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Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive

agents. However, their clinical usage is limited by severe multisystemic side

effects. Glucocorticoid induced osteoporosis results in significant morbidity

and mortality but the cellular and molecular mechanisms underlying GC-

induced bone loss are not clear. GC use results in decreased osteoblast

differentiation with increased marrow adiposity through effects on bone

marrow stem cells. GC effects are transduced through its receptor (GR). To

identify novel GR regulated genes, we performed RNA sequencing (RNA-Seq)

analysis comparing conditional GR knockout mouse made by crossing the

floxed GR animal with the Col I promoter-Cre, versus normal floxed GR

without Cre, and that testing was specific for Col I promoter active cells,

such as bone marrow mesenchymal stem/osteoprogenitor cells (MSCs) and

osteoblasts. Results showed 15 upregulated genes (3- to 10-fold) and 70

downregulated genes (-2.7- to -10-fold), with the long noncoding RNA X-

inactive specific transcript (Xist) downregulated the most. The differential

expression of genes measured by RNA-Seq was validated by qRT-PCR

analysis of selected genes and the GC/GR signaling-dependent expression of

Xist was further demonstrated by GC (dexamethasone) treatment of GR-

deficient MSCs in vitro and by GC injection of C57BL/6 mice (wild-type

males and females) in vivo. Our data revealed that the long noncoding RNA

Xist is a GR regulated gene and its expression is induced by GC both in vitro and

in vivo. To our knowledge, this is the first evidence showing that Xist is

transcriptionally regulated by GC/GR signaling.

KEYWORDS
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Introduction

Glucocorticoids (GCs) are highly effective anti-inflammatory

and immunosuppressive agents and are frequently used to treat

diseases such as rheumatoid arthritis (1, 2), asthma (3, 4), and

pulmonary disease (5). GCs exert their actions via intracellular

glucocorticoid receptors (GRs) (6, 7) which, upon activation, can

either directly bind to glucocorticoid response elements (GREs)

on the target gene promoters and regulate their transcription (8–

10), or indirectly through interaction with other transcription

factors such as NF-kB and AP-1 and inhibit their transcriptional

activities (11–13). It has long been known that pharmacologic GC

therapy results in bone loss/osteoporosis and increases the

incidence of bone fractures (14–16). However, it is also known

that physiological levels of GC are required for normal bone

acquisition, as demonstrated in several animal models in which

GR is deleted (17) or GC signaling is disrupted in bone (18–20).

Despite intensive investigations, the cellular and molecular

mechanisms underlying GC actions in bone are not clear. The

bone marrow mesenchymal stem cells (MSCs) are multipotent

and capable of differentiating into several distinct cell lineages in

vitro, including osteoblasts, adipocytes, chondrocytes, muscle

cells, and even neuronal cells (21–24). In bone tissues, MSCs

give rise to osteoblasts or marrow adipocytes governed, in large

part, by marrow microenvironment and developmental stages as

these two pathways are reported to have a reciprocal relationship

(25–27). In this study, we aimed to identify novel endogenous

genes that are regulated by GR inMSCs by analyzing GR-deficient

MSCs. We found that among other significantly up- or

downregulated genes in GR cKO cells, that a long noncoding

RNA X-inactive specific transcript (Xist) was the most

significantly affected RNA species in GR cKO cells (down by

tenfold). As studies of LncRNAs in bone are sparse, we decided to

focus on Xist for further validation of this RNA-Seq data and

examine Xist as a potential modulator of bone turnover.
Materials and methods

Experimental animals

Conditional GR knockout (GR cKO) mice were generated by

breeding a GR-floxed (GRfl/fl) mouse (28) with a 3.6 kb rat type I

collagen promoter-driven Cre transgenic mouse (Col3.6-Cre) (29).

Thus, the cKO mice are deficient of GR in Col I-expressing cells.

Mouse genotype was confirmed by PCR analysis of tail genomic

DNA using primers 5’- AATCAGAATTGCTCACTCACAA-3’

(forward) and 5’-GAACTGGAAGTAGTAACACTG-3’ (reverse).

PCR analysis of Cre was performed using primers 5’-

GCATTTCTGGGGATTGCTTA-3 ’ (forward) and 5 ’-

GTCATCCTTAGCGCCGTAAA-3’ (reverse). C57BL/6 mice (6-

month-old males and females) were obtained from the National
Frontiers in Endocrinology 02
Institute on Aging (NIA) aged rodent colonies. Mice were group

housed (4 - 5 mice/cage) in the Augusta University Laboratory

Animal Service facility under a 12-hr dark-light cycle and fed with

standard rodent chow and water ad libitum. After a week of

recovery, mice were intraperitoneally injected with synthetic

glucocorticoid dexamethasone (Dex) at a dosage of 3 mg/kg (n =

3 mice per group) or equal volume of ethanol (vehicle control, n =

2). Twelve hours after injection, mice were sacrificed and total

cellular RNAs were collected from bone tissues (femur and tibia).

All animal procedures were performed in accordance with a

protocol (#2008-0302) approved by the Augusta University

Institutional Animal Care and Use Committee (IACUC).
MSC isolation, cell culture and
RNA isolation

Bone marrow mesenchymal stem cells (MSCs) were isolated

from long bones (femur and tibia) of 6-month-old male GR cKO

and GR-floxed mice (n = 3 mice per genotype) in the Stem Cell

Core facility at Augusta University. The Core uses a procedure

that includes a negative-immuno-depletion (using magnetic

beads conjugated with anti-mouse CD11b and c, CD45R/B220,

and PDCA-1) followed by a positive-immuno-selection (using

anti-Sca-1 beads). The MSCs isolated using this procedure are

negative for CD11b, CD11c, and CD45, and positive for Sca-1,

and are capable of undergoing osteogenic, adipogenic, myogenic,

and chondrogenic differentiations as demonstrated by Alizarin

Red-S (ARS) staining of mineralized bone matrix, Oil Red O

staining of intracellular lipid vacuoles, immunolabeling of

muscle-specific proteins myosin (cytoplasmic) and myogenin

(nuclear), and Alician blue staining of acidic polysaccharides

(30). Importantly, they also differentiate into osteoblast-like

lining cells or even incorporate into trabecular bone after

injection into mice (31). Images of purified cells and data

demonstrating successful deletion of GR are provided as

supplementary material (Supplementary Figure S1). The

purified MSCs were cultured under standard cell culture

condition in DMEM supplemented with 10% FBS and

antibiotics. Total cell lysates were collected in TRIzol reagent

and sent to the Otogenetics Corporation (Atlanta, GA) for RNA

isolation and RNA-Seq analysis.

MSCs used in ChIP and luciferase reporter assays were

isolated from bone marrow of 6-month-old C57BL/6 mice

using the same method described above.
RNA-seq analysis

RNA QC, polyA cDNA preparation and QC, Illumina

library preparation and QC were all performed at the

Otogenetics Corporation. RNA-Seq were performed on a

HiSeq2000 sequencing machine. A minimum of 20 million
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reads (2 reads x 10 million fragments) were generated per

sample. Basic bioinformatics and differential expression

analyses were performed on DNAnexus platform. Raw data

FASTq and bioinformatic reports were delivered via secure

Google Cloud Drive. The raw RNA-Seq data has been

deposited at NCBI SRA database (ID: PRJNA862943) and the

processed results provided in Supplementary Table S1.
Data analysis workflow
Fron
1. The sequencing data sets from illumina HiSeq2000

(fastq.gz) were first mapped with Tophat (v2.0.5)

against reference assembly UCSC mm9 downloaded

from illumina iGenome and then, the mapped files

(accepted_hits.bam) from each sample were input into

cufflinks (v2.0.2) to locate genomic regions with

expression under the guidance of ‘genes.gtf ’

(annotation file from illumina iGnome). Information

of expression was recorded in ‘transcript.gtf’.

2. Cufflinks.cuffmerge was called to combine all

‘transcripts.gtf’ into a single ‘merged.gtf’, and mapping

fi l e s genera ted by Tophat were input in to

cufflinks.cuffdiff (v.2.0.2) to measure expression level

on regions (genes, transcripts, CDS, etc.) defined in

‘merged.gtf’.

3. Expression levels were measured with FPKM

(Fragments Per Kilobase per Million mapped), which

is located in.fpkm_tracking files in cuffdiff folder.

Statistical test on difference between samples is located

in.diff files. The qvalue less than 0.05 is considered as an

indication for statistical significance.

4. Cuffdiff analysis results were implemented at different

levels, including gene, isoform and CDS. All result files

are tabdelimited plain text and can be opened with

Excel. For definition of each field in files, please refer

to manual of cufflinks at http://cufflinks.cbcb.umd.edu/

manual.html.
Construction of human gene association
network

Gene association network links genes or encoded proteins by

their functional interplays, including direct physical binding and

indirect interaction such as their participation in a common

cellular process. In this study, we used the human functional

linkage network (FLN) constructed by Linhu et al. as

background network (32). FLN is a densely connected and

weighted network composed of 21,657 genes and 22,388,609

edges. In this network, the nodes represent genes, and edge
tiers in Endocrinology 03
weights the likelihood that the linked nodes participate in a

common biological process. The edge weight is a probabilistic

confidence score of the linkage. We normalized the original edge

weight to the interval [0,1].
Scoring network effect of a group of
differentially expressed genes

A group of differentially expressed genes could affect other

genes through network links. For each gene i in the human gene

association network FLN, we quantified the influence of

differentially expressed genes by a network effect score. In

general, the higher score a gene receives, the deeper more

pronounced it is affected by the differentially expressed genes.

Specifically, a node’s Si score is defined as follows:

Si =o
n

j=1
w(v)
j W(e)

ij (3)

where n is the number of nodes in the network, w(v)
j is the

weight of the node j defined as absolute value of log2 ratio of the

expression level if the corresponding gene is differentially

expressed, otherwise it is zero. W(e)
ij is the linkage weight

connecting gene i and j, and it is defined as 1 when i = j.
Real-time qRT-PCR analysis

The RNA-Seq analysis results were confirmed by real-time

qRT-PCR analysis of selected genes that are differentially

expressed in GR cKO and GR-floxed MSCs or the samples

from bone tissues of wild type C57BL/6 mice. qRT-PCR was

performed as described previously using TaqMan Reverse

Transcription Reagents and a StepOnePlus Real-Time qPCR

System (Thermo Fisher Scientific). The mRNA levels were

normalized to b-actin and 18S rRNA (internal controls). The

primer sequences used in qRT-PCR are listed below (Table 1).

All PCR reactions were performed in triplicates and all

experiments were repeated at least two times with similar results.
Western blot, immunofluorescence
labeling and imaging

Western blot analysis was performed as previously

described (33). In brief, whole cell lysates of GR-floxed and

GR cKO BMSCs were collected in a lysis buffer. Equal amounts

of total protein (40 ug) were separated on 7% SDS-PAGE,

transferred onto nitrocellulose membrane, and blocked in 5%

non-fat dry milk for 2 hr at RT. The membrane was then

incubated with an anti-GR polyclonal antibody (1:500 dilution,

Santa Cruz #sc-1002) and anti-b-actin antibody (1:1000
frontiersin.org
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dilution, Abcam #ab8227) for at least 1 hr at RT. After several

washes the membrane was incubated with IRDye 800 goat anti-

rabbit IgG secondary antibody (1:5000 dilution, LI-COR

Biotechnology) and imaged using Odyssey Infrared

Imaging System.

For immunofluoresence labeling, GR-floxed and GR cKO

cells were seeded in chamber slides and treated with or without

10 nM dexamethasone (Dex) for 30 min. Cells were then fixed

with freshly prepared 4% paraformaldehyde containing 0.2%

Triton X-100 for 15 min and blocked in 2% BSA for 1 hr at RT

before incubating with anti-GR primary antibody (1:500

dilution) for at least 1 hr at RT. After several washes, the

slides were incubated with goat anti-rabbit IgG-FITC

secondary antibody (1:600 dilution) for 1 hr at RT in dark.

The slides were washed three times in PBS for 5 min each and

stained with DAPI (300 nM) to visualize the nucleus. Finally, the

slides were washed, mounted with Vectorshield mounting media

(Vector Laboratories), and analyzed using a Nikon TE2000

fluorescence microscope equipped with COOLSNAP

Monochrome Camera. Images were acquired and processed

with Metamorph Imaging System.
Chromatin immunoprecipitation assays

ChIP assays was performed using a SimpleChIP Plus

Sonication Chromatin IP Kit (#56383) and a monoclonal

antibody against GR (#3660S) according to the manufacturer’s

instructions (Cell Signaling Technology, Inc.). Briefly, MSCs

isolated from 6-month-old male C57BL/6 mice were cultured in

150mm plates under standard cell culture condition in DMEM

supplemented with 10% FBS and antibiotics. When cells reach

~90% confluency they were treated with 100 nMDex for 30 min. to

induce GR nuclear translocation. The cells were washed, cross-

linked and chromatin fragmented according to the manufacturer’s

instructions. The fragmented chromatin (from 2 plates) were

precipitated overnight at 4°C with anti-GR or normal rabbit IgG
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(control). After reversal cross-link and DNA purification, the GR-

bound Xist promoter fragments were PCR amplified with following

primer pairs (numbers in brackets indicate amplicon size). GRE 1:

(F) TGAAGAGCCCTTCCTTG, (R) GTAAAGGTTACTTTGTC

TAACT (132bp); GRE 2/3: (F) TGTCCTTTATTATTCATGGGA,

(R) GTGTCTGATCTCTTTCATGT (130bp); GRE 4: (F) GATAA

TTTAGGAACCAAGGA, (R) CTTCTACTTGGACAAACC

(134bp).
Transfection and luciferase assays

MSCs from 6-month-old C57BL/6 mice were transiently

transfected with Xist1.2-Luc reporter construct (custom-built

and sequence confirmed, VectorBuilder Inc., Chicago, IL) and

the internal control pRL-null vector (Promega Corporation)

us ing je tPEI DNA transfec t ion reagent fo l lowing

manufacturer’s instructions (Genesee Scientific). 18 hr after

transfection cells were treated with 10 nM of Dex for 6 hr

before harvesting for luciferase activities measuement using a

dual luciferase assay kit (Promega Corporation) and a Cytation 5

multifunctional reader (Agilent Technologies). Values of firefly

luciferase were normalized to the renilla luciferase activity.

Luciferase values shown in the figures are representative of

transfection experiments performed in triplicate from three

independent experiments.
Statistical analysis

Data were analyzed by either unpaired t-test (Mann-

Whitney) or ordinary one-way ANOVA (Tukey’s multiple

comparisons test) where appropriate using Prism GraphPad

software version 9.2.0. A p-value less than 0.05 was

considered significant.
TABLE 1 GenBank accession numbers, primer sequences and amplicon sizes of genes used for qRT-PCR analysis.

Gene Accession # Forward Primer (5’-3’) Reverse Primer (5’- 3’) Amplicon size (bp)

Nr3c1 NM_008173 GGACAACCTGACTTCCTTGG CTGGACGGAGGAGAACTCAC 108

Xist NR_001463 CCTGCAAGGGATACCGTTTAT ATGAAAGGCGAAGGAGTATGG 113

Ldhb NM_001316322 CTGACCAGCGTCATCAATCA CACAGGTCTTTGAGGTCTTTCT 104

Aldh1a1 NM_013467 GCAGCAGGACTCTTCACTAAA CACTGGGCTGACAACATCATA 107

Nsg1 NM_010942 CCACAGGCGTAAGAACAAGA CCAGGGAAGGAGCTAAATGAA 93

Plac8 NM_139198 ACTCTCTACCGAACCCGATAC CATGGCTCTCCTCCTGTTAATG 123

Sfrp1 NM_013834 TGCAGTTCTTCGGCTTCTAC CTTAGAGGCTTCCGTGGTATTG 107

Dkk3 NM_001360257 TCCACCGACTGCTTCAATAC CATTCACAATCCTAGCCCTACA 108

Gilz NM_010286 GGGAGTACTGACTGGTCTCTTA CCCTCCCTCATATCGAGTCTTA 111

18S NR_003278 CTGAGAAACGGCTACCACATC GCCTCGAAAGAGTCCTGTATTG 107

b-actin NM_007393 TTCTTTGCAGCTCCTTCGTT ATGGAGGGGAATACAGCCC 149
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Results

Differentially expressed genes and the
biological processes they participate in

We compared the expression levels of all genes in MSCs

from GR cKO and GR-floxed (WT) mice. Principal component

analysis (PCA) data showed a distinctive expression pattern

between GR cKO and WT samples and a high degree of

similarity between the two GR cKO samples. Though the

difference between two WT samples is larger, the variation is

within the limit allowed (Figure 1A). Statistical significance (p

value) vs. magnitude of change (fold change) of genes is shown

in a volcano plot (Figure 1B). The red and blue colors represent

genes significantly up- and down-regulated, respectively, in GR

cKO vs. WT cells.

Normalized data set showed that 739 genes were up- or

downregulated with p values less than 0.05. Among these 739

genes, 201 of them are unknown genes. To increase the confidence

level, we analyzed only the genes whose expression in cKO vs WT

has a difference larger than 3 and q-value less than 0.05 and

considered these genes as differentially expressed. Results showed

that 85 genes are differentially expressed, of which 78 of them have

knownmouse gene symbols. Since the mouse and human genes are

highly conserved, we mapped the differentially expressed genes to a

human data base (34) to establish potential implications of GR in

human disease and health. The mapping results showed that these

85 differentially expressed mouse genes correspond to 75 distinct

human genes. To explore the biological processes in which these

differentially expressed genes participate, we conducted gene

ontology (GO) and pathway enrichment analysis by DAVID

(https://david.ncifcrf.gov/). It was found that 8 GO terms in

biological process (GO BP terms) and 3 pathways, all associated
Frontiers in Endocrinology 05
with inflammation and immune response, are enriched with the

identified differentially expressed genes (Figure 2).
Network and pathways significantly
influenced by the differentially
expressed genes

A group of differentially expressed genes could exert their

impact on other genes through network. Using the 75 human

orthologous genes as seed genes, we scored the influence of these

genes to all genes in the human gene association network and

took all genes whose scores were greater than 150 as significantly

influenced by the differentially expressed genes. This led to 201

genes, including 11 differentially expressed genes. We took these

genes and their links whose weights are larger than 0.2 from the

background human gene association network. In this way, we

constructed a subnetwork that is significantly impacted by the

differentially expressed genes. This subnetwork includes 183

nodes and 1017 links. As shown in Figure 3, this subnetwork

has 2 connected components. We then used simulation

annealing algorithm to decompose the network into 7 dense

clusters. As one can see that each cluster includes many proteins

from the same families, such as CCL family in cluster 2, IL family

in cluster 4, and MMP family in cluster 3, all of them are

associated with inflammation.

We mapped the scores Si’s of genes to each human pathway

in the KEGG pathway database and then scored pathways by

the average scores of genes in that pathway. The pathways with

higher scores are the ones possibly influenced by the identified

differentially expressed genes. We also mapped the 201 top

scored genes to the pathways to identify significantly enriched

genes, and then chose the pathways that are significantly
A B

FIGURE 1

(A) PCA plot showing a clear separation between GR cKO and WT samples. (B) Volcano plot showing the number of upregulated (red dots) and
downregulated (blue dots) genes. Gray dots denote no significant change.
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enriched with the top scored genes and also have the highest

pathway scores as significantly affected by the differentially

expressed genes. These pathways are summarized in Table 2. It

can be seen that, in addition to regulating inflammation and

immune response, GR cKO also affected other cellular

functions including cell lineage commitment, differentiation,

communication, and adhesion.
Frontiers in Endocrinology 06
Validation of the differentially
expressed genes

To ensure that our interpretation was based on valid RNA-

Seq data, we confirmed, by real-time qRT-PCR, the differential

expression of several genes shown by RNA-Seq data to be

significantly up- or downregulated in GR cKO cells. These
FIGURE 3

Sub-network significantly influenced by differentially expressed genes. Red nodes denote differentially expressed genes.
A B

FIGURE 2

Biological processes the differentially expressed genes involved in. (A) Significantly enriched GO BP terms. (B) Significantly enriched pathways.
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include X-inactive specific transcript (Xist), dickkopf-related

protein 3 (Dkk3), neuronal vesicle trafficking associated 1

(Nsg1), secreted frizzled related protein 1 (Sfrp1), lactate

dehydrogenase b (Ldhb), placenta specific 8 (Plac8), and

aldehyde dehydrogenase 1 family member a1 (Aldh1a1).

Consistent with the RNA-Seq data, qRT-PCR results showed

significantly deceased mRNA levels of Xist, Dkk3, Nsg1, Sfrp1,

and Ldhb, and significantly increased mRNA levels of Plac8 and

Aldh1a1 in GR cKO cells (Figure 4). The Dkk and Sfrp family

members are well known regulators of bone and their expression

is known to be induced by glucocorticoids (35–37).
Xist expression is induced
by glucocorticoids

Ranking the significantly up- or downregulated genes of RNA-

Seq data set, we found that the long noncoding RNA Xist was the

most differentially expressed RNA species in the GR cKO cells
Frontiers in Endocrinology 07
(down by 10.4-fold). We then asked whether Xist expression can be

induced and whether GR is required for its expression. To answer

these questions, we treated GR-floxed and GR cKO MSCs with a

synthetic glucocorticoid dexamethasone (Dex, 100 nM for 12 hr)

and performed qRT-PCR analysis. Results showed that Dex

induced Xist RNA expression more than 3-fold (ranging from 3

to 5 folds) in GR-floxed cells (Figure 5A). In contrast, Xist

expression was not induced in GR cKO cells (Figure 5A). To test

whetherXist expression is also induced by glucocorticoid in vivo, we

intraperitoneally injected wild type C57BL/6 mice (6-month-old

males and females) with Dex (3 mg/kg, n = 3) or equal volume of

vehicle (ethanol, n = 2). Twelve hours after injection, mice were

sacrificed and total cellular RNAs were collected from bone tissues

(femur and tibia). Again, qRT-PCR results showed significant

induction of Xist RNA in both male and female mice (>30-fold

in males and >50-fold in females) (Figure 5B). To confirm that the

increased Xist expression was due to the administration of

glucocorticoid, we examined the level of glucocorticoid induced

leucine zipper (Gilz), a gene known to be induced by glucocorticoids
TABLE 2 Pathways significantly affected by the differentially expressed genes.

Pathway Name Pathway Class 2 Pathway Class 1 Total Genes in
Pathway

Mapped genes in
pathway

ECM-receptor interaction Signaling molecules and
interaction

Environmental Information
Processing

82 24

Cytokine-cytokine receptor interaction Signaling molecules and
interaction

Environmental Information
Processing

273 72

IL-17 signaling pathway Immune system Organismal Systems 93 28

Toll-like receptor signaling pathway Immune system Organismal Systems 104 17

TNF signaling pathway Signal transduction Environmental Information
Processing

108 25

Focal adhesion Cellular community -
eukaryotes

Cellular Processes 199 35

Intestinal immune network for IgA
production

Immune system Organismal Systems 49 9

Chemokine signaling pathway Immune system Organismal Systems 185 40

TGF-beta signaling pathway Signal transduction Environmental Information
Processing

84 11

Hematopoietic cell lineage Immune system Organismal Systems 97 13

NF-kappa B signaling pathway Signal transduction Environmental Information
Processing

95 14

Th17 cell differentiation Immune system Organismal Systems 107 12

Protein digestion and absorption Digestive system Organismal Systems 90 14

Osteoclast differentiation Development Organismal Systems 128 15

Th1 and Th2 cell differentiation Immune system Organismal Systems 92 10

T cell receptor signaling pathway Immune system Organismal Systems 103 11

PI3K-Akt signaling pathway Signal transduction Environmental Information
Processing

342 46

Jak-STAT signaling pathway Signal transduction Environmental Information
Processing

156 15

ErbB signaling pathway Signal transduction Environmental Information
Processing

86 11

HIF-1 signaling pathway Signal transduction Environmental Information
Processing

99 13
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(33, 38). As expected, Dex treatment significantly increased Gilz

mRNA expression in these samples (Figure 5C). It is noted that the

magnitude of inductions in bone tissue was much greater than that

in purified MSCs due to, most likely, the contribution from the

hematopoietic lineage cells in the bone marrow. Together, these

results demonstrate, for the first time, that 1) Xist is a glucocorticoid

inducible gene, and 2) Xist RNA can be induced in male mice,

although at a lower magnitude than in female mice.
GR binds to Xist gene promoter region

To determine if Xist expression requires GR binding to the

Xist promoter region, we performed a computational analysis

using a transcription factor binding site identification software

(https://tfbind.hgc.jp) and found four putative glucocorticoid

response elements (GREs) within a 1.2 kb region upstream of

Xist transcription start site (Figure 6A). Chromatin

immunoprecipitation (ChIP) assays using wild-type MSCs and
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a monoclonal antibody against GR showed that, upon activation

of GR with Dex (100 nM for 1 hr), GR antibodies precipitated

GR-bound DNA fragments containing GRE-1 (with a lower

affinity), GRE-2/3, and GRE-4 (Figures 6B–D). The adjacent

GRE-2 and -3 are separated by only 21 nucleotides, it is not clear

at this point which site GR binds to in this region. Antibody

against histone H3, a universal positive control, and normal

rabbit IgG served as positive and negative controls, respectively.

Input DNA samples (2% sonicated DNA) was also used as a

positive control for PCR reactions. Together, these results

demonstrated that GR can bind to at least two out of the four

puta t i ve GREs pre sen t in th i s 1 .2 kb Xi s t gene

promoter fragment.
Xist promoter luciferase reporter activity

To determine the mechanism by which glucocorticoids

activate Xist transcription, we generated a 1.2kb mouse Xist
A B C

FIGURE 5

Xist RNA is induced by GCs. (A) qRT-PCR showing Dex induction of Xist in GR-flox and GR cKO MSCs. (B, C) qRT-PCR showing Dex induction
of Xist (B) and GILZ (C) in mice (6-mo-old C57BL/6 mice). Results are from 2 (control) or 3 (treatment) individual mice. PCR reactions were
performed in triplicates. One-way ANOVA or t-test, p values are indicated.
FIGURE 4

Validation of RNA-Seq data by qRT-PCR. RNA samples isolated from GR cKO and GR-floxed MSCs were analysed for the expression of Xist and
indicated genes whose expression was shown to be up- or downregulated in GR cKO cells. Numbers in bold are the results from RNA-Seq
analysis. qRT-PCR experiments were performed 3 times with similar results. PCR reactions were performed in triplicates. t-test, p values are
indicated.
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promoter-driven luciferase reporter construct (Xist1.2-Luc).

This promoter fragment contains 4 putative GREs shown

above (ChIP assay). Xist1.2-Luc plasmid, together with an

internal control plasmid (pRL-null) encoding Renilla luciferase

were co-transfected into wild-type MSCs (from 6-month-old

male C57BL/6 mice) using jetPEI DNA transfection reagent

(Genesee Scientific). After overnight culture (~18 hr), the

transfected cells were challenged with or without 10 nM Dex

for 6 hr before they were lysed. Luciferase activity was measured

using a dual-luciferase reporter assay kit (Promega) and a

Cytation 5 multifunctional reader (Agilent Technologies).

Results showed that the Xist1.2-Luc reporter had reasonably

high promoter activity (5 digits, firefly luciferase driven by Xist

promoter) before normalization (to internal control, renilla

luciferase expressed from promoterless vector). Unfortunately,

Dex treatment showed no stimulatory effect on this promoter-

reporter construct (Figure 7A). To confirm that the Dex reagent

was biologically active and the cells were stimulated, we isolated

total RNA from retrieved cell lysates used for luciferase assay

and performed qRT-PCR analysis. Result showed that the

endogenous Xist RNA was induced (Figure 7B), indicating
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that the Dex reagent was effective and this naked artificial

DNA construct does not respond to GC stimulation in this

setting. It is possible that long-range enhancer elements and

other genes surrounding Xist locus are required for Xist

expression as studies have shown that several distal enhancers

are associated with Xist-enhancing regulatory transcript (Xert),

and Xert is upregulated concomitantly with Xist and activates

Xist in cis (39).
Discussion

In this study, we analyzed genes that are differentially

expressed in glucocorticoid receptor (GR) deficient mouse

bone marrow mesenchymal stem cells (MSCs). The analysis

was performed in a blind fashion using data generated from deep

sequencing analysis of RNA samples prepared from purified

mouse MSCs of conditional GR knockout (GR cKO) and GR-

floxed control mice. The purpose of this RNA-Seq study was to

identify novel genes whose expression is regulated by GR for

further studies on the role of these genes in MSC differentiation
A

B

D

C

FIGURE 6

ChIP assay showing GR binding to Xist promoter region. (A) Schematic diagram of the approximate locations of GREs and flanking primers used
in PCR reactions. (B–D) agarose gel images showing PCR products amplified from anti-GR antibody precipitated DNA fragments and primer
pairs flanking the indicated GREs. Input: 2% sonicated DNA; H3: Anti-histone H3 mAb (positive control); IgG: normal rabbit IgG (negative
control); GR: Anti-GR mAb. Experiment was performed 3 times with similar results. Shown is the results from one representative experiment.
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and bone formation. In addition to a list of protein coding genes,

some of which are known to be regulated by glucocorticoids and

play important roles in bone development (35–37), our data

unexpectedly revealed, that the expression of a long noncoding

RNA (LncRNA), X-inactive specific transcript (Xist), was the

most downregulated gene in GR cKO cells (tenfold lower than in

GR-floxed cells). This data was confirmed by qRT-PCR analysis

(Figure 4) and further, by glucocorticoid (Dex) treatment of GR

cKO and GR-floxed cells in vitro as well as by Dex treatment of

mice (Figure 5). To our knowledge, this is the first evidence

showing that Xist is transcriptionally regulated by

glucocorticoid/GR signaling. Xist , located on the X

chromosome, was identified as a female-specific gene and

functions in cis to silence the transcription of one of the two X

chromosomes in females to regulate sex chromosome dosage

compensation (40–43). The current study showed that Xist

expression can be induced by glucocorticoids in both male and

female mice (Figure 5) though any connection between Xist

expression and glucocorticoid-induced bone loss is yet to be

determined. Several recent in vitro studies reported the role of

Xist in osteoblast differentiation but the results of these

publications are contradictory; with some studies showed Xist
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inhibits MSC osteogenic differentiation (44–47) and others

showed Xist promotes MSC osteogenic differentiation (48, 49).

In addition, recent evidence also showed that Xist is

overexpressed in osteosarcoma and promotes cancer cell

proliferation and migration via mechanisms such as regulation

of microRNAs (miRNAs) and mTOR and other signaling

pathways (50–53). Xist loss- or gain-of-function studies in

animal models will be required to clarify the role Xist plays in

normal bone turnover and in glucocorticoid-induced bone loss.
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FIGURE 7
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SUPPLEMENTARY FIGURE 1

Characterization of GR KO MSCs. (A) Bright field images showing
morphology of purified MSCs. (B) qRT-PCR showing the absence of GR

mRNA in GR KO cells. Inset: Agarose gel image showing qPCR products.

(C) FACS analysis showing percentages of CD45, CD11b, and Sca-1
positive cell populations in purified GR-flox (top panel) and GR KO

(bottom panel) MSCs. (D) Western blot showing the absence of GR
protein in GR KO cells. (E) Immunostaing showing nuclear translocation

of GR protein in response to dexamethason (Dex) stimulation (100nM
for 30min).
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