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Behavioral studies have shown that individuals with autism spectrum disorder (ASD)
have impaired ability to read the mind in the eyes. Although this impairment is central to
their social malfunctioning, its structural neural correlates remain unclear. To investigate
this issue, we assessed Reading the Mind in the Eyes Test, revised version (Eyes Test)
and acquired structural magnetic resonance images in adults with high-functioning
ASD (n = 19) and age-, sex- and intelligence quotient-matched typically developing
(TD) controls (n = 19). On the behavioral level, the Eyes Test scores were lower in the
ASD group than in the control group. On the neural level, an interaction between group
and Eyes Test score was found in the left temporoparietal junction (TPJ). A positive
association between the Eyes Test score and gray matter volume of this region was
evident in the control group, but not in the ASD group. This finding suggests that the
failure to develop appropriate structural neural representations in the TPJ may underlie
the impaired ability of individuals with ASD to read the mind in the eyes. These behavioral
and neural findings provide support for the theories that impairments in processing eyes
and the ability to infer others’ mental states are the core symptoms of ASD, and that
atypical features in the social brain network underlie such impairments.

Keywords: autism spectrum disorder (ASD), reading the mind in the eyes test, structural magnetic resonance
imaging (MRI), temporoparietal junction (TPJ), voxel-based morphometry (VBM)

INTRODUCTION

Autism spectrum disorder (ASD) is a behaviorally-defined neurodevelopmental disorder primarily
characterized by impaired social interactions (American Psychiatric Association, 2013). One
of the most evident features of social impairment is a deficit in eye processing (Baron-Cohen,
1995). Several behavioral studies have found that individuals with ASD, compared with typically
developing (TD) individuals, are less likely to use eye direction as a cue that others are thinking
(Baron-Cohen and Cross, 1992) and to infer another person’s desires and goals (Baron-Cohen
et al., 1995).
Researchers have developed a test to measure the ability to read others’ minds in their eyes,

the Reading the Mind in the Eyes Test, revised version (hereafter, Eyes Test; Baron-Cohen et al.,
2001) to measure and quantify this impairment in individuals with ASD. In this test, participants
are presented with a photograph depicting only the eye region of a person and asked to choose
one of four adjectives or phrases to describe the mental state of the person. Using the Eyes Test,
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several studies have consistently reported worse performance
in adults, adolescents and children with ASD than in TD
individuals (Baron-Cohen et al., 1997; Golan and Baron-Cohen,
2006; Lombardo et al., 2007; Losh et al., 2009; Sachse et al.,
2014; Vogindroukas et al., 2014). A previous study with TD
participants reported high reliability for the Eyes Test, even
over a 1-year period (Fernández-Abascal et al., 2013). Behavioral
genetics studies revealed a genetic influence on Eyes Test
performance (Rodrigues et al., 2009; Warrier et al., 2013; Gong
et al., 2014). Taken together, these behavioral data suggest
that individuals with ASD have a stable, possibly genetically
determined impaired ability to read the mind in the eyes, as
measured using the Eyes Test.

Several previous functional neuroimaging studies using
magnetic resonance imaging (MRI) have investigated neural
activity to understand the neural mechanisms underlying the
impaired ability to read the mind in the eyes in adult and
adolescent individuals with ASD (Baron-Cohen et al., 1999;
Holt et al., 2014) and in adult and adolescent individuals with
the genetic characteristics of ASD (i.e., parents and siblings of
individuals with ASD; Baron-Cohen et al., 2006; Holt et al.,
2014) while performing the Eyes Test (Baron-Cohen et al., 1999)
or the Eyes Test vs. sex judgments (Baron-Cohen et al., 2006;
Holt et al., 2014). These studies found that the ASD group
shows reduced activation in some brain regions that are clearly
activated in TD individuals, such as the temporoparietal junction
(TPJ, the boundary between the temporal and parietal lobes,
including the posterior middle and superior temporal gyri and
the inferior parietal lobule; Baron-Cohen et al., 2006; Geng
and Vossel, 2013; Holt et al., 2014), amygdala (Baron-Cohen
et al., 1999), and inferior frontal gyrus (IFG; Baron-Cohen et al.,
1999; Holt et al., 2014). To complement these findings, several
functional neuroimaging studies tested only TD adult individuals
during performance of the Eyes Test or the Eyes Test vs. sex
judgments (Russell et al., 2000; Platek et al., 2004; Adams et al.,
2010; Castelli et al., 2010; Mascaro et al., 2013; for a review see
Schurz et al., 2014). These studies reported rather consistent
activation in some of these brain areas, including the TPJ (Russell
et al., 2000; Platek et al., 2004; Adams et al., 2010; Castelli
et al., 2010; Mascaro et al., 2013), amygdala (Castelli et al., 2010;
Mascaro et al., 2013), IFG (Russell et al., 2000; Adams et al.,
2010; Castelli et al., 2010; Mascaro et al., 2013) and dorsomedial
prefrontal cortex (dmPFC; Platek et al., 2004; Adams et al., 2010;
Castelli et al., 2010; Mascaro et al., 2013). These data suggest
that reduced activation in these brain regions may be associated
with decreased ability in individuals with ASD to infer the mental
states of others by viewing the eye region.

However, the structural neural correlates of stable impairment
on the Eyes Test in individuals with ASD remain unknown.
To date, no structural MRI study has investigated this issue in
individuals with ASD. A recent structural MRI study reported
that Eyes Test scores were positively associated with gray matter
volume in some brain regions, including the TPJ and dmPFC,
in TD individuals (Sato et al., 2016). These data suggest that, in
TD, the structural neural substrates of Eyes Test performance
are located within distinct brain regions, and that abnormalities
in these regions might be detectable in individuals with ASD.

Several previous structural MRI studies have shown that gray
matter volume was reduced in some brain regions, including
the TPJ (Hadjikhani et al., 2006; Craig et al., 2007; Scheel
et al., 2011; Ecker et al., 2012; Greimel et al., 2013; Mueller
et al., 2013; David et al., 2014) and dmPFC (Abell et al., 1999;
Hadjikhani et al., 2006), in individuals with ASD relative to
TD controls, although the results were not consistent across
studies (for a review see Yang et al., 2016). Furthermore, previous
structural MRI studies found abnormal relationships between
social behaviors and brain structures in individuals with ASD,
such as weaker and negative correlations between the processing
of social stimuli and gray matter volume in the fusiform gyrus
(Dziobek et al., 2010; Trontel et al., 2013) and amygdala (Dziobek
et al., 2006), although the patterns were inconsistent (David
et al., 2014). A recent study found that gray matter volume and
functional activation was decreased in brain regions, including
the dmPFC, in individuals with ASD relative to TD controls
(Carlisi et al., 2017). Based on these findings, we hypothesized
that the association between the Eyes Test score and gray matter
volume in areas generally activated in TD individuals would be
weaker in individuals with ASD relative to TD controls.

To test this hypothesis, we acquired MRI data from and
administered the Eyes Test to high-functioning adults with ASD,
who had no comorbidities and were not taking medication.
We recruited age-, sex-, intelligence quotient (IQ)-matched TD
controls. We analyzed the group differences in the association
between the Eyes Test score and gray matter volume using voxel-
based morphometry (VBM).

MATERIALS AND METHODS

Participants
The ASD group consisted of 19 adults with ASD (5 females,
14 males; mean ± SD [range] age = 28.1 ± 9.0 [19–53] years). All
were native Japanese. Diagnoses were made by two psychiatrists
with expertise in developmental disorders (MT and SY) using
DSM-IV-TR (American Psychiatric Association, 2000) criteria.
The diagnoses were accepted only if they completed an
agreement. Neurological and psychiatric problems other than
those associated with ASD were ruled out. None of the
participants was taking medications. Full-scale IQs, measured
by the Wechsler Adult Intelligence Scale, third edition (WAIS-
III; Nihon Bunka Kagakusha, Tokyo, Japan) fell within the
normal range in all participants in the ASD group (mean ± SD
[range] = 112.3 ± 13.7 [86–134]). Symptom severity was
assessed quantitatively using the Childhood Autism Rating Scale
(Schopler et al., 1986) in some participants (n = 13), and
their scores (mean ± SD [range], 25.0 ± 3.1 [18.0–30.5]) were
comparable to those of previous studies in high-functioning
individuals with ASD (Koyama et al., 2007; Uono et al., 2011; Sato
et al., 2012).

The TD group consisted of 19 native Japanese adults
who were carefully matched in terms of age (mean ± SD
[range] = 23.3 ± 3.8 [19–32] years; t(36) = 1.52, p > 0.1), sex
(5 females, 14 males; χ2

(1) = 0.00, p > 0.1), and full-scale IQ
(mean ± SD [range] = 114.8 ± 7.0 [101–124]; t(36) = 0.60,
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p > 0.1) with the ASD group. A psychiatrist or psychologist
administered a short structured diagnostic interview using
the Mini-International Neuropsychiatric Interview (Sheehan
et al., 1998); no neuropsychiatric problem was detected in any
participant. The TD group included participants used in a
previously published report (Sato et al., 2016).

All participants were right-handed, as assessed by the
Edinburgh Handedness Inventory (Oldfield, 1971) and
had normal or corrected-to-normal visual acuity. After the
procedures were fully explained, all participants provided
written informed consent for participation. This study was
approved by the local ethics committee of the Primate Research
Institute, Kyoto University, and conducted in accordance with
the approved guidelines.

Task
Because our participants were all Japanese, the Asian version
of the Eyes Test (Adams et al., 2010) was used. An illustration
of stimuli is shown in Figure 1; the model provided written
consent for the presentation of his photograph. The Asian
version of the test assessed the same mental states as the
original version (Baron-Cohen et al., 2001). As in the original
version, the Asian test consisted of 36 photographs depicting
only the eye region; however, the individuals depicted were East
Asian rather than Caucasian. The photographs were collected
from divergent sources, including magazines and databases of
amateurmodels. The Asian version retained the fourmental state
terms (e.g., irritated; one target and three foils) accompanying
each photograph used in the original version. The terms were
translated into Japanese and the validity of the translation was
confirmed through back translation. A previous study tested
the Asian version on 61 Japanese participants and found an
accuracy of more than 73% (Adams et al., 2010). Functoinal MRI
assessment of the Asian version in Japanese participants found
that, as in the original version, the test activated brain regions
related to mind reading, including the TPJ, IFG and dmPFC
(Adams et al., 2010). Although the reliability of the Asian version
has not been tested, several studies using the original version have
reported that reliability was high (Fernández-Abascal et al., 2013;
Vellante et al., 2013; Prevost et al., 2014; Khorashad et al., 2015).

The task was controlled by SuperLab Pro 2.0 (Cedrus, San
Pedro, CA, USA), implemented on a Windows computer (HP
Z200 SFF; Hewlett-Packard, Tokyo, Japan). The stimuli were
presented on a 19-inch CRT monitor (HM903D-A; Iiyama,
Tokyo, Japan). The photographs subtended visual angles of 12.0◦

horizontally × 4.8◦ vertically.

MRI Acquisition
Image scanning was performed on a 3-T MRI system
(MAGNETOM Trio, A Tim System, Siemens, Erlangen,
Germany) at the ATR Brain Activity Imaging Center using a
12-channel head coil. A forehead pad was used to stabilize
the head position. A T1-weighted high-resolution anatomical
image was obtained using a magnetization-prepared rapid-
acquisition gradient-echo sequence (repetition time = 2250 ms;
echo time = 3.06 ms; inversion time = 1000; flip angle = 9◦; field
of view = 256 × 256 mm; voxel size = 1 × 1 × 1 mm).

Behavioral Data Analysis
Behavioral data were analyzed using SPSS 16.0J (SPSS Japan,
Tokyo, Japan). Eyes Test scores were analyzed using a t-test
between groups and analysis of covariance (ANCOVA) with
group (TD and ASD) as an effect-of-interest factor and age,
sex and full-scale IQ as effect-of-no-interest covariates. A
p-value< 0.05 was considered significant.

Image Analysis
Image analysis was performed using the statistical parametric
mapping package, SPM81 and the VBM8 toolbox2 implemented
in MATLAB R2012b (MathWorks Inc., Natick, MA, USA).
First, the images were preprocessed using the VBM8 toolbox
using default settings. All structural T1 images were segmented
into gray matter, white matter and cerebrospinal fluid using an
adaptive maximum a posteriori (AMAP) approach (Rajapakse
et al., 1997). Intensity of homogeneity on the image was modeled
as slowly varying spatial functions and thus corrected in the
AMAP estimate. The segmented images were then used for
a partial volume estimate using a simple model with mixed
tissue types to improve segmentation (Tohka et al., 2004).
Furthermore, a spatially adaptive non-local means denoising
filter was applied to deal with spatially varying noise levels
(Manjón et al., 2010). A Markov Random Field cleanup was
used to improve image quality. The gray matter images in
native space were subsequently normalized to the standard
stereotactic space defined by the Montreal Neurological Institute
using the diffeomorphic anatomical registration using the
exponentiated lie algebra algorithm approach (Ashburner, 2007).
We used predefined templates provided in the VBM8 toolbox
that were derived from 550 healthy brains in the IXI-
database3. The resulting normalized gray matter images were
modulated using Jacobian determinants with non-linear warping
only (i.e., m0 image in the VBM8 outputs) to exclude the
effect of total intracranial volume. Finally, the normalized
modulated gray matter images were resampled to a resolution
of 1.5 × 1.5 × 1.5 mm and smoothed using a 12-mm
full-width at half-maximum (FWHM) isotropic Gaussian kernel
based on the recommendation of the VBM method, where
FWHM is typically between 4 mm and 12 mm (Ashburner,
2010). We selected the relatively large smoothing kernel
because it improved the normality of the distribution of the
data and increased the validity of the parametric statistics
for our relatively small sample size (Ashburner and Friston,
2000).

To identify the brain regions associated with between-group
differences in the association between the Eyes Test score and
gray matter volume, we performed a general linear model
analysis with group (TD and ASD) and group-interacted Eyes
Test score (Eyes Test score for each TD and ASD group; the
Eyes Test scores were overall mean centered) as the effect-of-
interest factors, and age, sex and full-scale IQ as the effect-of-no-
interest covariates (Supplementary Figure S1). Such modeling

1http://www.fil.ion.ucl.ac.uk/spm
2http://dbm.neuro.uni-jena.de
3http://www.brain-development.org
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FIGURE 1 | An illustration of the Asian version of the Eyes Test stimuli. The choice options were: (1) monoomoinifuketteiru (pensive); (2) iradatteiru (irritated);
(3) koufunshiteiru (excited); and (4) tekiiwoidaiteiru (hostile). The correct answer (i.e., that selected most frequently in the validation task) was option 1.

is similar to that exploring the interactions between categorical
and continuous variables in analyses of neuroimaging data
(Poldrack et al., 2011) and is mathematically equivalent to the
conventional model with group and Eyes Test score as the
main effects, with interactions and covariates. Our prediction
was related to the interaction between group and Eyes Test
score (i.e., TD Eyes Test score vs. ASD Eyes Test score).
Simple effect analyses were conducted to follow up significant
interactions. The effects were tested using T-statistics. Voxels
were deemed significant if they reached the extent threshold
of p < 0.05, with family-wise error correction for multiple
comparisons over the search volume, with a cluster-forming
threshold of p < 0.001 (uncorrected). We selected the regions
previously reported across multiple studies to show activation
in the TD individuals as they completed the Eyes Test as
regions of interest (ROIs). The ROIs specifically included the
TPJ, amygdala, IFG and dmPFC. We performed a small-
volume correction (Worsley et al., 1996) for these ROIs,
and search volume was restricted by constructing anatomical
masks of a 12-mm-radius sphere centered on coordinates
taken from previous studies. Information on coordinates was
derived from Adams et al. (2010), who reported significant
activation during the Asian version of the Eyes Test in the
bilateral TPJ (x-48, y-48, z16; x52, y-48, z14), bilateral IFG
(x-54, y32, z-4; x58, y30, z6) and left dmPFC (x-4, y16,
z56). Information on the bilateral amygdala (x-26, y-11, z-7;
x20, y-8, z-7) that was not reported by Adams et al. (2010)
was derived from Baron-Cohen et al. (1999). Note that these
ROIs were not based on our dataset results, rather they were

selected based on the activation evident in previous fMRI
studies. We thus sought to avoid circular or non-independent
analyses (see Kriegeskorte et al., 2009). Other areas were
corrected for the entire brain volume (k > 850). The brain
structures were labeled anatomically and identified according
to Brodmann’s areas (BAs) using the automated anatomical
labeling atlas (Tzourio-Mazoyer et al., 2002) and Brodmann
maps4, respectively, using MRIcron software5. The relationship
between gray matter volume and the Eyes Test for each group
was illustrated by plotting the gray matter values extracted at
peak voxels against test scores after adjusting for the effects-of-
no-interest by regressing out age-, sex- and full-scale IQ-related
variance.

RESULTS

Eyes Test Scores
The mean ± SE (range) Eyes Test scores for TD and ASD
groups were 27.3 ± 0.5 (23–30) and 24.9 ± 0.7 (18–29),
respectively (Figure 2). The t-test revealed a significant group
difference, indicating higher performance by the TD group
than by the ASD group (t(36) = 3.43, p < 0.005, r = 0.44).
The ANCOVA with group as a factor and age, sex and
full-scale IQ as covariates confirmed the main effect of group
(TD > ASD; F(1,33) = 12.11, p < 0.005, η2p = 0.22). The
covariate effect of full-scale IQ was significant (F(1,33) = 4.70,

4http://imaging.mrc-cbu.cam.ac.uk/imaging/BrodmannAreas
5http://www.mccauslandcenter.sc.edu/mricro/mricron/
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FIGURE 2 | Mean (with SE) scores on the Eyes Test in the typically developing
(TD) and autism spectrum disorder (ASD) groups.

p < 0.05, η2p = 0.13), indicating a positive association between
the Eyes Test score and full-scale IQ, and the covariate effect
of sex reached marginal significance (F(1,33) = 4.00, p < 0.1,
η2p = 0.11).

Gray Matter Volume
Our ROI analyses revealed a significant group × Eyes Test score
interaction (TD Eyes Test score vs. ASD Eyes Test score) in the
left TPJ (posterior middle temporal gyrus; peak: x-54, y-51, z21;
BA22, T(31) = 3.35; Figure 3), indicating that the association
between the Eyes Test score and gray matter volume in this
region differed between groups such that the association was
weaker in the ASD than in the TD group. The simple effect
contrasts revealed a significant positive association between
the Eyes Test score and gray matter volume only in the TD
group. When we explored the data with a more liberal height
threshold (p < 0.05, uncorrected) for descriptive purposes,
there was a cluster showing a negative association between
the Eyes Test score and gray matter volume of this region in
the ASD group. We found no significant effects of age, sex
and full-scale IQ in the identified TPJ region (Supplementary
Figure S2).

Our search for interactions between group and Eyes Test
score revealed no significant clusters in other regions of the
brain. Furthermore, we found no significant clusters indicating
main effects of group (group differences in brain volume
regardless of Eyes Test score) or Eyes Test score (positive

or negative associations with brain volume consistent across
groups).

DISCUSSION

Our behavioral results showed that Eyes Test scores were lower
in the ASD group than in the TD group. This result is consistent
with several previous studies (e.g., Baron-Cohen et al., 1997) and
indicates that individuals with ASD are impaired in their ability
to read the others’ minds by viewing their eyes.

More importantly, our VBM results revealed an interaction
between group and Eyes Test score in the left TPJ, indicating a
weak association between the Eyes Test score and gray matter
volume in the ASD group relative to the TD group. We found
a positive relationship between the Eyes Test score and gray
matter volume in the left TPJ of individuals with TD, but
not in those with ASD; in fact, the association was slightly
negative. These results are consistent with the findings of several
functionalMRI studies that the TPJ is active while TD individuals
perform the Eyes Test (e.g., Platek et al., 2004; for a review, see
Schurz et al., 2014) and that siblings of individuals with ASD
showed less activation in the TPJ during the Eyes Test compared
with the TD group (Holt et al., 2014). Our results appear to
be inconsistent with those of a previous structural MRI study
showing a positive relationship between social cognition and gray
matter volume in the TPJ of individuals with ASD (David et al.,
2014). However, methodological differences can account for this
discrepancy. For example, in the David et al.’s (2014) study,
the task was to rate interactions between non-human objects,
and did not involve processing eyes or faces. Furthermore, the
authors found no association between task performance and
gray matter volume in the TPJ of TD individuals, suggesting
that the region investigated was functionally different from
that in our study. Our findings are consistent with several
previous structural MRI studies showing weak and negative
associations between the processing of facial stimuli and gray
matter volume in the fusiform gyrus (Dziobek et al., 2010;
Trontel et al., 2013) and amygdala (Dziobek et al., 2006), in
individuals with ASD. The atypical, paradoxical association
between social functioning and graymatter volume in individuals
with ASD may be related to their compensatory cognitive
(e.g., more intellectual) or biological (e.g., using different
brain regions) strategies for social interaction. Taken together,
our findings suggest that the failure to make appropriate
structural neural representations in the TPJ may underlie the
impaired ability of individuals with ASD to read the mind in
the eyes.

Our results showing an interaction between group and Eyes
Test score in the structure of TPJ are similar to the findings
of previous structural MRI studies showing that adults with
ASD had a structural abnormality in the TPJ (Hadjikhani et al.,
2006; Craig et al., 2007; Scheel et al., 2011; Ecker et al., 2012;
Mueller et al., 2013; David et al., 2014). However, note that
our results did not show a main effect of group (i.e., group
differences in gray matter volume regardless of Eyes Test score)
in the TPJ, which is consistent with several structural MRI
studies in adults with ASD (Abell et al., 1999; McAlonan et al.,
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FIGURE 3 | Brain regions showing a significant interaction between group and Eyes Test score in the association with gray matter volume. Left: statistical parametric
maps showing the interaction in the left temporoparietal junction (posterior middle temporal gyrus). The height threshold was set at an uncorrected p < 0.001. The
areas are overlaid on the normalized T1-weighted anatomical image of a study participant. Blue crosses indicate the locations of the peak voxels. The red–yellow
color scale represents the T-value. L, left hemisphere; R, right hemisphere. Right: scatterplots of the adjusted gray matter volume as a function of Eyes Test scores at
the peak voxels for the typically developing (TD) and autism spectrum disorder (ASD) groups. Effects of no interest (age, sex and full-scale intelligence quotient) were
cavariated out.

2002; Schmitz et al., 2006, 2008; Wilson et al., 2009; Dziobek
et al., 2010; Toal et al., 2010; Ecker et al., 2013; Lai et al.,
2013; Bernhardt et al., 2014; Riedel et al., 2014; Balardin et al.,
2015; Gebauer et al., 2015; Itahashi et al., 2015; Libero et al.,
2015; for a review see Yang et al., 2016). Our results suggest
that individuals with ASD may have atypical brain–behavior
associations that cannot be detected using structural MRI data
alone.

Our results have theoretical implications. First, the results
add empirical support for the cognitive theory that impaired
abilities to process eyes and to read others’ minds are
core symptoms of ASD (Baron-Cohen, 1995). Our behavioral
results confirm these deficits, and our MRI results revealed
their structural neural underpinning. Next, the MRI results
also provide support for the neuroscientific theory of an
impaired social brain network in ASD (Emery and Perrett,
2000; Johnson et al., 2005; Pelphrey and Carter, 2008; Sato
et al., 2012). Although the details differ across studies, the
theory posits that abnormal structures and/or functions in the
network of specific brain regions involved in processing social
signals, including the TPJ, underlie the social malfunctioning
in individuals with ASD. Our results confirm that the TPJ
is a core social brain region impaired in individuals with
ASD.

Several limitations of this study should be acknowledged.
First, we used the Asian version of the Eyes Test. Although this
version has the advantage of increased behavioral and neural
sensitivity for Japanese participants (Adams et al., 2010), it

has not been investigated extensively and lacks sufficient data
regarding reliability and validity. Thus, further psychometric
studies are necessary to validate the Asian version of the
Eyes Test.

Second, our sample was small, and hence the results should
be interpreted cautiously. Although the TPJ was the only brain
region in which we found a significant interaction between group
and Eyes Test score, null findings in the other ROIs, or in
other brain regions, may be attributable to the lack of statistical
power. In fact, we found an association between the Eyes Test
score and gray matter volume in other brain regions, including
the dmPFC and precuneus in a subsequent investigation of
more TD participants (Sato et al., 2016). Future studies with
larger samples of individuals with ASD may reveal the structural
neural network underlying the impaired ability to read the
mind in the eyes and provide a better understanding of the
brain regions involved in compensatory processing as individuals
with ASD attempt to make inferences about others’ mental
states.

Third, the ASD group included only individuals with
high-functioning ASD. However, our findings and those of
several previous studies in TD individuals showed that Eyes
Test performance was correlated with IQ (e.g., Peterson
and Miller, 2012; for a review see Baker et al., 2014).
Such data suggest the possibility that performance on
the Eyes Test may be more severely impaired and its
structural neural correlates more widespread in individuals
with low- compared with high-functioning ASD. Further
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research is needed to determine whether the results
can be extended to individuals with lower-functioning
ASD.

Finally, the specific cognitive functions related to the
TPJ remain unclear. Debate regarding this issue persists
in functional neuroimaging studies of TD individuals (see
Van Overwalle and Baetens, 2009). For example, it has
been proposed that the TPJ might be involved in gathering
cues to infer mental states (Gallagher and Frith, 2003)
or inferring transient mental states (Van Overwalle, 2009).
Furthermore, questions over which core cognitive functions
can be assessed by the Eyes Test (e.g., mind reading vs.
emotion recognition; Oakley et al., 2016) have sparked debate
in the psychological literature. Future research investigating
the association between more specific cognitive functions
related to reading the mind in the eyes and the TPJ
structure would deepen our understanding of social impairment
in ASD.

In conclusion, our VBM analysis showed an interaction
between group and Eyes Test score in the left TPJ. We found a
positive relationship between the Eyes Test score and TPJ gray
matter volume in individuals with TD, but not in those with
ASD. This finding suggests that failure to develop appropriate
structural neural representations in the TPJ may underlie the
impaired ability of individuals with ASD to read the mind in the
eyes.
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FIGURE S1 | Schematic illustrations of the design matrix (lower matrix image)
and contrast (upper bar graph) in the general linear model analysis. The design
matrix contained group (typically developing [TD] and autism spectrum
disorder [ASD]) and group-interacted Eyes Test score as the effect of interest
factors, while age, sex and full-scale intelligence quotient (IQ) were the
covariates of no interest. Our prediction was related to the TD Eyes Test score
vs. ASD Eyes Test score contrast.

FIGURE S2 | Scatterplots of adjusted gray matter volume showing the
relationships between effects of no interest (age, sex and full-scale intelligence
quotient [IQ]) and Eyes Test score for the typically developing (TD) and autism
spectrum disorder (ASD) groups at the peak voxels for the interaction between
group and Eyes Test score. The effects of group and Eyes Test score, and the
effects of no interest were covariated out.
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