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A new type of soft actuator material—an ionic liquid gel (ILG) that consists of BMIMBF4, HEMA, DEAP, and ZrO2—is
polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the
assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the
five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane
uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of
the ILG with a ZrO2 content of 3wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c10, c01, c20,
c11, and c02 and c10, c01, c20, c11, c02, c30, c21, c12, and c03, respectively. Through the analysis and comparison of the uniaxial
tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter
Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the
nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible
and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft
actuator composed of an ILG and will contribute to the optimized design of soft robots.

1. Introduction

At room temperature, the ionogel is a polymerized gelatinous
mixture from the ionic liquid and polymer matrix under UV
irradiation [1, 2]. The high conductivity and stability of ionic
liquids and the good mechanical properties of polymers
make ionic liquid gels an ideal replacement for the traditional
electroactive polymers [3]. Due to their high environmental
adaptability and low-pressure impedance characteristics, soft
robots have shown broad application potential in the fields of
biology, medicine, agriculture, and so on. The adoption of
electroactive polymer (EAP) materials for soft robots has
become a hot research topic in recent years. Progress in elec-
trochemical actuators has been made over the past few
decades due to their desirable mechanical properties for
intelligent robots, which are an alternative for air- and
fluid-derived equipment [4–7]. Ionic liquid gels (ILG) are
suitable building blocks for advanced actuators due to their
tunable ionic conductivity, chemical stability, thermal stabil-
ity, and simple ion transport [8-9].

Electrochemical actuators have been further developed
over the past few decades for their desirable mechanical
properties in intelligent robots, which are alternatives to
air- and fluid-derived devices. The flexible ionic conductivity
of ILG is better suited to the evolution of building blocks due
to the simpler ion transport actuators [10].

Noncovalent interactions provide the gels with the very
high mechanical strength and excellent self-healing ability
of supramolecular materials [11, 12]. Based on these studies,
we used ZrO2 to fabricate supramolecular nanocomposites
with the electrochemical behavior of an ionic liquid and
mechanical strength of an ionogel polymer.

Among numerical approaches, finite element analysis is
one of the most effective and most common information
extraction methods to evaluate and optimize robot designs.
By using this method, analytical models can be greatly sim-
plified, which greatly increases the computational efficiency.
The largest drawback is that ignorance of the nonlinear and
constitutive model and the simplification of the computa-
tional model often lead to coarse solutions [13, 14].
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Numerical simulations offer sufficient insight for each case
during general soft robot design.

Lee et al. used the finite element method (FEM) to suc-
cessfully predict the mechanical behavior of an ionic
polymer-metal composite (IPMC) actuator [15]. Wang et
al. established a model based on the FEM to determine the
electromechanical bending behavior of photocurable ionogel
actuators (PIA) [16]. He et al. used the common large-scale
finite element analysis software ANSYS to simulate an ILG,
which is based on the SOLID186 element and the nonlinear
hyperelastic Mooney-Rivlin model [17].

Because the use of an ILG actuator requires deep under-
standing of the mechanical properties of the soft robot, it is
necessary to establish a theoretical model to obtain its perfor-
mance index. To reduce the experimental cost and time, we
systematically analyzed the ILG via numerical simulations
and verified the accuracy of the calculation, which contrib-
uted to the development of the ILG in the soft robot. The
numerical simulation results matched the corresponding
experiments, proving the validity of the model [18, 19].

2. Fabrication of the Ionic Liquid Gel

In the experiments, the ILG was composed of 1-butyl-3-
methylimidazolium tetrafluoroborate (BMIMBF4), hydro-
xyethyl methacrylate (HEMA), 2-diethoxyacetophenone
(DEAP), and ZrO2, with masses of 900mg, 68.6mg, 1.4mg,
and 30mg, respectively. The mixed solution was then placed
into a magnetic stirrer to form a suspension. Following that,
the sample was placed on an ML-3500C Maxima-type cold

light source for ultra-high-intensity UV radiation curing to
induce polymerization. The UV intensity is 90000uW / cm2

(15″/ 380mm distance) [20].
Figure 1(a) shows a comparison of the morphology of the

ionic liquid before and after gel formation: the left figure
shows the liquid state, while the right shows the solid state
formed after polymerization. The schematic diagram of the
principle behind gel formation is illustrated in Figures 1(b)
and 1(c). Under UV light irradiation and the action of the
DEAP catalyst, the polymer matrix was cross-linked into a
porous network structure.

3. Material Nonlinearity and Parameters

The morphological analysis of the freeze-dried sample by
scanning electron microscopy (SEM) showed that a porous
microstructure was present throughout the ionogel. Distilled
water was used to replace the internal ionic liquid in the ILG
after freeze-drying treatment, and then, an S4800 Hitachi
high-resolution field-emission scanning electron microscope
was used to scan the sample. Figure 2 shows the spatial struc-
ture of the ionic liquid carrier HEMA for the typical 3D
porous structure with a 5000x magnification, in which its
matrix is cross-linked to generate a 3D support skeleton,
offering good mechanical strength and self-repairing perfor-
mance. Due to the porous 3D network in the ionogel, gelated
BMIMBF4 retains a relatively high ionic conductivity.

3.1. Hyperelastic Hypothesis. Assuming that the ILG is an
isotropic, incompressible, hyperelastic body, the following

UV light

(a)

(c)(b)

BMIMBF4

ZrO2

Hema monomer

Hema polymer

Figure 1: The proposed mechanism of the BMIMBF4-based ionogel under ultraviolet light. (a) ILG solution and ILG solid, respectively. (b)
The ILG solution includes BMIMBF4, HEMA, DEAP, and ZrO2. (c) HEMA and ZrO2 are cross-coupled to form a 3D network.
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assumptions can be made based on the theory of contin-
uum mechanics to study its mechanical properties.

(1) The strain energy functionW of a unit mass of mate-
rial is an analytic function of the strain tensor of the
natural state, termed the hyperelastic hypothesis. If
the rate of change of W is equal to the power of the
stress, then the material is a hyperelastic material.
The mechanical properties of a hyperelastic material
are described by the strain energy density function
W, which has many functions.

(2) Isotropy can be assumed.

(3) The volume of the material before and after deforma-
tion can be assumed to be the same.

λ1, λ2, and λ3 are set as the x, y, and z directions of the
main (extension) deformation rate, respectively, given by

λ1 =
x
x0

,

λ2 =
y
y0

,

λ3 =
d
d0

,

1

where x, y, and d are the length, width, and thickness, respec-
tively, and x0, y0, and d0 are the corresponding initial values
before deformation.

Because the material is incompressible, its volume is the
same before and after deformation, giving

xyd = x0y0d0, 2

namely,

xyd
x0y0d0

= λ1λ2λ3 = 1 3

3.2. Hyperelastic Stress. Considering the mechanical perfor-
mance requirements for potential applications, three kinds
of deformation states should be examined: Figure 3(a) shows
the uniaxial tensile stress, Figure 3(b) shows uniform pre-
stretching in the X and Y directions, and Figure 3(c) shows
the Maxwell stress increased along the thickness.

The physical properties are mainly expressed by the
strain energy function, and each model is a special form of
this function [21–23]. Once the form of the strain energy
function W is determined, the Cauchy stress tensor P can
be given by

σ = −pI + 2 ∂W
∂I1

B − 2 ∂W
∂I2

B−1, 4

where I is the unit tensor, which is the left Gauss deformation
tensor, and p is the hydrostatic pressure resulting from the
assumption of incompressibility.

I1 = B,

I2 =
1
2 I21 − tr B2 ,

I3 = det B,

5

where B is the component of the Green strain tensor. The
relationship between the invariants and the principal elonga-
tion is of a function of B.

I1 = tr B = Bii = λ21 + λ22 + λ23,

I2 =
1
2 tr B

2 − tr B
2 = 1

2 BiiBii − BijBji

= λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1 =

1
λ21

+ 1
λ22

+ 1
λ23

,

I3 = det B = λ21λ
2
2λ

2
3

6

Hence, the isotropic and incompressible deformation
process of an ILG is given as

I3 = λ1λ2λ3 = 1 7

According to (4) and (6), we can obtain

σi = 2λ2i
∂W
∂I1

−
1
λ2i

∂W
∂I2

− p, 8

where I1, I2, and I3 are the relative changes in the length, sur-
face area, and volume of the elastomer, respectively.

3.3. Mooney-Rivlin Model. The Mooney-Rivlin model was
chosen after comparing various hyperelastic constitutive
models. The mechanical properties of ionic gel materials
can be studied by using the Mooney-Rivlin formula, which
is considered to be a nonlinear finite element of ionic gels
in this study [24–26].

The strain energy function in the Mooney-Rivlin model
equation is as follows:

W = 〠
n

i≠j
cij I1 − 3 i I2 − 3 j, 9

where cij is a constant.
The Mooney-Rivlin model is the most widely used strain

energy function in the finite element method. It assumes
that the strain energy density is a first-order function of the
principal strain constant. Under large deformations, the

50.0 �휇mS4800 3.0kV 8.2mm × 700 SE(M)

Figure 2: SEM image of a freeze-dried BMIMBF4-based gel after
replacing the ionic liquid with water [17].
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mechanical properties of the ILG, as an incompressible
hyperelastic material, are described.

3.4. Selection of the Constitutive Model for the ILG. Yeoh
noted that the practical value of the higher-order strain
energy function is small because the reproducibility of the
ILG material is not sufficient and does not allow accurate
estimation of a large number of parameters [27].

Due to its simplicity and practicality, the Mooney-Rivlin
model is widely used in finite element analysis. The first-
order Mooney-Rivlin model describes the mechanical prop-
erties of incompressible hyperelastic materials under large
deformation. The higher-order Mooney-Rivlin model can
obtain a good approximation for the solution of large strain.

The mechanical response of the hyperelastic material
model is determined by the strain energy density function.
The Mooney-Rivlin constant of the material must be accu-
rately evaluated to obtain a reliable result from the hyperelas-
tic analysis. In finite element analysis, the hyperelastic
material is generally assumed to be a homogeneous isotropic
material whose elastic modulus (Young’s modulus) E, initial
shear modulus G0, and Poisson’s ratio v satisfy the following
relationship [28, 29].

E = 2G0 1 + v 10

4. Stress Calculation

4.1. Uniaxial Tension (State I)

4.1.1. Five-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation in the five-parameter Mooney-Rivlin
model can be written as

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2 11

From (8), we get

σi = 2 λ2i
∂W
∂I1

−
1
λ2i

∂W
∂I2

− p 12

The stresses in all directions are

σ1 = 2 λ21
∂W
∂I1

−
1
λ21

∂W
∂I2

− p, 13

σ2 = 2 λ22
∂W
∂I1

−
1
λ22

∂W
∂I2

− p, 14

σ3 = 2 λ23
∂W
∂I1

−
1
λ23

∂W
∂I2

− p, 15

where ∂W/∂I1 and ∂W/∂I2 are the partial differentials in the
strain energy function W for I1 and I2, respectively, and σ1,
σ2, and σ3 are the stresses in the x, y, and z directions,
respectively.

When uniformly stretched in the X direction, λ2 = λ3,
and from (3), we get

λ2 = λ3 =
1
λ1

16

From (6) and (16), we obtain

I1 = λ21 +
2
λ1

,

I2 =
1
λ21

+ 2λ1
17

Because only axial tensile deformation is considered, the
stress in the other two directions is zero.

σ2 = σ3 = 0 18
From (14) or (15) and (16), we obtain

p = 2 1
λ1

∂W
∂I1

− λ1
∂W
∂I2

19

Substituting (19) into (13),

σ1 = 2 λ21 −
1
λ1

∂W
∂I1

+ 1
λ1

∂W
∂I2

20

For (11), the partial differentials of the strain energy func-
tion W for I1 and I2 are given by

∂W
∂I1

= c10 + 2c02 I1 − 3 + c11 I2 − 3 ,

∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3
21

Therefore,

�휎2 �휎2
�휎3

�휎1�휎1�휎1

(a) (b) (c)

Figure 3: Analyses of the stress in different states.
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σ1 = 2 λ21 −
1
λ1

c10 + 2c02 I1 − 3 + c11 I2 − 3

+ 1
λ1

c01 + 2c02 I2 − 3 + c11 I1 − 3

22
4.1.2. Nine-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation in the nine-parameter Mooney-
Rivlin model is

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2

+ c30 I1 − 3 3 + c21 I1 − 3 2 I2 − 3
+ c12 I1 − 3 I2 − 3 2 + c03 I2 − 3 3

23

For (23), the partial differentials of the strain energy
function W for I1 and I2 are given by

∂W
∂I1

= c10 + 2c20 I1 − 3 + c11 I2 − 3 + 3c30 I1 − 3 2

+ 2c21 I1 − 3 I2 − 3 + c12 I2 − 3 2 =M,
∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3 + 3c03 I2 − 3 2

+ 2c12 I1 − 3 I2 − 3 + c21 I1 − 3 2 =N

24
Therefore,

σ1 = 2 λ21 −
1
λ1

M + 1
λ1

N 25

4.2. Evenly Stretched in the X and Y Directions (State II)

4.2.1. Five-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation in the five-parameter Mooney-Rivlin
model is

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2 26

From (8), we get

σi = 2 λ2i
∂W
∂I1

−
1
λ2i

∂W
∂I2

− p 27

The stresses in all directions are

σ1 = 2 λ21
∂W
∂I1

−
1
λ21

∂W
∂I2

− p, 28

σ2 = 2 λ22
∂W
∂I1

−
1
λ22

∂W
∂I2

− p, 29

σ3 = 2 λ23
∂W
∂I1

−
1
λ23

∂W
∂I2

− p 30

When uniformly stretched in the X and Y directions,
λ1 = λ2, and from (3), we obtain

λ1 = λ2 =
1
λ3

31

From (6) and (31), we get

I1 = 2λ21 +
2
λ41

,

I2 =
2
λ21

+ λ41

32

Because tensile deformations are only considered in the X
and Y directions, the stress in the thickness direction is zero.

σ1 = σ2,
σ3 = 0

33

From (28) or (29) and (31), we obtain

p = 2 1
λ41

∂W
∂I1

− λ41
∂W
∂I2

34

Substituting (34) into (28) or (29),

σ1 = σ2 = 2 λ21 −
1
λ41

∂W
∂I1

+ λ21
∂W
∂I2

35

For (26), the partial differentials of the strain energy func-
tion W for I1 and I2 are given by

∂W
∂I1

= c10 + 2c20 I1 − 3 + c11 I2 − 3 ,

∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3
36

Therefore,

σ1 = σ2 = 2 λ21 −
1
λ41

c10 + 2c02 I1 − 3 + c11 I2 − 3
+ λ21 c01 + 2c02 I2 − 3 + c11 I1 − 3

37

4.2.2. Nine-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation of the nine-parameter Mooney-
Rivlin model is

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2

+ c30 I1 − 3 3 + c21 I1 − 3 2 I2 − 3
+ c12 I1 − 3 I2 − 3 2 + c03 I2 − 3 3

38

For (38), the partial differentials of the strain energy func-
tion W for I1 and I2 are given by
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∂W
∂I1

= c10 + 2c20 I1 − 3 + c11 I2 − 3 + 3c30 I1 − 3 2

+ 2c21 I1 − 3 I2 − 3 + c12 I2 − 3 2 =M

∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3 + 3c03 I2 − 3 2

+ 2c12 I1 − 3 I2 − 3 + c21 I1 − 3 2 =N

39

Therefore,

σ1 = σ2 = 2 λ21 −
1
λ41

M + λ21N 40

4.3. Applied Maxwell Stress Loading (State III). The Maxwell
stress can be written as

p = −ςς0V
2 = −ςς0

u2

d2
, 41

where ς is the insulation constant, ς0 is the vacuum dielectric
constant (8.85× 10−12F/m), V is the electric field intensity,
and u is the voltage.

4.3.1. Five-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation in the five-parameter Mooney-Rivlin
model is

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2 42

From (8), we get

σi = 2 λ2i
∂W
∂I1

−
1
λ2i

∂W
∂I2

− p 43

The stresses in all directions are

σ1 = 2 λ21
∂W
∂I1

−
1
λ21

∂W
∂I2

− p, 44

σ2 = 2 λ22
∂W
∂I1

−
1
λ22

∂W
∂I2

− p, 45

σ3 = 2 λ23
∂W
∂I1

−
1
λ23

∂W
∂I2

− p 46

When the Maxwell stress is loaded, namely, λ1 = λ2,
(3) gives

λ1 = λ2 =
1
λ3

47

From (6) and (45), we get

I1 = 2λ21 +
2
λ41

,

I2 =
2
λ21

+ λ41

48

For (42), the partial differentials of the strain energy func-
tion W for I1 and I2 are given by

∂W
∂I1

= c10 + 2c20 I1 − 3 + c11 I2 − 3 ,

∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3
49

Because the materials uniformly stretched in the X and Y
directions,

σ1 = σ2 50

From (41), we obtain

σ3 = −ςς0V
2 = −ςς0

u2

d2
= −ςς0

u2

λ3d0
2 51

Substituting (49), (50), and (51) into (44) and (46),

σ1 = σ2 = 2 λ21 c10 + 2c20 I1 − 3 + c11 I2 − 3

−
1
λ21

c01 + 2c02 I2 − 3 + c11 I1 − 3 − p,

52

σ3 = 2 1
λ41

c10 + 2c20 I1 − 3 + c11 I2 − 3

− λ41 c01 + 2c02 I2 − 3 + c11 I1 − 3 − p,
53

σ3 = −ςς0
u2

λ3d0
2 = −ςς0

λ41u
2

d0
2 54

From (53) and (54),

p = 2 1
λ41

c10 + 2c20 I1 − 3 + c11 I2 − 3

− λ41 c01 + 2c02 I2 − 3 + c11 I1 − 3

+ ςς0
λ41u

2

d0
2

55

Therefore,

σ1 = σ2 = 2 λ21 c10 + 2c20 I1 − 3 + c11 I2 − 3

−
1
λ21

c01 + 2c02 I2 − 3 + c11 I1 − 3

− 2 1
λ41

c10 + 2c20 I1 − 3 + c11 I2 − 3

− λ41 c01 + 2c02 I2 − 3 + c11 I1 − 3

− ςς0
λ41u

2

d0
2 ,

σ3 = −ςς0
λ41u

2

d0
2

56
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4.3.2. Nine-Parameter Mooney-Rivlin Model. From (9), the
strain energy equation in the nine-parameter Mooney-
Rivlin model is

W = c10 I1 − 3 + c01 I2 − 3 + c20 I1 − 3 2

+ c11 I1 − 3 I2 − 3 + c02 I2 − 3 2

+ c30 I1 − 3 3 + c21 I1 − 3 2 I2 − 3
+ c12 I1 − 3 I2 − 3 2 + c03 I2 − 3 3

57

For (57), the partial differentials of the strain energy func-
tion W for I1 and I2 are given by

∂W
∂I1

= c10 + 2c20 I1 − 3 + c11 I2 − 3 + 3c30 I1 − 3 2

+ 2c21 I1 − 3 I2 − 3 + c12 I2 − 3 2 =M,
∂W
∂I2

= c01 + 2c02 I2 − 3 + c11 I1 − 3 + 3c03 I2 − 3 2

+ 2c12 I1 − 3 I2 − 3 + c21 I1 − 3 2 =N

58

Because the materials uniformly stretched in the X and
Y directions,

σ1 = σ2 59

From (41),

σ3 = −ςς0V
2 = −ςς0

u2

d2
= −ςς0

u2

λ3d0
2 60

Substituting (58), (59), and (60) into (44) and (46),

σ1 = σ2 = 2 λ21M −
1
λ21

N − p, 61

σ3 = 2 1
λ41

M − λ41N − p = −ςς0
u2

λ3d0
2

= −ςς0
λ41u

2

d0
2

62

From (61) and (62),

p = 2 1
λ41

M − λ41N + ςς0
λ41u

2

d0
2 63

Therefore,

σ1 = σ2 = 2 λ21M −
1
λ21

N

− 2 1
λ41

M − λ41N − ςς0
λ41u

2

d0
2 ,

σ3 = −ςς0
λ41u

2

d0
2

64

5. Experimental Analysis

5.1. Production of Tensile Test Sample. The prepared solution
was poured into a mold and polymerized into a gel under the
irradiation of a UV lamp. The gel is white in color and is filled
in the transparent glass mold as shown in Figure 4. Then, the
sample was cut to the size shown in Figure 5, with a thickness
of 3.4mm. As shown in Figure 6, the experimental instru-
ment was a UTM2502 electronic universal testing machine.
The mechanical sensor on the testing machine can achieve
a precision of 0.1mN, the displacement sensor has a preci-
sion of 0.001mm, and the stretching rate is 500mm/min.

5.2. Experimental Results. As seen from Figure 6, the
ILG becomes longer and thinner as the load increases,
which is consistent with the assumption that the material
is incompressible.

The tensile stress-strain curve of the ILG is shown in
Figure 7, and the average tensile strength (Young’s modulus)
of the material obtained from the tensile stress-strain curve
is 7.6 kPa.

In the ionogel, BMIMBF4 exhibits a high level of hypere-
lastic toughness when the tensile deformation reaches 360%.
The tensile test showed that the tensile properties of the gel
increased with an increase in ZrO2 content. The increase in
ZrO2 content should generate more cross-linking sites and
higher conversion rates (shown in Figure 2), which contrib-
utes to the overall mechanical properties. As the content of

Figure 4: The gel after polymerization under a UV lamp.

10 10

3.
210

R3.4

35

Figure 5: Test sample size (in mm).
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ZrO2 increases, the tensile strength of the ILG increases,
while the elongation rate decreases. Considering the above
data, the optimum amount of ZrO2 to provide a large tensile
strain and tensile strength is 3wt%.

5.3. Stress Calculation. The relationship between the real
stress σi and engineering stress σE is

σi = σEλ, 65

where σi is the true stress and σE is the engineering
stress. The calculated stress given in Table 1 is the engi-
neering stress.

We next tested whether the above-derived engineering
stress expression for the ILG is accurate and whether it can
be used for the design of an ILG actuator or sensor. To verify
the accuracy and practicability of the induced stress expres-
sion of the ILG, the deformation rate at each point in the uni-
axial tensile test was substituted into the engineering stress
expression to calculate the engineering stress. A comparison

of the calculated uniaxial tensile stress with the experimental
data is given in Table 1.

For the five-parameter Mooney-Rivlin model, the param-
eters c10, c01, c20, c11, and c02 are as follows.

c10 = 2 3582,
c01 = −0 87482,
c20 = −0 066187,
c11 = 0 19663,
c02 = 0 21939

66

For the nine-parameter Mooney-Rivlin model, the
parameters c10, c01, c20, c11, c02, c30, c21, c12, and c03 are as
follows.

c10 = 0 55361,
c01 = 1 0009,
c20 = 130 08,
c11 = −270 06,
c02 = 142 91,
c30 = 0 014438,
c21 = −0 17711,
c12 = −31 71,
c03 = 17 028

67

As seen from Table 1 in the comparisons of the calculated
tensile stress with the experimental data, the relative error of
the five-parameter Mooney-Rivlin model is less than 0.51%
and the relative error of the nine-parameter Mooney-Rivlin
model is no more than 8.87%.

Figure 6: Uniaxial tensile test.
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Figure 7: Stress-strain curve of the ionic liquid gel polymer.
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Figure 8 shows that the stress-strain curve calculated
by the five-parameter model almost coincides with the exper-
imental curve. The first half of the stress-strain curve calcu-
lated by the nine-parameter model almost coincides with
the experimental curve, while in the second half, the error
between the stress-strain curve calculated by the nine-
parameter model and the experimental curve becomes
increasingly larger, but the error remains small.

The above analyses indicate that the simulated values are
consistent with the experimental values, making our deriva-
tion a feasible and credible stress formula for the calculation
of the ILG properties.

Due to our current laboratory conditions, only the uniax-
ial tensile test was performed. The next step is to improve the
laboratory conditions in order to carry out the plane uniform
tensile test and the Maxwell stress experiments. Further

Table 1: Comparison of the calculated tensile stress with the experimental data from the uniaxial tensile test.

Measurement data Experimental results Five-parameter Mooney-Rivlin model Nine-parameter Mooney-Rivlin model
Force
(mN)

Deformation (mm) Strain (%) Stress (kPa) Calculated stress (σE) (kPa) Error (%) Calculated stress (σE) (kPa) Error (%)

4.97 2.0 5.7 0.50 0.50 0.46 0.50 0.00

8.21 3.5 10 0.86 0.86 0.51 0.86 0.07

14.88 7.0 20 1.70 1.70 0.26 1.70 0.03

20.52 10.5 30 2.54 2.54 0.06 2.55 0.26

25.35 14.0 40 3.38 3.37 0.24 3.39 0.29

29.47 17.5 50 4.21 4.21 0.13 4.23 0.44

33.06 21.0 60 5.04 5.04 0.09 5.07 0.49

36.22 24.5 70 5.86 5.86 0.05 5.90 0.68

38.94 28.0 80 6.68 6.69 0.07 6.73 0.8

41.48 31.5 90 7.50 7.50 0.01 7.57 0.87

43.58 35.0 100 8.30 8.30 0.05 8.39 1.10

45.50 38.5 110 9.10 9.10 0.01 9.21 1.21

47.13 42.0 120 9.88 9.88 0.02 10.02 1.41

48.67 45.5 130 10.65 10.65 0.01 10.82 1.57

49.98 49.0 140 11.41 11.41 0.04 11.60 1.67

51.03 52.5 150 12.15 12.14 0.06 12.37 1.80

51.95 56.0 160 12.86 12.86 0.01 13.12 2.03

52.75 59.5 170 13.56 13.56 0.01 13.86 2.19

53.40 63.0 180 14.24 14.24 0.0 14.58 2.35

53.90 66.5 190 14.89 14.90 0.05 15.27 2.58

54.32 70.0 200 15.52 15.53 0.06 15.95 2.79

54.65 73.5 210 16.12 16.14 0.11 16.61 3.05

54.78 77.0 220 16.70 16.72 0.10 17.25 3.29

54.86 80.5 230 17.25 17.27 0.11 17.86 3.55

54.94 84.0 240 17.78 17.79 0.07 18.45 3.78

54.84 87.5 250 18.28 18.28 0.01 19.02 4.02

54.72 91.0 260 18.74 18.74 0.00 19.55 4.32

54.47 94.5 270 19.18 19.16 0.08 20.05 4.56

54.01 98.0 280 19.57 19.55 0.09 20.53 4.89

53.61 101.5 290 19.93 19.90 0.14 20.97 5.19

53.23 105.0 300 20.24 20.21 0.13 21.37 5.57

52.48 108.5 310 20.50 20.49 0.07 21.73 6.00

51.83 112.0 320 20.73 20.71 0.08 22.05 6.38

51.02 115.5 330 20.91 20.90 0.05 22.34 6.81

50.29 119.0 340 21.04 21.04 0.01 22.57 7.29

49.21 122.5 350 21.12 21.13 0.06 22.77 7.80

48.25 126.0 360 21.16 21.18 0.08 22.92 8.31

47.17 129.5 370 21.15 21.17 0.10 23.03 8.87
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studies of the five-parameter and nine-parameter Mooney-
Rivlin models will be carried out.

6. Conclusions

In this paper, an ILG is modeled by the hyperelastic nonlin-
ear finite element model. The simulation results show that
the Mooney-Rivlin model can well adapt to the constitutive
relation of the material [30, 31]. The main advantage of the
ILG is that the stress-strain curve can be obtained by the per-
formance parameters of the material in a relatively short
time, which provides a theoretical basis for the optimal
design of a soft robot.

The simulation results show that the average error
between the calculated data and the experimental data is
small, and the model has a good correlation with the experi-
mental data. The model requires the input of the ILG mate-
rial parameters. A standard uniaxial stretching method is
used to obtain the desired ILG material parameters.

In the future, we will seek a generalized algorithm for
identifying the ILG mechanical properties. Notably, all the
results of this study show that there is a good correlation
between the 3D theoretical assumptions and the experimen-
tal conditions, which proves that our method can be used to
optimize the design of a soft robot. This work opens a new
path to study the performance of ILG soft actuators, which
will be the direction of future work.
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