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Abstract

Background: Despite its clinical importance, a dearth of information exists on the cellular and molecular
mechanisms that underpin brain stem death. A suitable neural substrate for mechanistic delineation on brain stem
death resides in the rostral ventrolateral medulla (RVLM) because it is the origin of a life-and-death signal that
sequentially increases (pro-life) and decreases (pro-death) to reflect the advancing central cardiovascular regulatory
dysfunction during the progression towards brain stem death in critically ill patients. The present study evaluated
the hypothesis that heme oxygnase-1 (HO-1) may play a pro-life role as an interposing signal between hypoxia-
inducible factor-1 (HIF-1) and nitric oxide synthase | (NOS I)/protein kinase G (PKG) cascade in RVLM, which sustains
central cardiovascular regulatory functions during brain stem death.

Methods: We performed cardiovascular, pharmacological, biochemical and confocal microscopy experiments in
conjunction with an experimental model of brain stem death that employed microinjection of the

organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of adult male Sprague-Dawley rats.

Results: Western blot analysis coupled with laser scanning confocal microscopy revealed that augmented HO-1
expression that was confined to the cytoplasm of RVLM neurons occurred preferentially during the pro-life phase
of experimental brain stem death and was antagonized by immunoneutralization of HIF-1a. or HIF-1f in RVLM. On
the other hand, the cytoplasmic presence of HO-2 in RVLM neurons manifested insignificant changes during both
phases. Furthermore, immunoneutralization of HO-1 or knockdown of ho-7 gene in RVLM blunted the augmented
life-and-death signals exhibited during the pro-life phase. Those pretreatments also blocked the upregulated pro-

life NOS I/PKG signaling without affecting the pro-death NOS Il/peroxynitrite cascade in RVLM.

Conclusions: We conclude that transcriptional upregulation of HO-1 on activation by HIF-1 in RVLM plays a
preferential pro-life role by sustaining central cardiovascular regulatory functions during brain stem death via
upregulation of NOS I/PKG signaling pathway. Our results further showed that the pro-dead NOS Il/peroxynitrite
cascade in RVLM is not included in this repertoire of cellular events.

Background

The observation that asystole invariably takes place
within hours or days after the diagnosis of brain stem
death [1], the legal definition of death stipulated in pro-
fessional or statutory documents from the United
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Kingdom [2,3], United States [4], European Union [5] or
Taiwan [6], implies that permanent impairment of the
brain stem cardiovascular regulatory machinery is inti-
mately associated with this fatal phenomenon. It is
therefore intriguing that based on power spectral analy-
sis of systemic arterial pressure (SAP) signals from
comatose intensive care unit patients [7-9], our labora-
tory found previously that a dramatic reduction or loss
of the power density of the low-frequency (LF)
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component, which reflects dysfunction of central circu-
latory control, consistently occurs before brain stem
death ensues. It follows that delineation of the cellular
and molecular mechanisms that underpin the impending
impairment of brain stem cardiovascular regulatory
machinery should enrich the dearth of mechanistic
information currently available on brain stem death. A
logical neural substrate for this delineation resides in
the rostral ventrolateral medulla (RVLM), which is long-
known to be responsible for the maintenance of sympa-
thetic vasomotor tone and stable SAP [10] and is the
origin of the LF component [11] that presents itself as
the life-and-death signal that disappears before brain
stem death [12].

Mevinphos (3-(dimethoxyphosphinyl-oxyl)-2-butenoic
acid methyl ester; Mev), a US Environmental Protection
Agency Toxicity Category I pesticide, has been used in
our laboratory as the experimental insult in an animal
model for mechanistic evaluations of brain stem death
[12-14] for two reasons. Systemic administration of Mev
acts on RVLM to elicit cardiovascular toxicity [15].
More importantly, the distinct phases of an augmenta-
tion followed by a reduction of the LF power manifested
during Mev intoxication resemble those exhibited by
patients died of organophosphate poisoning during the
progression towards brain stem death [9]. As such, they
can be designated the pro-life and pro-death phase of
cardiovascular regulation in this model of brain stem
death [12]. Based on this model, our laboratory has pre-
viously reported that nitric oxide (NO) generated by NO
synthase I (NOS I) in RVLM, followed by activation of
the soluble guanylyl cyclase/cGMP/protein kinase G
(PKG) cascade, is responsible for the pro-life phase; per-
oxynitrite formed by a reaction between NOS II-derived
NO and superoxide anion underlies the pro-death phase
[16,17]. On the other hand, NOS III in RVLM is not
engaged in either the pro-life or pro-death phase of the
Mev intoxication model of brain stem death [16].

Another pro-life program that our laboratory [13] iden-
tified in RVLM during brain stem death is heat shock pro-
tein 70 (HSP70), which ameliorates cardiovascular
regulatory dysfunction via enhancing NOS I/PKG signal-
ing and inhibiting NOS II/peroxynitrite cascade. We also
showed previously that hypoxia-inducible factor-1 (HIF-1)
acts as an upstream signal for HSP70 in RVLM during the
pro-life phase of experimental brain stem death [18]. In
addition, heme oxygenase-1 (HO-1) [19-21], and both
NOS I [21,22] and NOS II [20,23] are known to be
hypoxia responsive gene products; upregulation of HO-1
is mediated transcriptionally on HIF-1a activation [24,25].

A logical extension from those observations is that
HO-1 may play a pro-life role in experimental brain
stem death by interacting on one hand with HIF-1 and
on the other with NOS I/PKG or NOS II/peroxynitrite
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signaling pathway in RVLM. The present study evalu-
ated this hypothesis. Based on our Mev intoxication
model, we demonstrated that on activation by HIF-1,
HO-1 plays a preferential pro-life role in brain stem
death by sustaining central cardiovascular regulatory
functions via upregulation of NOS I/PKG signaling
pathway in RVLM.

Methods

All experimental procedures carried out in this study
have been approved by the Laboratory Animal Commit-
tee of the Chang Gung Memorial Hospital-Kaohsiung
Medical Center, and were in compliance with the guide-
lines for animal care set forth by this Committee.

Animals

Adult male Sprague-Dawley rats (289 to 337 g, n = 316)
purchased from the Experimental Animal Center of the
National Science Council, Taiwan, Republic of China
were used. Rats received preparatory surgery under an
induction dose of pentobarbital sodium (50 mg kg™, i.p.).
During the experiment, animals received continuous
intravenous infusion of propofol (20-25 mg kg™' h™';
Zeneca, Macclesfield, UK), which provided satisfactory
anesthetic maintenance while preserving the capacity of
central cardiovascular regulation [26]. They were allowed
to breathe spontaneously with room air, and body tem-
perature was maintained at 37°C by a heating pad.

Mev intoxication model of brain stem death

SAP signals recorded from the femoral artery were sub-
ject to simultaneous on-line and real-time power spec-
tral analysis [13-17,27], using a computer algorithm
developed by our laboratory [28] that is specifically
designed to deal with non-stationary signals encoun-
tered in clinical [7-9] and laboratory [13-17,27] settings.
We were particularly interested in the LF (0.25-0.8 Hz)
component of the SAP spectrum because it takes origin
from RVLM [11] and the biphasic changes in LF power
reflect the pro-life and pro-death phases during the pro-
gression towards brain stem death [12]. Heart rate (HR)
was derived instantaneously from SAP signals. Since
Mev induces comparable cardiovascular responses when
given systemically or directly to RVLM [15], we routi-
nely microinjected Mev bilaterally into RVLM to elicit
site-specific effects [13-17,27]. Temporal changes in pul-
satile SAP, mean SAP (MSAP), HR and power density
of the LF component were routinely followed for 180
min after the administration of Mev, in an on-line and
real-time manner.

Microinjection of test agents
Microinjection bilaterally of test agents into the RVLM,
each at a volume of 50 nl, was carried out stereotaxically
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and sequentially [13-17,27,29] via a glass micropipette
connected to a 0.5-pl Hamilton microsyringe (Reno, NV,
USA). The coordinates used were: 4.5-5 mm posterior to
lambda, 1.8-2.1 mm lateral to midline, and 8.1-8.4 mm
below the dorsal surface of cerebellum. Test agents
employed included Mev (kindly provided by Huikwang
Corporation, Tainan, Taiwan) and artificial cerebrospinal
fluid (aCSF) that served as the vehicle control. A rabbit
polyclonal antiserum against HIF-1a (Novus Biologicals,
Littleton, CO, USA), HIF-1f (Lifespan Biosciences, Seattle,
WA, USA), HIF-2a. (Novus), HO-1 (Calbiochem, San
Diego, CA, USA) or HO-2 (Santa Cruz, Santa Cruz, CA,
USA) was used to affect immunoneutralization. As in pre-
vious studies [13,14], 0.02% Triton X-100 (Sigma-Aldrich,
St. Louis, MO, USA) was added to facilitate transport of
the antiserum across the cell membrane of RVLM neu-
rons. Microinjection of normal rabbit serum (NRS; Sigma-
Aldrich) plus 0.02% Triton X-100 served as the vehicle
control. To avoid verbose presentation, however, the
phrase 0.02% Triton X-100 is omitted from subsequent
narration. Gene knockdown was executed using an anti-
sense oligonucleotide (Quality Systems, Taipei, Taiwan)
that targets against the coding region (base +10 to -9)
of the ho-1 gene [30]: 5'-GGCGCTCCATCGCGG-
GACTG-3'; or the coding region (base +11 to -9) of the
ho-2 gene [30]: 5'-TCTGAAGACATTGTTGCTGA-3'.
The corresponding sense oligonucleotide: 5'-TCCAG
CGGCGTCAGCGGTGC-3' (ho-1) or 5'-GATCTGACTT-
CAAG TGATTG-3' (ho-2) or scrambled oligonucleotide:
5-CAGTCCCGCGATGGAGCGCC-3' (ho-1) or 5'-TCAG
CAACAATGTCTTCAGA-3' (ho-2) was used as the con-
trol. The dose and treatment regimen were adopted from
the literature that used the oligonucleotides for the same
purpose as in the present study. To avoid the confounding
effects of drug interactions, each animal received only one
antiserum or oligonucleotide pretreatment.

Collection of tissue samples

We routinely collected tissue samples [13,14,16,17] during
the peak of the pro-life and pro-death phase (Mev group)
or 30 or 180 min after microinjection of aCSF into RVLM
(vehicle group). Animals were killed with an overdose of
pentobarbital sodium, and tissues on both sides of the ven-
trolateral part of medulla oblongata, at the level of RVLM
(0.5-2.5 mm rostral to the obex), were collected by micro-
punches made with a stainless steel bore (1 mm i.d.) and
frozen in liquid nitrogen. Medullary tissues collected from
anesthetized animals but without treatment served as the
sham controls. Protein in the extracts was estimated by
BCA Protein Assay (Pierce, Rockford, IL. USA).

Protein expression
We employed Western blot analysis [13,14,16,17] to
detect expression level of HO-1, HO-2, NOS I, PKG,
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NOS 1II or nitrotyrosine (marker for peroxynitrite) pro-
tein. The primary antiserum used for HIFs or HOs were
the same as those used for immunoneutralization. The
other primary antisera used included a rabbit polyclonal
antiserum against NOS I (Santa Cruz), NOS II (Santa
Cruz), PKG (Calbiochem); or a mouse monoclonal anti-
serum against nitrotyrosine (Upstate Biotechnology,
Lake Placid, NY) or B-actin (Chemicon, Temecula, CA,
USA). The secondary antisera used included horseradish
peroxidase-conjugated donkey anti-rabbit IgG
(Gehealthcare, Uppsala, Sweden) for HO-1, HO-2, NOS
I, NOS II, PKG; or horseradish peroxidase-conjugated
sheep anti-mouse IgG (Gehealthcare) for nitrotyrosine
or B-actin. The amount of protein was quantified by the
ImageMaster software (Amersham Pharmacia Biotech,
Buckinghamshire, UK), and was expressed as the ratio
relative to B-actin protein. Densitometric values that
were not statistically different from the background
were designated below detection limits.

Immunofluorescence staining and confocal microscopy
We employed double immunofluorescence staining
coupled with laser scanning confocal microscopy [13,14]
to detect subcellular localization of HO-1 or HO-2 in
RVLM neurons labeled with a mouse monoclonal anti-
serum against a specific neuron marker, neuron-specific
nuclear protein (NeuN; Millipore, Billerica, MA, USA).
Secondary antisera (Molecular Probes, Eugene, OR,
USA) used included a goat anti-rabbit IgG conjugated
with Alexa Fluor 568 for HO-1 or HO-2, and a goat
anti-mouse IgG conjugated with Alexa Fluor 488 for
NeuN. Tissues similarly processed but omitting primary
antiserum against HO isoforms served as our negative
controls. Immunoreactivity was viewed under a Fluor-
view FV1000 laser scanning confocal microscope (Olym-
pus, Tokyo, Japan).

Histology

In some animals that were not used for biochemical
analysis, the brain stem was removed at the end of the
physiological experiment and fixed in 30% sucrose in
10% formaldehyde-saline solution for at least 72 h. Fro-
zen 25-pm sections of the medulla oblongata stained
with neural red were used for histological verification of
the microinjection sites.

Statistical analysis

All values are expressed as the mean + S.E.M. The
effects of various treatments on the averaged value of
MSARP or HR calculated every 20 min after administra-
tion of test agents or vehicle, the sum total of power
density for LF component in the SAP spectra over 20
min, or the protein expression level in the ventrolateral
medulla during each phase of Mev intoxication, were
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used for statistical analysis. One-way or 2-way ANOVA
with repeated measures was used, as appropriate, to
assess group means. This was followed by the Scheffé
multiple-range test for post hoc assessment of individual
means. P < 0.05 was considered to be statistically
significant.

Results

Biphasic cardiovascular responses in experimental brain
stem death

Figure 1 shows that co-microinjection bilaterally of Mev
(10 nmol) and vehicle into RVLM elicited a progressive
hypotension that became significant 100 min after appli-
cation, accompanied by insignificant alterations in HR.
Concurrent changes in power density of the LF
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component of SAP signals revealed two distinct phases
of Mev-induced cardiovascular responses. The pro-life
Phase I entailed a significantly augmented LF power
that endured 80-100 min. The pro-death Phase II,
which lasted the remainder of our 180-min observation
period, exhibited further and significant reduction in the
power density of this spectral component to below base-
line to reflect failure of brain stem cardiovascular regu-
latory functions that precedes brain stem death [12].

Preferential upregulation of HO-1 in RVLM during the
pro-life phase

The fundamental premise for HO-1 in RVLM to play a
pro-life role in brain stem death is for it to be upregu-
lated selectively during the pro-life phase in the Mev
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Figure 1 Transcriptional upregulation of HO-1 in RVLM ameliorates failure of central cardiovascular regulation associated with
experimental brain stem death. Temporal changes in mean systemic arterial pressure (MSAP), heart rate (HR) or power density of the low-
frequency (LF) component of SAP signals in rats that received pretreatment by microinjection bilaterally into RVLM of NRS (1:20) or HO-1
antiserum (1:20); or aCSF, scrambled (SC; 50 pmol), sense (S; 50 pmol) or antisense (AS; 50 pmol) ho-1 oligonucleotide (right column), 1 h or 24 h
before local application (at arrow) of aCSF or Mev (10 nmol) to the bilateral RVLM. Values are mean + SEM, n = 5-7 animals per experimental
group. *P < 0.05 versus NRS+aCSF or aCSF+aCSF group, and *P < 0.05 versus NRS+Mev or aCSF+Mev group at corresponding time-points in the
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intoxication model. Our first series of experiments
assessed this fundamental premise. Compared to aCSF
controls, microinjection bilaterally of Mev (10 nmol)
into RVLM significantly increased HO-1 protein expres-
sion (Fig. 2A) in ventrolateral medulla during Phase I,
which returned to baseline during Phase II. On the
other hand, HO-2 expression (Fig. 2A) remained rela-
tively constant during both phases.

Preferential upregulation of HO-1 in RVLM neurons
during the pro-life phase

Double immunofluorescence staining coupled with laser
scanning confocal microscopy further revealed that the
differential changes in HO-1 and HO-2 demonstrated in
our biochemical analyses on protein extracts from ven-
trolateral medulla indeed took place at the neuronal
level. Against a clearly defined nucleus and nucleolus in
cells stained positively with the neuronal marker, neu-
ron-specific nuclear protein (NeuN), the surge in HO-1
immunoreactivity during the pro-life phase was confined
to the cytoplasm (Fig. 3), which subsided during Phase
II. Again, the cytoplasmic presence of HO-2 in RVLM
neurons exhibited indiscernible changes during both
phases (Fig. 3).

Preferential transcriptional upregulation of HO-1 by HIF-1
in RVLM during the pro-life phase

HO-1 is a well-known gene target that is regulated tran-
scriptionally by HIF-1 [24,25]. Loss-of-function manipu-
lation by immunoneutralization of HIF-1a. or HIF-1B in
RVLM significantly and selectively antagonized the
Mev-induced augmentation of HO-1 protein expression
in ventrolateral medulla during Phase I (Fig. 2A); anti-
HIF-2a antiserum was ineffective in both phases (Fig.
2A). As an additional support for this observation, we
extended results from a parallel study (unpublished
data), which showed that augmented sumoylation of
HIF-1a [31-34] is causally related to its enhanced stabi-
lity or transcriptional activity in RVLM during the pro-
life phase. Thus, immunoneutralization of SUMO-1 or
Ubc9 (the only known conjugating enzyme for the
sumoylation pathway) in RVLM (Fig. 2B) also signifi-
cantly blunted the preferential upregulation of HO-1 in
ventrolateral medulla during the pro-life phase.

Activation of HO-1 in RVLM ameliorates failure of central
cardiovascular regulation associated with experimental
brain stem death

We next employed immunoneutralization or gene-
knockdown to establish that selective activation of HO-
1 in RVLM is causally involved in central cardiovascular
regulation during brain stem death. Pretreatment with
microinjection bilaterally into RVLM of an anti-HO-1
antiserum or an antisense /o-1 oligonucleotide (Fig. 1),
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given 1 h or 24 h before local application of Mev
(10 nmol), significantly and selectively potentiated the
hypotension and antagonized the augmented LF power
exhibited during Phase I; the hypotension and reduced
LF power manifested during Phase II was further signifi-
cantly enhanced. On the other hand, pretreatment with
the same dose of anti-HO-2 (Fig. 4) antiserum, antisense
oligonucleotide against /0-2 gene (Fig. 4), or sense or
scrambled /o-1 (Fig. 1) or ho-2 (Fig. 4) oligonucleotide
was ineffective against the phasic cardiovascular
responses induced by Mev.

Activation of HO-1 leads to phasic upregulation of

NOS I/PKG signaling in RVLM

We demonstrated previously [13,14,16,17] that whereas
NOS I/PKG signaling in RVLM is responsible for the
pro-life phase, NOS II/peroxynitrite signaling underlies
the pro-death phase of Mev intoxication. Our final ser-
ies of experiments assessed whether HO-1 may sub-
serve its pro-life role via modulation of these two
signaling pathways. Immunoneutralization of HO-1
(Fig. 5) or knockdown of ho-1 gene (Fig. 5) blunted
significantly and selectively the Mev-induced Phase I
increase in NOS I or PKG protein expression in ven-
trolateral medulla. None of these pretreatments
affected the progressive increase in NOS II or nitrotyr-
osine (marker for peroxynitrite) during both phases of
Mev intoxication. Again, anti-HIF-2o or anti-HO-2
antiserum, antisense /0-2 oligonucleotide, or sense or
scrambled /o-1 or ho-2 oligonucleotide was ineffective
(Figs. 5 and 6) against the phasic Mev-induced NOS I,
PKG, NOS II or nitrotyrosine protein expression in
ventrolateral medulla.

Effectiveness of gene knockdown

We also ascertained that our results from gene knock-
down with antisense ho-1 oligonucleotide (Figs. 1 and 5)
were accompanied by significant antagonism against the
increase in HO-1 expression in ventrolateral medulla
during Phase I Mev intoxication (Fig. 6), and sense or
scrambled /o-1 oligonucleotide was ineffective. Likewise,
the lack of alterations in HO-2 levels was not affected
by pretreatment with antisense, sense or scrambled /o-2
(Fig. 6) oligonucleotide.

Discussion

Based on a clinically relevant experimental model [12],
we demonstrated that on transcriptional activation by
HIF-1, HO-1 plays a preferential pro-life role during the
progression towards brain stem death by sustaining cen-
tral cardiovascular regulatory functions via upregulation
of the NOS I/PKG signaling cascade in RVLM. We
further showed that the engagement of HO-2 at RVLM
in this process is minimal.
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Basal

Phase |

Phase |l

Figure 3 Preferential upregulation of HO-1 in RVLM neurons during the pro-life phase. lllustrative laser scanning confocal microscopic
images showing cells in RVLM that were immunoreactive to NeuN (green fluorescence) and additionally stained positively for HO-1 or HO-2
isoform (red fluorescence) in sham controls (Basal) or during Phases | and Il Mev intoxication. *Denotes location of nucleus in corresponding
RVLM neuron. These results are typical of 4 animals from each experimental group. Scale bar, 10 um.

Both HO-1 and HO-2 are ubiquitously and catalyti-
cally active enzymes involved in the degradation of
heme [35]. Whereas HO-2 is constitutively expressed
under homeostatic conditions, HO-1 is an inducible iso-
form that is responsive to hypoxia or oxidative stress.
As an antioxidant enzyme, HO-1 acts against oxidative
stress by metabolizing heme to biliverdin, iron (Fe**)
and carbon monoxide [36]. It plays a neuroprotective
role in mouse hippocampal neuron-derived HT22 cell
line that is exposed to oxidative glutamate toxicity [37],
or in homozygous HO-1 transgenic mice that are sub-
ject to middle cerebral artery occlusion [38]. Our labora-
tory reported previously [13] that severe tissue hypoxia,
but not tissue hypo-perfusion, takes place in RVLM dur-
ing Phase I Mev intoxication. It is therefore of interest
that we found that activation of HIF-1 is causally related
to the preferential upregulation of HO-1 in RVLM dur-
ing the pro-life phase. HIF-1 is a heterodimer of two
basic helix-loop-helix/PAS proteins, HIF-1o. and HIF-1§
[39]. Hypoxia stabilizes HIF-1a, and nucleus-bound
translocation of the stabilized HIF-1a allows for forma-
tion of the HIF-1af heterodimer that becomes tran-
scriptionally active [40]. The activated HIF-1a3 complex
binds to target genes at hypoxia regulatory element
(HRE), which contains the core recognition sequence 5'-
RCGTG-3', leading to upregulation of hypoxia respon-
sive gene products such as so-1 [20]. Our results from
loss-of-function manipulations of HIF-1a or HIF-1B

showed that activation of HIF-1af3 complex leads to
augmented HO-1 protein expression in RVLM neurons
during the pro-life phase. Results from immunoneutrali-
zation of HO-1 protein or knockdown of ho-1 gene in
RVLM further confirmed that this transcriptionally
upregulated HO-1 is causally and preferentially related
to sustaining central cardiovascular regulation during
experimental brain stem death. On the other hand, our
results indicated that whereas HO-2 is cytoprotective via
phosphorylation by protein kinase C [41] and is present
in RVLM neurons, it is minimally engaged in the cellu-
lar processes that underlie brain stem death.

Our results further lend credence to the notion that
HO-1 acts as an intermediate between HIF-1 activation
and the pro-life NOS I/PKG pathway in RVLM. NOS I
[21,22] is known to be a hypoxia responsive gene pro-
duct activated by HIF-1. Hypoxia increases NOS I
expression that parallels activation of HIF-1a in piglet
ventricular tissues [21]. An increase in NOS I mRNA
and protein and HIF-1o protein expression also occurs
in cerebral cortex of anemic rats [22]. The elevated NO
level in hypoxic corpus callosum [42] or retina [43] is
accompanied by an increase in mRNA and protein
expression of HIF-1a and NOS I. Induction of HO-1
also rapidly restores NOS I expression in interstitial
cells of Cajal and prevents oxidative stress in mice [44].
Of note is that the promoter region of nos I gene lacks
HRE [45], the target site for HIF-1.Thus, it is of interest
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Temporal changes in MSAP, HR or power density of the LF component of SAP signals in rats that received pretreatment by microinjection
bilaterally into RVLM of normal rabbit serum (NRS; 1:20) or HO-2 antiserum (1:20); or aCSF, scrambled (SC; 50 pmol), sense (S; 50 pmol) or
antisense (AS; 50 pmol) ho-2 oligonucleotide (right column), 1 h or 24 h before local application (at arrow) of aCSF or Mev (10 nmol) to the
bilateral RVLM. Values are mean + SEM, n = 5-7 animals per experimental group. *P < 0.05 versus NRS+aCSF or aCSF+aCSF group, and *P < 0.05
versus NRS+Mev or aCSF+Mev group at corresponding time-points in the Scheffé multiple-range test.

that by showing that immunoneutralization of HO-1
protein or knockdown of 4o-1 gene blunted the surge of
NOS I or PKG expression in RVLM during Phase I Mev
intoxication, the present study demonstrated that HO-1
acts as the interposing signal between upregulation of
HIF-1 and NOS I activation. Our laboratory showed
previously that on activation by the HIF-1/HO-1 cascade
[18], HSP70 ameliorates cardiovascular regulatory dys-
function during experimental brain stem death via
enhancing NOS I/PKG signaling in RVLM [13]. It fol-
lows that the repertoire of cellular signals in RVLM dur-
ing the pro-life phase of experimental brain stem death
entails transcriptional upregulation of HO-1 by HIF-1,

followed by activation of HSP70 that leads to sustained
brain stem cardiovascular regulatory functions by the
enhanced NOS I/PKG signaling.

Previous studies from our laboratory [16,17] demon-
strated that the NOS II/peroxynitrite cascade in RVLM
underlies central cardiovascular regulatory failure during
the pro-death phase of experimental brain stem death.
NOS II is also a well-known hypoxia responsive gene
product [20,22]. Melillo et al. [46] showed that a
sequence homologous to a hypoxia-responsive enhancer
(NOS II-HRE) is responsible for activation of nos II
gene in murine macrophages. A putative HIF-1 site
(CTACGTGCT) in the murine NOS II gene was
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Figure 5 Transcriptional activation of HO-1 leads to preferential upregulation of NOS I/PKG signaling in RVLM. lllustrative gels or
summary of fold changes against aCSF controls in ratio of nitric oxide synthase | (NOS 1), protein kinase G (PKG), NOS II or nitrotyrosine (NT)
relative to B-actin protein detected in ventrolateral medulla of rats that received immunoneutralization of HO-1 or HO-2, or knockdown of ho-1
or ho-2 gene in RVLM, 1 h or 24 h before induction of Mev intoxication. Note that NT is presented as % relative to B-actin because it is below
detection limit (ND) in aCSF controls. Values are mean + SEM of triplicate analyses on samples pooled from 4-6 animals per experimental group.
*P < 005 versus aCSF group and P < 0.05 versus Mev group in the Scheffé multiple-range test.
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subsequently shown to be crucial for hypoxia-induced
transcription in pulmonary artery endothelial cells [47]
or cardiomyocytes [48]. Hypoxia-induced NOS II pro-
tein expression is transcriptionally upregulated by of
HIF-1a in hippocampus of rats that received permanent
middle cerebral artery occlusion [49]. However, since
immunoneutralization of HO-1 protein and knockdown
of ho-1 gene did not significantly affect the progressive
augmentation of NOS II or nitrotyrosine levels in

ventrolateral medulla during experimental brain stem
death, the participation of HIF-1/HO-1 as cellular sig-
nals upstream to NOS II/peroxynitrite cascade is
deemed minimal.

We recognize that the effectiveness of immunoneutra-
lization depends on the specificity of the antiserum
used. In this regard, the HIF-1a, HIF-18, HIF-2a, HO-1
or HO-2 antiserum employed in the present study are
all directed specifically against their respective antigens
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and do not cross-react with each other or other unre-
lated signaling systems. The same goes with the anti-
sense oligonucleotides used to knock down ho-1 or ho-2
gene. The observations, for example, that immunoneu-
tralization or gene knockdown of HO-1 exerted compar-
able effects on cardiovascular responses (Fig. 1) and
NOS I/PKG signaling (Fig. 5), but not NOS II/peroxyni-
trite cascade (Fig. 5) during Mev intoxication further
attest to the specificity of these treatments. The use of
conditional knockout mouse model, which in essence is
similar to antisense oligonucleotide treatment at RVLM,
is another method of pretreatment. However, since our
animal model of brain stem death is based on the rat,
this approach was not adopted because of the concern
for species difference.

Conclusions

We conclude that transcriptional upregulation of HO-1
on activation of HIF-1 in RVLM plays a preferential
pro-life role by sustaining cardiovascular regulatory
functions during brain stem death via upregulation of
NOS I/PKG signaling pathway. Our results further
showed that NOS II/peroxynitrite signaling is not
included in this repertoire of cellular events. This infor-
mation should provide further insights on the etiology
of brain stem death, and offer new directions for the
development of therapeutic strategy against this fatal
eventuality.
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