes in epigenetic background and alter-
ation of DNAmethylation could be significant factors in the susceptibility to disease develop-
ment. Epigenetic changes in the some genes, transmitted through the DES daughter, could
explain such a finding[10]. In our study, low dose of DES could change methylation status of
many genes in GC-2 cells. Based on these, we deduced that low dose of DES could affect the
methylation of germ cells in the same way, and many of the epigenetic changes would transmit-
ted from father to grandson. Therefore, it is necessary to make further study related to low DES
exposure and DNA methylation in germ cells.

In conclusion, our results showed that low doses of DES inhibited the proliferation of GC-2
cells, altered cell cycle progression, triggered cell apoptosis, and induced male reproductive tox-
icity. Through molecular studies, we have found that global DNAmethylation and DNMT
expression vary in DES–exposed GC-2 cells. Additionally, differentially methylated DNA sites
were found in GC-2 cells treated with DES compared with those treated with DMSO. These
results suggested that epigenetic modification might be a potential mechanism of low-dose
DES-induced male reproductive toxicity.
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