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Neurons that respond to visual targets in a hand-centered frame of reference have been

found within various areas of the primate brain. We investigate how hand-centered visual

representations may develop in a neural network model of the primate visual system

called VisNet, when themodel is trained on images of the hand seen against natural visual

scenes. The simulations show how such neurons may develop through a biologically

plausible process of unsupervised competitive learning and self-organization. In an

advance on our previous work, the visual scenes consisted of multiple targets presented

simultaneously with respect to the hand. Three experiments are presented. First, VisNet

was trained with computerized images consisting of a realistic image of a hand and a

variety of natural objects, presented in different textured backgrounds during training. The

network was then tested with just one textured object near the hand in order to verify

if the output cells were capable of building hand-centered representations with a single

localized receptive field. We explain the underlying principles of the statistical decoupling

that allows the output cells of the network to develop single localized receptive fields

even when the network is trained with multiple objects. In a second simulation we

examined how some of the cells with hand-centered receptive fields decreased their

shape selectivity and started responding to a localized region of hand-centered space

as the number of objects presented in overlapping locations during training increases.

Lastly, we explored the same learning principles training the network with natural visual

scenes collected by volunteers. These results provide an important step in showing how

single, localized, hand-centered receptive fields could emerge under more ecologically

realistic visual training conditions.

Keywords: hand-centered, neural networks, self-organization, reference frames, posterior parietal cortex, area

5d, premotor

1. INTRODUCTION

The brain seems to represent the location of objects in space using a variety of coordinate systems.
Consistent with this, several neurophysiological recordings have reported neurons encoding the
location of visual targets in different frames of reference. Visual targets are represented initially
in a retinocentric or eye-centered frame of reference and in later stages of processing this
information is recoded into more abstract, non-retinal coordinate maps that are more suitable to
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guide our behavior. For example, head-centered, body-centered,
hand-centered as well as mixed representations have been
reported in different parts of the posterior parietal cortex and
adjacent areas (Andersen et al., 1985; Brotchie et al., 1995; Buneo
et al., 2002; Pesaran et al., 2006; Bremner and Andersen, 2012).

Similarly, a number of electrophysiological recordings in
macaques have also reported neurons with localized and selective
responses to stimuli shown in localized regions near the body
or parts of the body (i.e., peri-personal space and peri-hand
space; Hyvärinen and Poranen, 1974; Rizzolatti et al., 1981, 1988;
Graziano and Gross, 1993; Graziano et al., 1994, 1997; Fogassi
et al., 1996, 1999; Graziano and Gross, 1998; Graziano, 1999).
The visual responding regions of these cells seem to extend from
the skin and could be found anchored to different parts of the
body (e.g., around the hand, mouth and face). Their response
properties do not seem to change with eye movements and the
target does not have to necessarily touch the skin to elicit a
response.

Cells representing the location of visual targets in hand-
centered coordinates have been reported inmultiple areas, mostly
in the parietal cortex and premotor areas. For planning reach
vectors, hand-centered coordinates seem to be the dominant
representation in area 5d (Buneo and Andersen, 2006; Bremner
and Andersen, 2012). Other hand-centered receptive fields have
been found also in ventral premotor areas (Graziano et al., 1997;
Graziano, 1999). These cells fire maximally to the location of
the target relative to the hand, irrespective of where on the
retina this fixed spatial configuration appears. A number of
neurophysiological and behavioral studies with human subjects
have similarly shown evidence of hand-centered encoding of the
location of visual objects near the hands (peri-hand space) in
parietal and premotor areas (Makin et al., 2009, 2007; Brozzoli
et al., 2011, 2012; Gentile et al., 2011).

Different theoretical approaches have been proposed to reflect
the different stages of coordinate transformations and explain
some of the response properties found in some neurons of
the PPC and premotor areas. A variety of neural network
models have been suggested to account for the development of
these supra-retinal representations (e.g., head-centered, hand-
centered; Zipser and Andersen, 1988; Pouget and Sejnowski,
1997; Blohm et al., 2009; Chang et al., 2009). Some of these
models have focused on the development of head-centered
responses and despite the computational advantages of these
different theoretical efforts, most of this work has been based
on supervised learning algorithms, which cannot provide a
biologically plausible account of how these properties develop
in the cortex. Other computational approaches have suggested
a different way of implementing these transformations using
neurons behaving like basis function units that could provide an
immediate read-out of multiple frames of reference (Pouget and
Sejnowski, 1997).

A self-organizing hypothesis to account for how hand-
centered representations could occur has been recently proposed
(Galeazzi et al., 2013). Here, it was suggested that while the
eyes are exploring a visual scene involving a target object in a
fixed position with respect to the hand, a form of trace learning
would allow the network to associate different views of the same

hand-object spatial configuration. This hypothesis was tested
using a biologically plausible neural network model, VisNet, of
the primate visual system. The architecture of VisNet consisted
of a hierarchy of competitive neural layers, with unsupervised
learning taking place in the feedforward connections between
the layers. These simulation results showed how output cells
could learn to respond selectively to the location of targets with
respect to the hand, irrespective of where on the retina this spatial
configuration was shown.

The simulations presented previously by our laboratory
(Galeazzi et al., 2013) involved showing only a hand and single
circular object at any one time during training. However, in
the real world we rarely encounter one object at the time. In
fact, our visual system is mostly confronted with a complex
environment consisting of multiple objects. Moreover, in real-
world visual scenes the various objects that we encounter
throughout our sensory-motor experiences have different shapes
and sizes. Nevertheless, cells in the dorsal visual system seem to
be able to generalize and form delineated hand-centered visual
receptive fields. In this paper we explore whether our model
would still be able to develop output cells with single, localized,
hand-centered receptive fields when the network is exposed to
more realistic images. In the initial simulations presented in
Experiments 1 and 2, the training images were comprised of a
variety of everyday objects presented simultaneously around a
realistic hand. In Experiment 3, we increased the realism further
by presenting the hand against a range of completely natural
backgrounds during training.

Early research with VisNet (Stringer and Rolls, 2000) has
revealed the difficulty for the network to build transform (e.g.,
position) invariant representations of individual objects when
it is trained on cluttered backgrounds. How could the network
develop neurons that respond selectively to a single object when
it is trained with cluttered images always containing more that
one object at a time? Later work has shown that VisNet can in
fact form representations of individual objects even when they
are never seen in isolation during training (Stringer et al., 2007;
Stringer and Rolls, 2008). The statistical decoupling between the
different objects works when there is a sufficiently large number
of objects and the network is presented with many different
combinations of these objects during training. Any particular
combination of objects will be seen together only rarely which
prevents individual neurons in the output layer from learning
to respond to the particular combinations of objects seen during
training. Instead, the neurons are forced to learn to respond to
the individual objects themselves. The fundamental principle is
that competitive learning binds together the features that are seen
more often than other less frequent combinations of features in
the environment. Thus, the network does not need any prior
knowledge of which features belong to a particular object; it self-
organizes by learning to respond to the combinations of features
that co-occur the most.

We hypothesized that a similar mechanism of statistical
decoupling may produce visual neurons that have learned to
respond to single object locations in a hand-centered frame
of reference. Let us assume that during training the network
model is exposed to many images containing the hand with
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multiple other objects, but where the objects occur in different
combinations of hand-centered locations in the different images.
Because the objects are always seen with the hand, this forces each
of the output neurons to learn to respond to some combination
of the hand and hand-centered object locations. However, over
many different images there will be a relatively weak statistical
link between any two particular hand-centered object locations.
These statistics will drive the development of output neurons that
have learned to respond to particular spatial configurations of
the hand and a single object. That is, these neurons will respond
to the presence of an object in only one localized hand-centered
receptive field.

To test this learning hypothesis and increase the ecological
plausibility of our simulations, three experiments are presented.
We first show how the model can develop hand-centered
representations using more realistic training images composed
of the hand with pairs of objects presented in different hand-
centered locations. Many images with different combinations of
hand-centered locations were used to ensure adequate statistical
decoupling between the different object locations. In a second
experiment, we explored whether the output cells of our
model developed hand-centered receptive fields that were also
somewhat selective to the shape of the object, as well as evaluating
how this shape selectivity is affected as the network is trained
with more objects. Lastly, in the third experiment we explore
whether the network could still develop localized hand-centered
receptive fields when the hand is shown against a large collection
of different natural background scenes during training. In this
case, the background scenes used were entirely natural with no
careful control of what objects were present and where they were
located.

2. MATERIALS AND METHODS

2.1. VisNet Model
The experiments presented in this paper were conducted using
the VisNet model of the primate visual system (Figure 1). VisNet
is composed of four feedforward layers of competitive neural
networks. Each neuronal layer incorporates lateral competition
between neurons which is implemented by local graded
inhibition. The synaptic connections between the successive
layers of neurons are updated using associative learning.
Although VisNet has been often used to model invariance in
the ventral visual stream, it has been subsequently applied to
simulate visual processes occurring in the dorsal stream (Rolls
and Stringer, 2007; Galeazzi et al., 2013; Rolls and Webb, 2014).
Both ventral and dorsal streams share architectural similarities,
each consisting of a hierarchical series of neuronal layers with
competition mediated by inhibitory interneurons within each
layer (Rolls and Webb, 2014). The VisNet model is described in
the Appendix, more detailed descriptions can be found in Rolls
(2008).

In this study the model implements trace learning, in which
a temporal trace of the previous activity of the neuron is
incorporated in the learning rule. This learning mechanism
encourages individual neurons to respond to subsets of input

FIGURE 1 | Stylized image of the VisNet four-layered network. The

architecture of the network shows a hierarchical organization which can be

found in the dorsal visual system. Convergence through the network is

designed to provide fourth-layer neurons with information from across the

entire input retina.

images that occur close together in time. We have previously
shown how trace learning may allow neurons to develop
responses that are selective for the location of visual targets with
respect to the hand but invariant to the position of the hand-
object configuration on the retina. In particular, we suggested
that while the eyes are exploring a visual scene containing
a target object in a fixed position with respect to the hand,
trace learning would associate together different views (retinal
locations) of the same hand-object configuration onto the same
subset of output neurons. In this way, different output cells would
learn to respond selectively to different positions of the visual
objects with respect to the hand, where the neuronal responses
were invariant across different retinal locations (Galeazzi et al.,
2013).

2.2. Information Measures
In addition to the response profile of individual neurons, we
assessed the network performance using single and multiple cell
information theoretic measures. These measures have been used
extensively to analyse the performance of the VisNet model in
previous work (See Appendix). In this particular case, these
measures are used to evaluate whether individual cells in the
output layer are able to respond to a specific target location in
a hand-centered frame of reference over a number of different
retinal locations.

The single cell information metric computes the amount
of information conveyed by an individual output layer cell
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about which of the stimuli has been shown during testing. In
this study, a stimulus is defined as one of the different hand-
object configurations presented to the network during testing.
For example, if an output neuron developed a localized hand-
centered receptive field, then it would respond maximally and
selectively to the location of an object in a particular position with
respect to the hand across all tested retinal locations in which this
configuration appears.

On the other hand, the maximal cell information computes
the amount of information conveyed by the output population
about all of the possible hand-object configurations. This
measure verifies whether there is information about all of the
testing stimuli across the output layer. For example, if the
maximal multiple cell information is reached, this would mean
that all the tested hand-object configurations are represented
independently by separate output neurons. In other words,
the network would develop a variety of hand-centered output
cells, each of them with their own localized hand-centered
receptive field. These cells would then respond selectively to the
location of an object in a particular position with respect to
the hand, and all of the tested locations would be represented
in the output layer. More details about how these metrics
are applied and calculated for this study are provided in
Appendix.

2.3. Model Parameters
For these simulations we used an up-scaled version of the
model “retina” (i.e., 256 × 256). Increasing the size of the
retina, significantly improves the resolution and therefore the

performance of the model. The rest of the parameters are
described in Appendix.

3. TRAINING AND TESTING PROCEDURES

3.1. Experiment 1: Presentation of the
Hand with Pairings of Natural Objects
In the first experiment, VisNet was trained on images portraying
various spatial configurations of the hand with pairs of
natural objects, which were presented against different textured
backgrounds. Each of these training images was shifted across
different retinal locations during training. We investigated
whether these training images could produce output layer
neurons with single, localized, hand-centered receptive fields,
and which responded invariantly as the neuron’s preferred hand-
object configuration was shifted across different retinal locations.

3.1.1. Stimuli
The training images for the first experiment consisted of a
hand and two natural objects in different spatial configurations
surrounding the hand, all of which were presented against
different textured backgrounds. The images of the hand, objects
and backgrounds were selected from open source pictures on
the internet. The templates were designed, scaled and arranged
using Adobe Photoshop software. The images were generated in
RGB color and subsequently converted tomonochrome using the
MATLAB functionrgb2gray. Figure 2 shows a sample of some
of the training images of hand-object configurations that were
generated for this study.

FIGURE 2 | These are examples of some of the training images used in the first experiment. A pair of objects would appear in different hand-centered

locations simultaneously. The eyes would move exploring the visual scene producing different views of the same configuration across different retinal locations. The six

figures represent a sample of the possible images of object pairings generated from the pool of natural objects and textured backgrounds. The relative positions of the

hand and the pair of objects are unchanged during the eye movements.
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The backgrounds of the images were extended to 512 × 512
pixels for the preprocessing stage. The filtered outputs were then
cropped back to the original size 256×256. This step is important
to avoid possible artifacts or edge effects from the filters in the
initial layer of the network.

There was a pool of 42 natural objects to be presented with
the hand during training. The centers of all the objects were
distributed along a semicircle in six different possible locations
around the hand. The images showed all possible pairings of the
six hand-centered object locations. The number of possible pairs
of object locations may be calculated by

(

n

r

)

=
n!

r! (n− r)!
(1)

where n = 6 and r = 2, which gives a total of 15 pairings
of object locations. For each such pair of object locations we
randomly selected two objects from the pool to be presented in
that pair of locations. However, each such pair of objects was
presented in both possible arrangements: i.e., object 1 in location
1 and object 2 in location 2, and then object 1 in location 2
and object 2 in location 1. This led to a total of 30 hand-object
configurations. Then each of the blocks of these 30 hand-object
configurations was presented against one of the 21 different
textured backgrounds. This generated a total of 630 images.
In order to present the hand-object configurations in different
retinal positions, each of these configurations was translated by
six pixels at a time across VisNet’s retina. During training, the
hand was always shown surrounded by a pair of objects and never
with a single object in isolation. After training was completed,
the images used during testing consisted of the hand and a novel
object in a specific position relative to the hand. In the test
images, the novel objects were shown in one of the same six
hand-centered object locations that were used during training.

3.1.2. Training
The training procedure for this experiment consisted of

presenting VisNet with pairs of non-overlapping natural objects
displayed around the hand on a textured background. During

training, the objects were presented in pairs and never in

isolation, (see Figure 2). In order to develop invariant responses

across different retinal views, each of the images representing
a particular configuration of a hand and objects was trained

across five different retinal locations. The image sequences were

meant to arise from a series of eye movements and the resulting
shifts in the position of the hand and visual objects on the

256 × 256 “retina.” During each of the image sequences, the

fixed spatial configuration of the hand and pair of objects was
translated six pixels at a time. During the visual exploration of

a particular spatial configuration the natural background was

always the same. A new background was only used when a new
configuration of a hand and objects was presented.

During training, each image was presented to the network
in turn. The image was first convolved with the input Gabor
filters and the outputs of the Gabor filters are then passed to the
first layer of neurons. Next, the firing rates of neurons in the
first layer were calculated with soft competition as described in

Appendix. Next, the weights of the afferent synaptic connections
were updated according to the trace rule given by Equation (A11).
This process was then repeated for each subsequent layer of the
network. The network was thus trained one layer at the time,
starting with layer 1 and finishing in layer 4.

One training epoch consisted of the presentation of all 30
object pairings shown against one of the 21 different textured
backgrounds, with each of these images presented across five
different retinal locations. Figure 2 shows examples of six
training images, each composed of the hand with two natural
objects. In these simulations the network was trained for fifty
epochs per layer. The learning rates used were 0.1, 0.1, 0.1, and 0.1
in each layer. The number of epochs and learning rates used are
the same in all the experiments. For more details on the VisNet
parameters, see Appendix.

3.1.3. Testing
Throughout the testing phase, the synaptic weights were not
changed. Figure 3 shows the six images presented to the network
during testing. In order to test whether VisNet has developed
translation invariant neurons with a single, localized, hand-
centered receptive field, the network was tested with images of the
hand and a single circular object presented in only one of the six
hand-centered locations at a time. Furthermore, because the goal
is to test whether neurons respond to a specific hand-centered
location irrespective of the object form, the test images used a
simple textured object as shown in Figure 3. During testing, the
responses of the output layer neurons were recorded for each of
the hand-object configurations shown in Figure 3 presented in
each of the five retinal locations.

Lastly, a recent addition to the inspection tools of VisNet
enables the user to select an output cell after training and
then trace back the connections through layers that have been
strengthen by learning. This process can be repeated up until the
point that we reach the bank of Gabor filters in the input layer.
This permits us to identify which visual features of the input
images the selected output cell is responding to most strongly.

3.2. Experiment 2: Decay of
Object-Selectivity with Increased Visual
Training
In the second experiment, we investigated how the shape-
selectivity of hand-centered output layer neurons depended on
the amount of visual training that the network had received.
Specifically, we explored the hypothesis that neurons would
become less shape selective as they were trained on larger
numbers of objects at their preferred hand-centered location.

3.2.1. Stimuli
The training images for this experiment consisted of the hand
presented with a single natural object at a time. The natural
object was always presented at the same location with respect
to the hand. The objects were drawn randomly from the same
pool of 42 natural objects used in the first experiment. The
images were generated in RGB color and subsequently converted
to monochrome using the MATLAB function rgb2gray.
Different simulations were run with increasing numbers (1–8)
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FIGURE 3 | These are examples of six testing images used in the first experiment to determine the hand-centered receptive fields of output neurons

after training. Unlike the training condition where two objects were presented simultaneously, in this case a single textured stimulus was presented in six different

hand-centered locations. The hand-centered object locations were the same as those used during training in the first experiment. Each hand-object configuration

would be tested in five different retinal locations.

of natural objects used during training. For each simulation, the
network was tested with images of the hand and each of the
100 different novel objects presented in the same hand-centered
location on which the network was trained. The objects used
during training and testing were not the same. Figure 4 shows
examples of the pool of objects used for training and testing. At
testing, we recorded the percentage of the 100 test objects that the
output neurons responded to. This allowed us to assess the shape
selectivity of these neurons.

3.2.2. Training and Testing
For this experiment we were interested in exploring whether the
output cells that developed visual hand-centered receptive fields
could also show shape selectivity, and how this shape selectivity
depended on the amount of visual training with different natural
objects. We started by training the network with an image of
the hand with a single natural object in a particular position
with respect to the hand. We then tested the network with a
pool of 100 novel objects presented in the same hand-centered
location as used during training. Then across further simulations
we systematically increased the number of objects that appeared
in the same hand-centered location during training. One training
epoch consisted of presenting images of the hand with each of
the training objects that were used for that particular simulation.
After training was completed, the network was tested with the
same set of 100 images showing the hand with one of the novel
objects. The aim was to investigate how the shape selectivity of
neurons that learned to respond to that hand-centered location

was affected by the number (1–8) of natural objects seen there
during training.

This experiment was not focused on the development of
invariant neuronal responses across different retinal locations,
and so we trained each image of the hand and object in only a
single retinal location. Consequently, we updated the synaptic
weights between layers according to the simpler Hebb rule (See
Equation A10 in Appendix).

3.3. Experiment 3: Presentation of the
Hand Against Natural Backgrounds
In the third experiment, VisNet was trained on images with
the hand presented against completely natural backgrounds,
which were also shifted across different retinal locations. We
investigated whether output layer neurons learned to respond to
objects presented in single hand-centered locations, and whether
these responses were invariant as the neuron’s preferred hand-
object configuration was shifted across the retina.

3.3.1. Stimuli
In order to generate our pool of natural visual scenes, we
asked four volunteers to provide 10–12 photographs of natural
visual scenes from their everyday life in which they would
normally use their hands to manipulate objects. All of the
volunteers were naive and unaware of the purpose of the study.
We provided several examples (e.g., using cutlery in a meal,
grasping a cup, etc.) and provided three sample photos in order
to give them a general idea of the nature of the scenes we
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FIGURE 4 | The figure shows various examples of natural objects that were presented in the same location with respect to the hand during training

and testing for the second experiment. Different objects were used during training and testing. The objects were always presented in the same hand-centered

location in order to explore how the shape selectivity of neurons representing that location was affected by the number of objects presented there during training.

were interested in collecting. We provided further instructions
regarding the angle and distance at which the photos should
have been taken. The pictures were meant to be taken from a
first person point of view and the distance between the objects
and the camera had to be at arm’s length. Additionally we
asked them not to include the image of their own hand in the
picture.

The training stimuli for this experiment consisted of images
showing a picture of a real hand that was superimposed in all
of the natural visual scenes collected by our participants. The
templates were scaled and arranged using Adobe Photoshop
software. The images were generated in RGB color and
subsequently converted to monochrome using the MATLAB

function rgb2gray and then resized to a 256 × 256 matrix.
Figure 5 shows a sample of some of the training images that were
generated. A total of 48 natural images were collected and used
for the experiment. In order to present the configurations of the
hand and objects in different retinal positions, each of the fixed
spatial configurations was translated by five pixels at a time across
VisNet’s retina within a 3 by 2 grid. That is, for this experiment
the sequences included horizontal as well as vertical shifts on the
network’s retina.

After training was completed, the stimuli used during testing
consisted of images showing the hand and a novel textured
object in five different positions relative to the hand as shown in
Figure 6.
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FIGURE 5 | The figure shows various examples of the hand presented against different natural backgrounds during training in the third experiment.

The position of the hand within each of the backgrounds is unchanged during the eye movements.

3.3.2. Training and Testing

The training procedure for this experiment consisted of

presenting VisNet with images of the hand embedded within 48
different natural scenes containing a variety of objects as shown

in Figure 5. As in previous simulations, image sequences were

meant to arise from a series of eye movements and the resulting

shifts in the position of the hand and visual objects on the 256×
256 “retina.” During each of the image sequences, the fixed spatial

configuration of the visual scene is translated both horizontally

and vertically by five pixels at a time across a 3 by 2 grid of
retinal locations. In the first experiment we shifted the images

only horizontally. However, in order to increase the ecological

validity of this third experiment, we included a vertical shift of
five pixels as well. In this experiment, the synaptic weights were
updated according to the trace rule given by Equation (A11). One
training epoch consisted of presenting all 48 images in all 6 retinal
locations.

Figure 6 shows the images used to test the network after
training. In order to test whether VisNet has developed

translation invariant neurons with a single, localized, hand-
centered receptive field, the network was tested with images
consisting of the hand with only a single textured object
presented in one of five different hand-centered locations. The
responses of the output neurons are recorded with each of these
hand-object configurations presented in all six of the retinal
locations used during training.

4. RESULTS

4.1. Experiment 1: Presentation of the
Hand with Pairings of Natural Objects
We studied the responses of the output (fourth) layer cells
in VisNet before and after the network was trained on the
images of hand-object configurations shown in Figure 2. After
the network was trained, the network was tested on the images
shown in Figure 3 to determine whether cells in the output layer
had developed single, localized hand-centered receptive fields
and responded invariantly across the different retinal locations.
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FIGURE 6 | These are the five test images used after the network had been trained with the hand presented against natural background scenes in the

third experiment. That is, the network was tested with a single textured stimulus presented in five different hand-centered locations. Each hand-object configuration

was tested in the six different retinal locations that the hand was originally trained in.

Information analysis was then conducted on the responses of the
cells to all of the test images.

In previous simulations in which VisNet was trained on
all possible pairings of objects, it was reported that as the
number of objects increased, the statistical decoupling between
the objects started to force the network to learn to represent the
objects individually (Stringer et al., 2007). However, in the new
simulations carried out here the image of the hand was always
present with the objects. In this case, the most correlated features
would correspond to a combination of features of the hand and
features of the trained objects presented in a particular location
with respect to the hand. Therefore, individual cells should learn
to respond to a particular spatial configuration of the hand and a
single hand-centered object location.

Figure 7 shows the response profiles of six neurons in the
output layer of VisNet before training. Following the same
conventions of Galeazzi et al. (2013), each of the six columns
of plots contains the firing responses of a particular output
cell, which are labeled at the top of the column. Whereas
the six rows of plots show the responses of the cells to
each of the six hand-object configurations presented during
testing.

Each plot shows the responses of the given cell to the particular
hand-object configuration over the five retinal locations. The x
axis in each plot represents the five retinal locations of the hand-
object configuration on which the neuron was tested, while the
y axis represents the corresponding firing rate of the output
neuron. The top row shows the cell responses when a single
textured object is presented in the first of the testing locations

with respect to the hand. This corresponds to the upper left image
in Figure 3. The following rows show the cell responses when
the visual object is presented in successive test locations with
respect to the hand. The last row corresponds to the configuration
displayed in the bottom right image of Figure 3.

In Figure 7 we can see that before training, all of the six
cells responded rarely and randomly to the different hand-object
configurations. The responses do not have a particular ordered
structure. In Figure 8we can see the response profiles of the same
six neurons in the output layer of VisNet after training. In this
case it can be seen that, after training, each of the six cells has
learned to respond to just one of the hand-object configurations,
and responds to that configuration over all five tested retinal
locations. Furthermore, we can see here already that each of the
six hand-object configurations was represented by one of the
cells.

In order to have an overview of how these configurations
are represented across the output cell population, we present
the information analysis measures. Figure 9 shows the single
and multiple information measures for the output (fourth) layer
neurons before and after training with all of the hand-object
configurations. The single cell information analysis (Figure 9
top) shows that, after training, 115 neurons conveyed the
maximal single cell information of 2.58 bits. These output cells
responded to only a single position of the test object with respect
to the hand, and responded irrespective of retinal location. The
multiple cell information analysis (Figure 9 bottom) shows that,
before training, the multiple cell information does not reach the
maximal value of 2.58 bits. However, after training we can see
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FIGURE 7 | Firing rate responses from the first experiment before training. Each of the six columns shows the firing responses of a particular cell. Each row

shows the responses of the six cells to one of the six hand-object configurations (shown on the left) over all five different retinal locations shown along the abscissae. It

can be seen that each of the six cells initially responds randomly to each of the hand-object configurations over the different retinal locations.

that multiple cell information asymptotes to the maximal value,
which means that all six of the hand-object configurations are
represented by separate cells in the output layer. Figure 8 shows
examples of neurons representing each of the six hand-object
configurations.

We traced the strengthened connections from each one of
the output cells through successive layers to the input Gabor
filters driving that cell. Figure 10 shows the Gabor input filters
with strengthened connections to a trained output neuron that
had learned to respond to one of the hand-centered locations.
On the left side of Figure 10 we can see the Gabor filters that
are most strongly driving the responses of the particular output
cell. In this example, we show a cell that is representing a
subset of Gabor filtered inputs corresponding to the hand, as
well as a subset of inputs representing a visual location near
the hand. Tracing back the synaptic connectivity in this way
enables us to inspect the nature and extension of the hand
centered visual receptive field developed by the output cell after
training. We can thus determine not only the ability of the cell
to represent an individual region with respect to the hand, but
also the input features that were extracted from the set of objects
shown.

Altogether, the individual cell firing rate responses, the
information analysis and the inspection of connectivity in this
experiment demonstrate that VisNet is able to develop neurons
with a single, localized, hand-centered visual receptive fields
even when trained on more realistic images with multiple
natural objects shown with the hand against various textured
backgrounds. In particular, the principles of statistical decoupling
continue to operate successfully under these more ecological
training conditions. That is, after extensive training, the output
cells learn to respond to the features that are seen more
frequently together throughout training. This is a basic property
of competitive learning. Since the network is trained on
multiple natural objects with the hand against various textured
backgrounds, the features that appear more frequently together
are the hand (which is always present) and a subset of
features that are associated with a particular object location.
Consequently, individual output neurons learn to represent a
particular configuration of the hand and one object location with
separate neurons responding to different hand-centered object
locations. However, the statistical decoupling between any two
object locations is too weak to allow individual output cells to
learn to respond to more than one hand-centered location.
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FIGURE 8 | Firing rate responses from the first experiment after training. Response profiles of the same six neurons from Figure 7 after training on the images

shown in Figure 3. Conventions as in Figure 7. It can be seen that each of the six cells responds selectively to just one of the hand-object configurations, and

responds to that configuration over all five retinal positions shown along the abscissae. Moreover, each of the six hand-object configurations is represented by one of

the cells.

Additionally, the trace learning mechanism enables the
network to encode these representations across different retinal
locations. Thus, these cells will respond to the same hand-
object configuration irrespective of the position of the hand with
respect to the body and regardless of the gaze direction. These
hand-centered cells will fire maximally as long as the spatial
configuration of the hand and an object is the same.

4.2. Experiment 2: Decay of
Object-Selectivity with Increased Visual
Training
In Experiment 1, we were not interested in developing hand-
centered cells that were selective to specific objects. On the
contrary, we were primarily interested in the development
of hand-centered receptive fields where the neuron would
respond to the presence of almost any object as long as it was
presented within the receptive field. These cells are thought
to mostly provide information about the location of an object
with respect to the hand, rather than representing the detailed
features of the object. However, our simulations do not preclude

the possibility that some shape selectivity could arise after
training.

In the second experiment, we investigated whether the hand-
centered output neurons showed selectivity to the shapes of
objects presented with the hand, and how this shape selectivity
depended on the amount of training that the network had
received with other objects. By testing the network on images
with a variety of novel objects in the same hand-centered location
used during training, it was possible to assess whether the cells
that had learned to respond to that hand-centered location would
fire selectively to objects of a particular shape. A number of
experiments were performed with sampling different objects
during training. The results presented here are taken from one
of these experiments and are typical of the effects we observed.

In Experiment 2, eight separate simulations were conducted.
Successive simulations used increasing numbers of training
objects from 1 to 8, which were always presented at the same
location with respect to the hand during training. For each
simulation, after training we identified the subpopulation of
output neurons that had learned to respond to that hand-
centered location. The criterion for classifying a cell as responsive
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FIGURE 9 | Information results from the first experiment before and

after training. The upper plot shows the amount of single cell information

carried by individual output cells in rank order. After training, it was found that

115 cells reached the maximum amount of single cell information of 2.58 bits.

These cells responded perfectly to just one of the six tested hand-object

configurations, and responded to that configuration across all five different

retinal locations. In the untrained condition no cells reached maximal

information. The lower plot shows the multiple cell information measures

calculated across 30 cells with maximal single cell information. It can be seen

that, after training, the multiple cell information asymptotes to the maximal

value of 2.58 bits. This confirms that all six tested hand-object configurations

are represented by the output cells.

was that its firing rate should reach a threshold of 0.5. Then
we tested the network on 100 images of the hand with different
novel objects at the same hand-centered location. Each time we
recorded whether each of the neurons responded to the new
object at that hand-centered location. This procedure was used
to reveal how the shape selectivity of the output neurons changed
as the network was trained with increasing numbers of objects at
their preferred hand-centered location.

Figure 11 shows the average number of novel objects that the
hand-centered cells in the network responded to after training
as a function of the number of objects that the network has

FIGURE 10 | Tracing back the synaptic connections from a trained

output cell to the input Gabor filters in the first experiment. The left side

shows the input Gabor filters that an output cell has learned to respond after

training. This is an example of a neuron that represents a hand-object

configuration with the object above the hand. In this image the Gabor filters

with the strongest connectivity through the layer to the output cell are plotted,

where each Gabor filter is weighted by the strengths of the feed-forward

connections from that filter through the successive layers to the output neuron.

It can be seen that this neuron receives the strongest inputs from a subset of

Gabor filters that represent the location of the target on top of the hand. The

right side shows the image of the hand and the overlapped images of all the

training objects that appeared during training in this hand-centered location.

FIGURE 11 | Simulation results for the second experiment. In these

simulations we explored how the shape selectivity of a subpopulation of

hand-centered output neurons is affected as the network is trained with an

increasing number of natural objects at their preferred hand-centered location.

The plot shows the average number of novel test objects that the

subpopulation of output cells respond to as the network is trained with an

increasing number of the training objects. It is evident that as the network is

exposed to more objects during training, most cells start to lose their shape

selectivity and respond to a larger percentage of the novel objects.
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seen at that hand-centered location during training. The ordinate
corresponds to the percentage of novel objects that the cells
respond to while the abscissa corresponds to the number of
objects seen during training. We can see from these simulations
that the cells with hand-centered receptive fields started to
lose their shape selectivity as they got trained with more and
more objects in the same hand-centered location. Even when
we still found a few shape selective cells, the proportion of
highly selective cells was substantially reduced as the training is
increased. This means that most of the cells would respond to the
presence of an object in a region of space near the hand regardless
of the form of the object.

What learning mechanism leads to a reduction in the shape
selectivity of neurons as the network is trained on increasing
numbers of objects at the same hand-centered location? When
the first object is presented with the hand during training, a
small subset of output neurons will win the competition and
respond. Then Hebbian associative learning in the feedforward
connections within the network will increase the tuning of these
cells to respond to that particular object in that hand-centered
location. However, when another object is presented in the same
hand-centered location, the two objects may share some features
in common. The activation of these common features may then
cause the same subset of output neurons to respond again because
the relevant feedforward connections were strengthened during
training with the first object. The effect of this will be to associate
the features of the new object with the same output neurons. This
process may be repeated with a number of successive different
objects presented with the hand. All of the features of these
objects will become associated with the same output neurons.
Thus, the output neurons gradually lose their selectivity to the
form of the objects, and merely respond to any object presented
in that hand-centered location. This would produce receptive
fields that represent the locations in which the objects appear
with respect to the hand, without being particularly selective
about the differences between the features of these objects. Thus,
as the results show, as the network is trained with more and
more objects, the localized hand-centered receptive fields start
to lose their shape selectivity and respond to a variety of novel
objects as long as they appear within the hand-centered receptive
field. This learning process is somewhat similar to continuous
transformation (CT) learning (Stringer et al., 2006), which drives
the development of invariant neuronal responses by exploiting
the similarities between visual stimuli.

Consistent with our results, when we make a comparison at a
single-cell neuron level between high-level ventral regions that
are shape selective, such as the anterior inferotemporal cortex
(AIT) and high level dorsal regions that have been also reported
as shape selective (e.g., LIP), it has been found that AIT neurons
on average had higher shape selectivity than those of LIP (Lehky
and Sereno, 2007). AIT neurons also had significantly more units
that were highly selective to shape, whereas LIP had very few
neurons that were highly selective to shape.

4.3. Experiment 3: Presentation of the
Hand Against Natural Backgrounds
In the third experiment we investigated whether output neurons
developed localized hand-centered receptive fields when the

network was trained on images containing a hand presented
against a natural background scene as shown in Figure 5 and
then tested on the images shown in Figure 6.

Figures 12, 13 show the response profiles of five neurons in
the output layer of VisNet before training and after training,
respectively. Following the same conventions of the response
profiles in Experiment 1, each of the five columns of plots
contains the firing responses of a particular output cell, which is
labeled at the top of the column. The five rows show the responses
of the cells to each of the five hand-object configurations
presented during testing. Each plot shows the responses of
the given cell to the particular hand-object configuration over
six different retinal locations. Before training (Figure 12) none
of the cells responded exclusively to any of the hand-object
configurations; in fact they responded rarely. However, after
training, in Figure 13we can see that each of the five cells learned
to respond exclusively to one specific hand-object configuration,
and that these responses were invariant to different retinal
locations.

As in the other two experiments presented here, an
information analysis was carried out to investigate how these
hand-object configurations are represented across the whole
population of output cells. Figure 14 shows the single and
multiple cell information measures for the output (fourth) layer
neurons before and after training the network on images of the
hand presented against natural backgrounds. The information
analysis was performed by testing the network on the five
hand-object configurations shown in Figure 6, where each such
configuration was presented in six retinal locations.

Figure 14 (top) shows the single cell information measures
for the output layer of neurons. We can see here that, before
training none of the cells reached the maximum information.
However, after training 49 neurons reached the maximal single
cell information of 2.32 bits. This means that these 49 output
cells responded selectively to a single localized position of the
test object with respect to the hand, and that this response
was invariant to retinal location. In Figure 14 (bottom) it is
evident that before training the multiple cell information did
not reach the maximal value of 2.32 bits. However, after training
we can see that the multiple cell information asymptotes to the
maximal value, which means that all of the possible hand-object
configurations are successfully represented by separate cells in
the output layer. In fact, the five cell response profiles after
training shown in Figure 13 already confirmed that the network
was able to represent each of the five hand-object configurations.
The multiple cell analysis simply reaffirms that all five hand-
object configurations are represented invariantly across all retinal
locations by separate output neurons.

For this simulation we again traced the strengthened
connections from each one of the output cells through successive
layers to the input Gabor filters driving that cell. In Figure 15 we
can see the Gabor input filters with strengthened connections to
a trained output neuron that had learned to respond to one of
the hand-centered locations. On the left side of Figure 15 we can
see the Gabor filters that are most strongly driving the responses
of the particular output cell. This cell is representing a subset
of Gabor filtered inputs corresponding to the hand, as well as a
subset of inputs representing a localized region near the hand.
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FIGURE 12 | Firing rate responses from the third experiment before training. Each of the five columns shows the firing responses of a particular cell. Each row

shows the responses of the five cells to one of the five hand-object configurations (shown on the left) over all six different retinal locations shown along the abscissae.

It can be seen that each of the five cells initially responds randomly to each of the hand-object configurations over the different retinal locations.

The right side of Figure 15 shows the image of the hand with the
hand-centered receptive field of the neuron shown in blue.

5. DISCUSSION

In the simulations presented in this paper we have investigated
whether VisNet could still self-organize and develop neurons
with single, localized hand-centered receptive fields, as the
network is trained under more realistic visual training
conditions. In these experiments, we have systematically
improved the realism of the visual training stimuli in order
to test the robustness of the proposed learning mechanism
that relies on a combination of statistical decoupling between
hand-centered object locations and trace learning in order to
drive the development of hand-centered visual representations.

We have shown how some neurons learn to respond to
particular spatial configurations of the hand and an object
location. Such neurons represent the location of a visual object
in the reference frame of the hand. This learning process
exploits the statistical decoupling that will exist between different
hand-centered object locations across many different images.
Furthermore, these neuronal responses can become invariant
across different retinal locations by trace learning. This learning
rule binds together input patterns which tend to occur close

together in time. If the eyes typically saccade around a visual
scene faster than the hand moves, then trace learning will bind
together the same hand-object configuration across different
retinal locations.

In Section 4.1 we began to address how the network might
develop neurons with single, localized, hand-centered receptive
fields if it is trained on more realistic images containing multiple
objects presented simultaneously with the hand. Specifically,
we showed that presenting the objects in many different
pairs of hand-centered locations during training facilitated the
statistical decoupling between different object locations, which
in turn forced output neurons to develop localized hand-
centered receptive fields. This allowed us to train the network
with more than one object presented at a time with the
hand.

In Section 4.2 we investigated how the shape selectivity of
neurons was affected by the number of objects that the network
was trained on at a particular hand-centered location. We
proposed that whenever a new object is shown at a particular
hand-centered location, then there will likely be some overlap
of features with previous objects presented at that location. In
such a case, it is likely that some of the same output cells
will fire again to the presence of the new object. These cells
would get their synaptic weights from the features of the new
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FIGURE 13 | Firing rate responses from the third experiment after training. Response profiles of the same five neurons from Figure 12 after training on the

images shown in Figure 6. Conventions as in Figure 12. It can be seen that each of the five cells has learned to respond selectively to just one of the hand-object

configurations, and responds to that configuration over all six retinal positions shown along the abscissae. Moreover, each of the five hand-object configurations is

represented by one of the cells.

object strengthened. As the network is trained on more and
more objects at the same hand-centered location, this subset
of cells gradually learn to respond to most object features
at that location and hence lose their shape selectivity. Our
simulations suggest the possibility that hand-centered neurons
in area 5d and other parts of the posterior parietal cortex may
in fact display a range of different degrees of object shape
selectivity. The responses of some neurons may be still somewhat
selective to shape, while other neurons respond to almost all
objects placed within their hand-centered receptive field. Such a
heterogeneous population of neurons was in fact observed in our
simulations.

Lastly, in Section 4.3 we further increased the realism of
the simulations by training VisNet on images of the hand
presented against natural visual scenes. Unlike the previous
simulations where the hand-centered object locations were
carefully controlled, this time the objects could appear in
any location around the hand. Furthermore, there was also
more variability in the relative size of the objects and
their distance to the hand. Given the richness of the visual
training scenes in Experiment 3, the output cells showed more
spatial heterogeneity in their receptive fields. For example,
as shown in Figure 15, one of the particularly interesting

differences in this simulation result was that the localized
receptive fields near the hand had irregular and idiosyncratic
shapes, some of them covering larger areas surrounding the
hand.

Altogether, the results from the experiments presented here
showed how individual output cells could develop single,
localized, hand-centered visual receptive fields which are
invariant to retinal location. This occurred even when the
network was trained on more realistic visual scenes with
multiple objects presented simultaneously with the hand, or even
with the hand presented against complex natural backgrounds.
This is an important step to show how these hand-centered
representations could emerge from the natural statistics of our
visual experiences and under more realistic training conditions.
More importantly, we showed that this can be achieved using
an unsupervised learning mechanism where the synaptic weights
are updated in a biologically plausible manner using locally
available information such as the pre- and post-synaptic neuronal
activities.

5.1. Future Directions
In the simulations described in this paper, the hand was always
presented to the network in the same pose. In future work,
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FIGURE 14 | Information results from the third experiment before and

after training. The information analysis was carried out by testing the network

on the five hand-object configurations shown in Figure 6, where each such

configuration was presented in six retinal locations. The upper plot shows the

amount of single cell information carried by individual output cells in rank order.

After training, it was found that 49 cells reached the maximum amount of

single cell information of 2.32 bits. These cells responded perfectly to just one

of the five tested hand-object configurations, and responded to that

configuration across all six different retinal locations. In the untrained condition

no cells reached maximal information. The lower plot shows the multiple cell

information measures calculated across 25 cells with maximal single cell

information. It can be seen that, after training, the multiple cell information

asymptotes to the maximal value of 2.32 bits. This confirms that all five tested

hand-object configurations are represented by the output cells.

we plan to run simulations in which the hand is seen in
different postures. For example, the network might be trained
on sequences of images as the hand rotates to pick up a series of
objects. In this case, we hypothesize that neurons may develop a
diverse range of response properties. Some neurons may become
selectively tuned to the presence of a visual target with respect to
just one pose of the hand, while other neurons could develop pose
invariant responses through an invariance learning mechanism
such as trace learning (Földiák, 1991; Rolls, 1992) or continuous
transformation learning (Stringer et al., 2006).

FIGURE 15 | Tracing back the synaptic connections from a trained

output cell to the input Gabor filters in the third experiment after the

network was trained on images of the hand presented against natural

scenes. The left side shows the input Gabor filters that an output cell has

learned to respond to after training. In this image the Gabor filters with the

strongest connectivity through the layers to the output cell are plotted, where

each Gabor filter is weighted by the strengths of the feed-forward connections

from that filter through the successive layers to the output neuron. The right

side shows the image of the hand with the hand-centered receptive field of the

neuron shown in blue.

In this paper we were primarily interested in the visual
development of such hand-centered representations using
a self-organizing approach. Therefore, the input provided
to the network about the location of the hand and target
was presented visually. However, in the brain the positional
information of the location of the hand is integrated using
inputs from different modalities, including tactile and
proprioceptive signals. In this study we did not explore
the role of these different incoming signals. Nevertheless,
we hypothesize that they could in some cases facilitate the
statistical decoupling and formation of localized hand-centered
receptive fields. For example, tactile feedback from the touch
of an object will be generally congruent with visual signals
representing the hand-centered location of the visual object.
In future work, we plan to integrate signals from other
modalities such as tactile and proprioceptive information
to explore their role in the development of hand-centered
representations.

As we mentioned in the Introduction, a variety of regions
have been reported as encoding target positions in a hand-
centered frame of reference. However, there might be
functional differences between these different hand-centered
representations (De Vignemont and Iannetti, 2015). It is, for
example, unclear how the hand-centered encoding of reach
vectors reported in area 5d by Bremner and Andersen (2012)
may relate or differ from other hand-centered and peri-hand
representations reported in different regions (Graziano et al.,
1994, 1997; Graziano and Gross, 1998; Graziano, 1999). The
intention to reach to a desired location might be crucial for
the hand-centered cells in area 5d, while the mere presence of
an object near the hand could be sufficient to elicit a response
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from a hand-centered cell in PMv even if there is no intention
to interact with it. Some of the behavioral tasks and data analysis
from these different studies are not immediately comparable
and involve a limited set of experimental conditions. This
makes it difficult to disentangle not only the frame of reference
in which a particular cell encodes the location of a target,
but also how visual, proprioceptive, tactile and motor signals
are weighted and integrated during the task. Furthermore,
many of these cells may very well have interesting dynamical
properties in which the frame of reference could be varying
during different moments of the task (Bremner and Andersen,
2014).
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APPENDIX

A. VisNet Architecture and Parameters
A.1. VisNet
The VisNet model consists of a hierarchical series of four
feedforward layers of competitive networks. Within each
neuronal layer there is lateral competition between neurons
implemented by local graded inhibition. During training, there
is associative learning at the synaptic connections between
the successive layers of neurons (See Figure 1). In VisNet,
natural visual images are first passed through an array of
filters mimicking the response properties of V1 simple cells,
and subsequently these images are fed to the first layer of the
network architecture. The forward connections to individual
cells are derived from a topologically corresponding region of
the preceding layer, using a Gaussian distribution of connection
probabilities. These distributions are defined by a radius which
will contain approximately 67% of the connections from the
preceding layer. This leads to an increase in the receptive field size
of neurons through successive layers of the network hierarchy.
The network dimensions used for this study are shown in
Table A1. The architecture captures the hierarchical organization
of competitive neuronal layers that is common in both the dorsal
and ventral visual systems.

The simulations were conducted utilizing an updated version
of the VisNet model (Rolls and Milward, 2000; Rolls, 2008).
Before presenting the stimuli to VisNet’s input layer, they
are pre-processed by an initial layer representing V1 with a
dimension of 256 × 256 where each x, y-location contains a
bank of Gabor filter outputs g corresponding to a hypercolumn
generated by

g
(

x, y; λ, θ, ψ, σ, γ
)

= exp

(

−
x′2 + γ 2y′2

2σ 2

)

cos

(

2π
x′

λ
+ ψ

)

(A1)

x′ = x cos θ + y sin θ (A2)

y′ = −x sin θ + y cos θ (A3)

for all combinations of λ = 2, γ = 0.5, σ = 0.56λ, θ ∈

{0, π/4, π/2, 3π/4} and ψ ∈ {0, π,−π/2, π/2}.
The activation hi of each neuron i in the network is set equal

to a linear sum of the inputs yj from afferent neurons j weighted

TABLE A1 | Network dimensions showing the number of connections per

neuron and the radius in the preceding layer from which 67% are received.

Dimensions Number of connections Radius

Layer 4 32 × 32 100 12

Layer 3 32 × 32 100 9

Layer 2 32 × 32 100 12

Layer 1 64 × 64 100 12

Retina 256 × 256 × 16 – –

by the synaptic weights wij. That is,

hi =
∑

j

wijyj (A4)

where yj is the firing rate of the presynaptic neuron j in the
preceding layer, and wij is the strength of the synapse from
neuron j to neuron i.

Within each layer competition is graded rather than winner-
take-all, and is implemented in two stages. First, to implement
lateral inhibition the activation of neurons within a layer are
convolved with a spatial filter, I, where δ controls the contrast
and σ controls the width, and a and b index the distance away
from the center of the filter

Ia,b =











−δe
− a2 + b2

σ2 if a 6= 0 or b 6= 0,

1−
∑

a 6= 0
b 6= 0

Ia,b if a = 0 and b = 0.
(A5)

Typical lateral inhibition parameters are given in Table A2.
Next, contrast enhancement is applied by means of a sigmoid

activation function

y = f sigmoid(r) =
1

1+ e−2β(r − α)
(A6)

where r is the activation (or firing rate) after lateral inhibition, y
is the firing rate after contrast enhancement, and α and β are the
sigmoid threshold and slope respectively. The parameters α and
β are constant within each layer, although α is adjusted to control
the sparseness of the firing rates. The sparseness a of the firing
within a layer can be defined, by extending the binary notion of
the proportion of neurons that are firing, as

a =

(
N
∑

i = 1
yi/N)2

N
∑

i = 1
y2i /N

(A7)

where yi is the firing rate of the ith neuron in the set ofN neurons
(Rolls and Treves, 1990, 1998; Rolls, 2008). For the simplified case
of neurons with binarised firing rates= 0/1, the sparseness is the
proportion ∈ [0, 1] of neurons that are active. For example, to
set the sparseness to, say, 5%, the threshold is set to the value
of the 95th percentile point of the activations within the layer.
Typical parameters for the sigmoid activation function are shown
in Table A3.

For these simulations we used a trace learning rule (Földiák,
1991; Rolls, 1992) to adjust the strengths of the feed-forward

TABLE A2 | Lateral inhibition parameters.

Layer 1 2 3 4

Radius, σ 1.38 2.7 4.0 6.0

Contrast, δ 1.5 1.5 1.6 1.4
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TABLE A3 | The sigmoid parameters used to control the global inhibition

within each layer of the model.

Layer 1 2 3 4

Percentile 99 98 88 95

Slope β 190 40 75 26

synaptic connections between the layers during training. The
trace rule incorporates a trace yτ of recent neuronal activity into
the postsynaptic term. The trace term reflects the recent activity
of the postsynaptic cell. The effect of this is to encourage the
postsynaptic cell to learn to respond to input patterns that tend
to occur close together in time.

The equation of the original trace learning rule as used by
Wallis and Rolls (1997) is the following

1wj = αyτ xτj (A8)

where the trace yτ is updated according to

yτ = (1− η)yτ + ηyτ−1 (A9)

and we have the following definitions

xj: jth input to the
neuron.

y: Output from the
neuron.

yτ : Trace value of the
output of the neuron
at time step τ .

α: Learning rate.
Annealed between
unity and zero.

wj: Synaptic weight
between jth input
and the neuron.

η: Trace value. The
optimal value varies
with presentation
sequence length.

The parameter η may be set in the interval [0, 1]. For our
simulations the trace learning η is set to 0.8. If η = 0 then the
Equation (A8) becomes the standard Hebb rule

1wj = αyτ xτj . (A10)

However, the version of the trace rule used in this paper only
includes the trace of activity from the immediately preceding
timestep, as used in other studies (Rolls and Milward, 2000;
Rolls and Stringer, 2001) for improving the performance of the
standard trace rule and enhancing the effect of the invariance
representation. Thus, the rule takes now the following form

1wj = αyτ−1xτj . (A11)

Neuronal mechanisms that might support trace learning in the
brain have been previously discussed (Rolls, 1992; Wallis and
Rolls, 1997). To restrict and limit the growth of each neuron’s
synaptic weight vector, wi for the ith neuron, its length is
normalized at the end of each timestep during training as is
usual in competitive learning (Hertz et al., 1991). Normalization
is required to ensure that the same set of neurons do not always
win the competition. Neurophysiological evidence for synaptic
weight normalization has been presented (Royer and Paré, 2003).

A.2. Information Theory Measures
Single and multiple cell information theoretic measures are used
to assess the network’s performance. Both measures help to
determine whether individual cells in the output layer are able to
respond to a specific target location in a hand-centered frame of
reference over a number of different retinal locations. In previous
VisNet studies, the single cell information measure has been
applied to individual cells in the last layer of the network and
measures how much information is available from the response
of a single cell about which stimulus was shown. In this current
study, a stimulus is defined as one of the different hand-object
configurations. If an output neuron responds to just one of the
spatial configurations, and the cell responds to this configuration
across all tested retinal locations, then the cell will convey
maximal single cell information. The amount of information
carried by a single cell about a stimulus is computed using the
following formula

I(s,R) =
∑

r∈R

P(r|s) log2
P(r|s)

P(r)
(A12)

where the stimulus-specific information I(s,R) is the amount of
information the set of responses R of a single cell has about a
specific stimulus (i.e., target location with respect to the hand)
s, while the set of responses R corresponds to the firing rate y
of a cell to each of the stimuli (i.e., hand-object configurations)
presented in all tested retinal locations. Further details of how the
single cell information is calculated are provided in the literature
(Rolls et al., 1997a; Rolls and Milward, 2000; Rolls, 2008).

The maximum single cell information measure is

Max. single cell info. = log2(Number of stimuli). (A13)

For example, when we present 5 stimuli during testing, (i.e.,
spatial configurations of the hand and the test object), the
maximum single cell information measure is 2.32 bits. When we
present 6 target stimuli, the maximum single cell information
measure is 2.58 bits. The cell reaches the maximal information
when it responds selectively to just one of the hand-object spatial
configurations, and responds to that spatial configuration across
all the tested retinal positions.

On the other hand, the multiple-cell information computes
the average amount of information about which stimulus was
presented obtained from the responses of all the output cells.
This procedure is used to verify whether, across the population
of cells, there is information about all of testing stimuli (i.e.,
hand-object configurations) shown. Procedures for calculating
the multiple cell information measure have been described in
detail by Rolls et al. (1997b), Rolls and Milward (2000). In brief,
from a single presentation of a stimulus, we calculate the average
amount of information obtained from the responses of all the
cells regarding which stimulus is shown. This is achieved through
a decoding procedure that estimates which stimulus s′ gives rise
to the particular firing rate response vector on each trial. A
probability table of the real stimuli s and the decoded stimuli
s′ is then constructed. From this probability table, the mutual
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information is calculated as

I(S, S′) =
∑

s,s′

P(s, s′) log2
P(s, s′)

P(s)P(s′)
. (A14)

Multiple cell information values are calculated for the subset
of cells which, according to the single cell analysis, have
the most information about which stimulus (i.e., hand-
object configuration) is shown. In particular, the multiple cell
information is calculated from five cells for each stimulus that

had the most single cell information about that stimulus. For
example, in simulations with six target locations this results in
a population of 30 cells. Previous research (Stringer and Rolls,
2000) found this to be a sufficiently large subset to demonstrate
that shift invariant representations of each stimulus presented
during testing were formed, and that each stimulus could be
uniquely identified.

A.3. Data Sharing
The VisNet simulator can be downloaded from https://github.
com/bedeho/VisBack.
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