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SUMMARY

Changes in dengue virus (DENV) genome affect viral fitness both clinically and epidemiologically. Even

in the 30 untranslated region (30 UTR), mutations could affect subgenomic flaviviral RNA (sfRNA) pro-

duction and its affinity for host proteins, which are necessary for successful viral replication. Indeed,

we recently showed that mutations in DENV2 30 UTR of epidemic strains increased sfRNA ability to

bind host proteins and reduce interferon expression. However, whether 30 UTR differences shape

the overall DENV evolution remains incompletely understood. Herein, we combined RNA phylogeny

with phylogenetics to gain insights on sfRNA evolution. We found that sfRNA structures are under

purifying selection and highly conserved despite sequence divergence. Only the second flaviviral

nuclease-resistant RNA (fNR2) structure of DENV2 sfRNA has undergone strong positive selection.

Epidemiological reports suggest that substitutions in fNR2 may drive DENV2 epidemiological fitness,

possibly through sfRNA-protein interactions. Collectively, our findings indicate that 30 UTRs are

important determinants of DENV fitness in human-mosquito cycles.

INTRODUCTION

Dengue virus (DENV) is the leading cause ofmosquito-borne viral diseaseglobally. An estimated 100million

cases of acute dengue occur annually, some of which develop into life-threatening severe dengue (Bhatt

et al., 2013). DENV exists as four antigenically distinct but genetically related viruses (DENV1–4), all of which

can cause the full spectrum of disease outcome. A tetravalent dengue vaccine has been licensed in several

countries for use to prevent dengue. However, its protective efficacy varied across the four serotypes of

DENV, and long-term protection was only observed in older children with at least one episode of prior

DENV infection (Hadinegoro et al., 2015). Thus despite application of this vaccine and current approaches

to vector control, DENV will likely continue to be a major public health challenge in the coming years.

Dengue is distributed throughout the tropics and is now encroaching into the subtropical regions of the

world, causing frequent and recurrent epidemics (Messina et al., 2015). Although several of these epi-

demics were caused by fluctuations in the relative prevalence of the DENV serotypes in a background of

low herd serotype-specific immunity, genetic differences in DENV also appear to play a distinct role in

epidemic emergence (OhAinle et al., 2011). Indeed, we showed that the 30 untranslated region (30 UTR)
of DENV genome contributes to the epidemiological fitness of DENV (Manokaran et al., 2015). Nucleotide

substitutions in the 30 UTR of DENV2 strains resulted in increased subgenomic flaviviral RNA (sfRNA) levels.

This viral non-coding RNA (ncRNA) binds to TRIM25 protein to inhibit its deubiquitylation; without TRIM25

E3 ligase activity, RIG-I signaling for type I interferon (IFN) induction was repressed. Reduced type I IFN

response, at least in part, contributed to the increased viral spread of these strains in Puerto Rico in

1994 (Manokaran et al., 2015). More recently, we have also shown that sfRNA from the sameDENV2 isolated

during the 1994 Puerto Rico outbreak also disrupts the antiviral response in the salivary gland of the Aedes

mosquito vector (Pompon et al., 2017). Similarly, changes in the 30 UTR sequence that resulted in increased

sfRNA production were observed in a new DENV2 clade in 2005 that resulted in a dengue epidemic in

Nicaragua (OhAinle et al., 2011; Manokaran et al., 2015). Likewise, nucleotide composition in the

30 UTRs also differentiated dominant from weaker DENV strains in Myanmar, India, and Sri Lanka (Myat

Thu et al., 2015; Dash et al., 2015; Silva et al., 2008; respectively), although the structural consequences

and impact of those substitutions on viral fitness have yet to be experimentally defined.

DENV 30 UTRs can be functionally segmented into three domains. The twomore downstream domains possess

RNA structures necessary for viral genome cyclization, viral RNA synthesis, translation, and replication (Alvarez
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Figure 1. The 30 UTR of Dengue Viruses Diverged by Deletion and Sequence Coevolution of Functional RNA

Structures

Dengue viruses are phylogenetically related RNA viruses; their 30 UTR sequences have diverged along evolution, and they

now differ in sequence length and nucleotide composition. However, they kept functional RNA structures through

sequence covariation. We observed and quantified RNA sequence covariation to predict secondary structures in the

30UTRs and implemented Bayesian RNA phylogenetics to establish the phylogenetic relations among the RNA structures

across dengue viruses.

(A) Alignment of DENV 30 UTR sequence logos. Sequence logos for the 30 UTR of all DENV were aligned based on the

multiple sequence alignment of DENV 30 UTRs sequences (consensus sequence logo). The three domains of DENV 30 UTR
are highlighted at the bottom of the figure, along with the hypervariable (HVR) and semi-variable (SVR) regions in domain

I. Highly conserved sequences were used to demark the boundaries between three domains in the 30 UTR of dengue

viruses. A detailed view on domain-specific sequence logos is provided in Figures S1–S3. Five conserved stretches were

found across DENV 30 UTRs. They correspond to two flaviviral nuclease-resistant RNA (fNR) structures, two dumbbell (DB)

structures and the terminal 30 stem loop (30 SL). They were spaced by adenylate-rich (A-r) segments. This figure also

illustrates the location of extra or missing nucleotides that account for the different lengths across the 30 UTR of DENV.

The sequence logos also provide a glance on sequence conservation and nucleotide composition. These data are further

described in Tables S1–S3. Nucleotides are color coded (blue, cytosine; green, uracil; yellow, guanine; red, adenine).

(B) Consensus model for the secondary structure of DENV 30 UTRs. After applying the RNA phylogeny approach, we

obtained the secondary interactions for the five conserved RNA structures. Preliminary secondary structures and

pseudoknots were predicted through free energy minimization and further refined by covarying base pairs. The statistical

support for covarying base pairs was estimated by G-statistics in Rscape software (Figure S5 provides the parameters for

the implementation and detailed results). The first 50 non-base-paired nucleotides in the HVR were excluded from the

figure.

(C) Phylogeny of fNR structures in the 30 UTR of dengue viruses. As the sequence logos revealed (A), DENV4 30 UTR bears

only fNR structures; to determine whether this structure shares its most recent common ancestor with the fNR1 or fNR2

structures in other dengue viruses, Bayesian RNA phylogenetics was implemented under PHASE 3.0 software. It included

all DENV fNR structure sequences (branches in blue) and a DENV4 NR (branch in red); the fNR structures from Kedougou
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Figure 1. Continued

virus (KEDV) and Yokose virus (YOKV) were used as outgroup (branch in black). Posterior probabilities are only

depicted on relevant nodes.

(D) Ribonucleotide sequence identity on predicted RNA secondary structures in the 30 UTR of dengue viruses. Sequence

identity is color coded according to the heatmap at the bottom of the figure. Highly conserved sites are highlighted in a

scale from red to black (site conservation >95%).
et al., 2005, 2008; reviewedbyGebhard et al., 2011). These structures have been termed small hairpin and 30 end
stem loop (30SL) in domain III and dumbbell (DB) 1 and 2 indomain II. Remarkably, a 30-nucleotide deletion (D30)

in DB1 generated attenuated DENV1, 3, and 4 but not DENV2 strains (Men et al., 1996; Durbin et al., 2001).

Chimeric live attenuatedDENV vaccines were designed to bear a D30 DENV4 30 UTR. They appear to be prom-

ising live vaccine candidates in clinical trials (Durbin et al., 2013). Vaccination with these vaccine candidates pro-

tected human volunteers against live DENV challenge infection (Kirkpatrick et al., 2016).

The proximal segment of the DENV 30 UTR contains RNA structures that are resistant to host nuclease ac-

tivity, such as that of 50-30 exoribonuclease 1 (Xrn1), resulting in the production of sfRNA during infection

(Pijlman et al., 2008). These structures have been referred to with different names in the literature: ‘‘stem

loops’’ (Shurtleff et al., 2001; Pijlman et al., 2008; Villordo et al., 2015) or ‘‘Xrn1-resistant RNA’’ (Chapman

et al., 2014a). However, crystal structures of homologous RNA sequences from related flaviviruses, Murray

Valley encephalitis virus (Chapman et al., 2014b), and Zika virus (Akiyama et al., 2016), revealed a three-way

junction RNA folding, rather than an SL structure. More importantly, these RNA structures halt diverse exor-

ibonucleases to produce sfRNA, not only Xrn1 exoribonuclease (MacFadden et al., 2018). Therefore we

refer herein to these RNA structures as flaviviral nuclease-resistant RNA (fNR) structures, as initially termed

by Pijlman et al. (2008), and to differentiate them from the unrelated nuclease-resistant RNA structures in

dianthoviruses (Steckelberg et al., 2018).

As the sequence and hence the RNA structures in the 30 UTR of the DENV genome appear to be an impor-

tant determinant of epidemiological fitness, it is possible that this part of the genome contributes to DENV

evolution. Here we report the results of a detailed bioinformatic analysis that included all publicly acces-

sible 30 UTR nucleotide sequences from DENV. We combined free energy minimization and sequence

comparative analysis—also known as RNA phylogeny—to estimate secondary and tertiary RNA interac-

tions in the 30 UTR of the four DENV types. Our RNA phylogenetic and natural selection analyses provide

an evolutionary framework for further exploration into the molecular, epidemiological, and clinical conse-

quences of variations in the 30 UTR of dengue viruses.
RESULTS

Sequence Identity and RNA Structures in the 30 Untranslated Region of Dengue Viruses

Amultiple nucleotide sequence alignment across many homologous ncRNA sequences can depict several

features of their evolutionary trajectories. The ncRNA length, sequence identity, and nucleotide composi-

tion can unveil insertion or deletion events and conserved GC-rich functional RNA segments. Our analysis

on the 30 UTR of dengue viruses confirmed the existence of substantial differences in the nucleotide

sequence composition and length across and within DENV serotypes as previously reported (Shurtleff

et al., 2001; Proutski et al., 1999; Men et al., 1996). The 30 UTR of DENV1 serotype is the longest (mode

465; range 436–475) followed by those of DENV2 (mode 454; range 444–469), DENV3 (Mode 443; range

429–455), and DENV4 (mode 387; range 387–407) (Table S1). Their distal segments (domains II and III)

are highly conserved within each DENV type (Figure 1A, see a detailed view in Figures S1–S3). Although

a small segment in domain II showed low sequence identity across DENV types (see the consensus align-

ment in Figure 1A), domain II—as well as the above-mentioned small segment—is well preserved within

each DENV type. Comparably, known functional sequences in domains II and III also showed high level

of conservation (>99.2%) (Figure S4). These sequences are involved in 30 UTR to 50 UTR long-range interac-

tions that are essential for viral genome translation and replication in DENV and other flaviviruses (reviewed

by Gebhard et al., 2011 and Brinton and Basu, 2015). In contrast, domain I of 30 UTR exhibits high genetic

variability, including multiple insertions, deletions, and point mutations within and across DENV types.

Indeed, its most proximal region—the hypervariable region (HVR)—depicted a significantly poor nucleo-

tide conservation (average identity <89% in all serotypes, p < 0.001) and significant adenine enrichment

(p < 0.05) (Figure 1A, Tables S2 and S3). This finding suggests a lack of folded RNA structures as RNA viruses

tend to accumulate adenine in non-base-paired and structurally flexible regions (van Hemert et al., 2013;
96 iScience 16, 94–105, June 28, 2019



Keane et al., 2015). Compared with the HVR, domain I also possesses a semivariable region with a high level

of nucleotide conservation (average identity R96% in all serotypes) and significantly higher GC content

(Figure 1A and Table S2), suggesting the presence of conserved RNA structures across DENV serotypes.

These conserved stretches are separated by small adenine-rich sequences, which may serve as spacers

to facilitate the proper folding of functional RNA structures. In total, five adenine-rich stretches were found

(Table S3); they represent some of the less conserved genomic segments in the 30 UTR of DENV and appear

to space highly conserved functional RNA structures in domains I and II.

To define the secondary RNA structures and tertiary interactions of the 30 UTR, a ‘‘divide, learn, and

conquer’’ approach was adopted (see Transparent Methods). It included (1) identification of conserved

RNA structures within each DENV serotype, (2) prediction of preliminary RNA secondary structures from

conserved short RNA segments using base-pairing probabilities and thermodynamic methods (Lorenz

et al., 2011; Ren et al., 2005), and (3) validation, improvement, and building of consensus RNA structures

for DENV 30 UTR using RNA phylogeny. RNA phylogeny identifies evolutionarily conserved secondary

and tertiary RNA structures through nucleotide sequence covariation (Jaeger et al., 1993). To further vali-

date the covariation of base pairs, G-test statistics was also applied to determine whether these covaria-

tions occur at a rate higher than phylogenetically expected (Figure S5) (Rivas et al., 2017). The consensus

DENV 30 UTR secondary structures derived from RNA phylogeny (Figure 1B) resembled the DENV2 30 UTR
structure previously obtained by chemical probing (Chapman et al., 2014a), suggesting the validity of our

bioinformatics approach. The predicted fNR structures in domain I are also compatible with the known

crystal structures, although they substantially differ from the secondary structures suggested by Shurtleff

et al. (2001), and to a lesser extent, from the one reported by Villordo et al. (2015).
fNR Structures and DENV Evolution

Interestingly, DENV1, 2, and 3, but not DENV4, bear two fNR structures (Figures 1C and 1D). Among the

duplicated fNR structures, the first fNR structure (fNR1) exhibited greater conservation than fNR2, suggest-

ing that fNR1 is preserved because of its nuclease-resistant function for sfRNA production in DENV1, 2, and

3. The downstream fNR (fNR2) structure has thus relatively less constraint to evolve and adapt its structure

possibly for additional function. The only fNR structure in DENV4 appeared to be phylogenetically closer to

the fNR2 than fNR1 structure of the other DENV serotypes, suggesting that the upstream stretch of nucle-

otides have been deleted (Figure 1C).

To determine whether the variability of sfRNA structures influences DENV evolution, we examined the

selection pressure on each nucleotide position using a maximum likelihood (ML) phylogenetic method

(see Transparent Methods). In this approach, the nucleotide substitution rate in each position of the

sfRNA sequence was calculated and compared to the synonymous substitution rate in the coding region

of each DENV serotype. This ratio models a z parameter. When a nucleotide position evolved neutrally,

z z 1 (i.e., equivalent substitutions rates). In contrast, z > 1 or z < 1 indicate that a given position in the

sfRNA has, respectively, a higher or lower substitution rate than the synonymous substitution rate in the

coding region of the genome from the same set of DENV strains. This approach thus provides an esti-

mate on whether the higher substitution rate in a given nucleotide position of the ncRNA has contributed

to increase the fitness of the bearing DENV strains, i.e., positive selection. If instead the ncRNA nucleo-

tide position remains more conserved when compared with the neutral evolutionary rate of the coding

region in DENV genome, it is regarded as the effect of purifying or negative selection. Figure 2A shows

the z values for every position in the four DENV sfRNAs along with the 95% confidence intervals of the z

parameter calculated for the coding region of the corresponding DENV genome (depicted as gray zone

on the dot plots). Our results show that most nucleotide positions in DENV sfRNA have z < 1, suggesting

strong negative selection. This observation concurs with the predominant negative selection reported for

the 30 UTR of DENV1 by Wong and Nielsen (2004). It is also consistent with a reported finding that strong

purifying selection characterizes the evolution of DENV genomes (Holmes, 2006 and Lequime et al.,

2016). However, several nucleotide positions in the fNR and DB structures appear to follow a neutral

evolutionary rate (z|1) when compared with the coding genome. When compared, these duplicated

RNA elements also showed distinct evolutionary rates in some DENV types (Figure 2B), suggesting

that DENV sfRNAs undergo unique evolutionary forces in every DENV type. We also observed a slightly

higher substitution rate in DB2 than in DB1 in DENV2 lineages, consistent with the findings reported by

de Borba et al. (2019), although in both cases the rate is significantly lower than the neutral substitution

rate. Although purifying selection prevails on DB evolution, the DB2 structures appear to have diverged
iScience 16, 94–105, June 28, 2019 97
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Figure 2. DENV2 sfRNA Possesses a Highly Evolving RNA Structure

(A) Site-specific quantification of natural selection on the sfRNA from dengue viruses. A maximum-likelihood method was applied to detect the action of

natural selection in DENV sfRNAs in a site-by-site basis. A z parameter and its 95% confidence interval (CI) across the full genome determined whether a

nucleotide position underwent negative selection (blue dots), positive selection (red dots), or neutral evolution (black dots) in the ncRNA sequence. On the

left, dot plots depict the zeta values for all DENV sfRNAs. The 95% CI is shown as gray zone on the dot plots. The 95% CI slightly varied across DENV

genomes. DENV1 = (0.513; 1.469), DENV2 = (0.547; 1.473), DENV3 = (0.532; 1.451), DENV4 = (0.506; 1.437). On the right side, the ribonucleotide positions in

the DENV sfRNA secondary structures are color coded accordingly. Pseudoknots are not shown for the sake of simplicity.

(B) Quantification of natural selection on the RNA structures of DENV sfRNAs. The z parameter for every RNA structure and their standard errors are shown

for every DENV type. The z parameter for every RNA structure is color coded based on whether they underwent negative selection (blue dots), positive

selection (red dots), or neutral evolution (black dots).

(C) Fitness landscape of DENV sfRNA as determined by fNR and DB sequence abundance. A fitness landscape is a function that assigns to every genotype a

numerical value proportional to its fitness. It involves a vast 2D genotypic space and a fitness value (z axis). The 2D genotypic space for the sfRNA fitness

landscape was resolved in X axis by the fNR nucleotide sequences and in the Y axis by the DBs (full length Domain II) sequences, whereas their normalized

combined abundance (copy numbers) across DENV 30 UTR sequence alignments served as relative fitness value. It allowed us to elucidate the ability of these

RNA structures to contribute to genome survival and to establish distinct evolutionary trajectories in sfRNA evolution.

(D) 3D simulation of DENV2 sfRNA. By combining predicted base pairing and comparative RNA modeling, we obtained an in silico 3D model of DENV2

sfRNA. Pseudoknots, adenylate-rich regions, and the highly evolving hairpins are highlighted in colors as in the secondary RNA structures at the bottom right

of the figure.
across DENV types through some base pair covariations, explaining the low sequence identity in a small

segment of domain II. Strikingly, some nucleotide positions in the fNR2 structure of DENV2 could have

undergone positive selection with z > 1 (Figure 2A). This RNA structure also shows higher evolutionary

rate than other RNA structures in DENV2 sfRNA (Figure 2B), suggesting that substitutions in fNR2 may

confer competitive advantage for DENV2 strains. These results are uniformly consonant with the greater
98 iScience 16, 94–105, June 28, 2019



dispersion and diversity of fitness peaks that appeared in our DENV sfRNA fitness landscape (Figure 2C).

The roughness on the surface of the DENV sfRNA fitness landscape indicates emergence or existence of

multiple fNR/DB fitness peaks across the four DENV types and their divergence after fNR duplication.

Although the DB divergence across DENV types resolves the fitness peaks in the DB dimension, the

fNR sequences explore a larger genotypic space and generate more fitness peak than the DBs. More

importantly, the fNR2 genotypic space is populated by more dispersed and isolated peaks of fitness.

It further confirmed the greater evolvability and divergence of fNR2 when compared with fNR1 se-

quences and the ability of fNR2 sequences to contribute to DENV type 2 divergence into different

genotypes.

To further assess the role of DENV2 30 UTR evolution, an ML phylogenetic tree was constructed using a

nucleotide substitution model of evolution for ncRNA, based on the consensus secondary RNA structure

of DENV2 sfRNA (see Transparent Methods). The phylogenetic tree (Figure 3A) segregated the DENV2

sfRNA sequences into six clades, consistent with the six genotypes that characterize DENV2 evolution (re-

viewed by Chen and Vasilakis, 2011).

Remarkably, the positively selected hairpin in the fNR2 structure differed in nucleotide composition and

structure across DENV2 genotypes, despite being relatively conserved within genotypes (Figure 3A).

Most genotypes are rich in adenine in this hairpin structure except the American genotype, which has

mostly uracil. It is noteworthy that the American genotype has shown poor epidemiological fitness and

has now been completely displaced by other DENV2 genotypes in many parts of the world. Likewise, anal-

ysis of DENVs derived from epidemiological studies (Table 1) also showed that four clade replacement ep-

isodes that resulted in greater or less than expected dengue incidence involved nucleotide substitutions in

fNR2 structures (Figure 3B).
DISCUSSION

The identification of 30 UTR structure and sfRNA production as having functional importance in determining

viral fitness is of major interest in both experimental and epidemiological settings. The frequent

emergence of DENV strains with insertions, deletions, and point mutations in their 30 UTR (Zhou et al.,

2006; Pankhong et al., 2009; de Castro et al., 2013; Dash et al., 2015) and the differences in nucleotide

lengths underscores the need for improved understanding of this part of the DENV genome. Given that

the sfRNA is an ncRNA, its influence on DENV fitness and evolution must be understood in the context

of its RNA structures. RNA phylogeny provides a bioinformatic approach to glean insights to direct further

mechanistic investigations. Furthermore, a phylogenetic based estimation of substitution rate using

ncRNAmodel of nucleotide substitutions coupled with normalization by the substitution rate in the coding

genome enabled us to (1) overcome the bias that dataset size can introduce in sequence identity (conser-

vation) analysis, (2) avoid the misleading interpretation of ‘‘representative’’ sequences, and (3) exploit the

growing sequencing databases to gain insight into the ncRNA evolution of a widely spread virus.

Available sequence data indicate that the DBs, the terminal 30 SL, and long-range interacting sequences in

domains II and III are highly conserved. Their role in flaviviral replication may enforce a strong purifying se-

lection on these 30 UTR domains. The integrity of DB structures also contributes to increased sfRNA pro-

duction, as the 30-nucleotide deletion in DB1 decreases sfRNA production and increases type I IFN suscep-

tibility of the live attenuated DENV vaccine candidates (Bustos-Arriaga et al., 2018). Likewise, fNR structures

in the DENV 30 UTR are relatively well conserved. All the nucleotide interactions that confer nuclease resis-

tance are highly conserved. In addition, any nucleotide substitution in base-paired positions of the fNR or

DB structures is often accompanied by compensatory mutation to maintain structural integrity. Although

some nucleotide positions in these duplicated RNA elements seem to follow the neutral evolutionary

rate in DENV and the evolvability of these RNA structures varied across DENV types (Figure 2B), as a

rule of thumb, purifying selection remains the prevailing force in the evolution of RNA structures in

DENV 30 UTRs. Along this line of thought, the finding of a positive selection in the fNR2 structure of

DENV 30 UTR is thus intriguing. fNR2 mutations may emerge during mosquito infection and subsequently

be selected in human infections, owing to their contribution to replicative fitness (Villordo et al., 2015; Fi-

lomatori et al., 2017). Certainly, serial passaging of DENV2 inAedes albopictus-derived C6/36 cells resulted

in multiple mutations in its fNR2 and production of different sfRNA species (Villordo et al., 2015). More

detailed experimental investigation revealed that mutations in the positively selected hairpin did not

impair DENV replicative fitness in mosquitoes or mammalian cell lines (Villordo et al., 2015). We therefore
iScience 16, 94–105, June 28, 2019 99
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Figure 3. Nucleotide Substitutions in DENV2 sfRNA Are Associated with DENV2 Speciation and Increased

Epidemic Potential

(A) Phylogenetics and nucleotide substitutions in the sfRNA of DENV2 strains. A maximum likelihood phylogenetic tree

from DENV2 sfRNA was built using PHASE 3.0 software. This software applies an RNA structure-based approach to

construct phylogenies of non-coding RNAs. The highly evolving hairpin in DENV2 sfRNA exhibited distinct nucleotide

composition and structure across DENV2 genotypes. Hairpin secondary structures and sequence logos are shown next to

the corresponding branch for the DENV2 genotypes in the phylogenetic tree. The consensus secondary structures for the

sfRNA in all the DENV2 genotypes are also shown. Genotype-specific nucleotide substitutions are highlighted in colors.

(B) Epidemic DENV2 strains underwent nucleotide substitution in the highly evolving NR2 of DENV2 sfRNA. Location of

nucleotide substitutions are shown in dominant strains that have been involved in three DENV2 clade replacements and a

natural attenuation event.
hypothesize that the mosquito-derived fNR2 variability has been selected in subsequent human infections

in distinct geographical locations, possibly based on their ability to bind host proteins for the suppression

of antiviral immune activation. Previous biochemical work has shown that mutations in the highly evolving
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Events Geographical Location Year Serotype/Genotype Context Reference

Clade replacement Puerto Ricoa 1994 DENV2 SEAA Outbreak McElroy et al. (2011)

Nicaraguaa 2005 DENV2 SEAA Outbreak OhAinle et al. (2011)

Singaporea 2005 DENV2 Cosmopolitan Outbreak Lee et al. (2012)

Thailand 1990s DENV1 Outbreaks Teoh et al. (2013)

Brazil 1990s DENV1 Genotype I Outbreaks Carneiro et al. (2012)

Mexico 2006

1999

DENV1 Genotype III

DENV2 SEAA

Several outbreaks Carrillo-Valenzo et al. (2010)

Indiaa 2009–2011 DENV1 genotype III Outbreaks Dash et al. (2015)

Malaysia 1987

1997

2004

DENV1 genotype I Recurring outbreaks Dupont-Rouzeyrol et al. (2014)

Tonga Islanda 1974 DENV2 American Reduced severity Steel et al. (2010)

Genotype replacement Sri Lankaa 1989 DENV3

Genotype I > III

DHF emergence Silva et al. (2008)

Manakkadan et al. (2013)

Myanmara 1974–2002 DENV1

Genotype I > III

Several outbreaks Myat Thu et al. (2015)

Indian Subcontinenta 1971 DENV2

American > cosmopolitan

Several outbreaks Kumar et al. (2010)

Americasa 1983 DENV2

American > SEAA

DHF emergence Mir et al. (2014)

Table 1. List of Epidemiological Events Associated with Increased DENV Epidemiological Fitness

An extensive literature revision on DENV epidemiology revealed at least 13 events associated with increased DENV epidemiological fitness.
aNucleotide substitutions in the 30 UTR were reported in nine of those epidemic DENV strains.
nucleotide positions do not compromise the nuclease-resistant activity of fNRs (Chapman et al., 2014a).

Therefore a mechanism other than increased nuclease-resistant activity would better serve to explain

the driving force for positive selection on this hairpin. As the in silicomodeling of DENV sfRNA would sug-

gest (Figure 2D), the positive selected hairpin appears to be fully solvent exposed and prone to RNA-pro-

tein interactions. Indeed, Bidet et al. (2014) showed that the fNR2 structure interacts with CAPRIN G3BP1

and G3BP2 proteins, mediating the sfRNA-induced repression of IFN-stimulated mRNAs in human liver-

derived Huh7 cells. Moreover, mutations in the fNR2 structures produced higher replicative fitness in

Aedes albopictus compared with the corresponding wild-type DENV2 (Filomatori et al., 2017). Collectively,

these findings suggest a strong evolutionary pressure on DENV2 fNR2 structures. In addition, the consis-

tent concordance between previously reported experimental data and our bioinformatics findings high-

lights the robustness of ML method developed by Wong and Nielsen (2004).

Viral genomes can undergo different mutations, including but not limited to nucleotide substitutions,

insertion, deletions, rearrangements, and reassortments. Among them, duplications of genomic elements

are unique as only duplications increase the genome’s ability to withstand mutations, i.e., mutational

robustness (Wagner, 2008). Immediately after duplication, the redundant elements exert the same function

and experience relaxed selection during a brief period of their early history. Subsequently, mutations accu-

mulate in one of the redundant elements, leading to its structural or functional elimination or to the diver-

gence in the elements’ function. Thus the duplication and subsequent divergence of genomic elements

can increase mutational robustness and favor evolutionary innovation, allowing the corresponding fixation

of duplicated elements in the genome. This phenomenon has been well documented for duplicated genes,

which have withstood more nucleotide substitutions and diverged more than their single-copy counter-

parts in their early evolutionary history (Lynch and Conery, 2000). In a similar manner, duplication of RNA

elements can open the genotypic space for evolutionary innovation and emergence of peaks in the fitness

landscape. Given our bioinformatics findings and other available experimental evidence, we propose that
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the duplicated fNR structures in domain I currently embody two functionally distinct RNA segments: the

first NR structure is conserved to enable sfRNA production. In contrast, the downstream NR structure is

relatively free to evolve and may be selected based on advantageous RNA-protein interactions in human

or mosquito cells for increased fitness. This evolutionary model would agree with the reduced sfRNA pro-

duction and transmission fitness that fNR1 mutations caused in DENV2 strains (Pompon et al., 2017), and

the increased replicative, transmission, and epidemiologic fitness that fNR2 mutations conferred to

some DENV2 genotypes and more specifically in some dominant DENV2 strains. Indeed, Cologna and

Rico-Hesse (2003) cloned the 30 UTR of the American genotype into a Southeast Asian -American (SEAA)

DENV2 and found small viral plaques in Vero cells and slower growth kinetics in both mosquito and human

cells (also Anderson and Rico-Hesse, 2006), which are phenotypes more congruent with the American than

SEAA DENV2 genotype.

Our proposedmodel also explains the lack of positive selection in DENV4 as these viruses only possess one

fNR structure. It, however, raises questions on why no positive selection was detected on the 30 UTR of

either DENV1 or 3. We offer several interpretations. First, if we assume that the distinct adaptation of

the fNR2 in interspecies transmission—high sequence diversity in mosquito infection and sequence bottle-

neck in human infection—(Villordo et al., 2015; Filomatori et al., 2017) is happening in all DENVs, our bio-

informatics data would indicate that a stronger purifying selection occurs in the 30 UTR of DENV1 and 3 dur-

ing human infection when compared with DENV2. This is especially true because most publicly available

DENV full-genome sequence data were derived from clinical isolates; few full-genome sequences from in-

fected mosquitoes have been reported. A second and interesting scenario would suggest that the pro-

posed model for the evolution of DENV2 sfRNA and its distinct fNR adaptation do not occur in other

DENV types. This second postulate would help us understand why previous studies using RNA sequencing

observed mutational hotspot in the 30 UTR of DENV2 but not DENV1 after replication in mosquitoes (Ses-

sions et al., 2015; Sim et al., 2015). Experimental studies will be needed to test the validity of these

postulates.

Notwithstanding the need for mechanistic validation, we suspect that fNR duplication has contributed to

shape the overall divergence of dengue viruses. Although the duplication of genomic elements can pro-

vide mutational robustness and evolvability, the stochastic deletion of such elements may play a significant

role in the passive origin of new species (Lynch and Conery, 2000). Thus if the fNR duplication occurred early

in DENV evolutionary history, as the RNA phylogenetic analysis suggested, it is likely that the later fNR1

deletion in DENV4 imposed an evolutionary constraint in DENV4 lineage, limiting its adaptability to infect

new ‘‘urbanized’’ hosts and forcing a sympatric speciation and its greater divergence. It concurs with

weaker DENV4 transmission and replicative and epidemiological fitness when compared with other

DENV types. Indeed DENV4 has shown the following characteristics: lower human-to-mosquito transmis-

sion rates (Duong et al., 2015), lower infectivity in both field (Nguyet et al., 2013) and experimental settings

(Gubler and Rosen, 1976; Gubler et al., 1979; Mitchell et al., 1987), lower infectivity and shorter viremia in

non-human primates (Kraiselburd et al., 1985; Althouse et al., 2014), lower and shorter viremia levels in hu-

man infections (Gubler et al., 1981; Nguyet et al., 2013), and slower global spread (Messina et al., 2014)

among the different types of DENVs. This constraint might have been overcome through antibody-depen-

dent enhancement in primates or competitive advantage in vector DENV co-infections in the current allo-

patric DENV distribution (Halstead, 2014; Vazeille et al., 2016). It would also help to explain why DENV4 has

shown reduced epidemic potential during its global spread in the last decades and why only an additional

30-nucleotide deletion in the 30 UTR is required to generate a complete attenuated phenotype in DENV4

and in recombinant DENV1 to 3 strains bearing a D30rDENV4 -30 UTR (Durbin et al., 2001 and 2013).

Collectively, our findings suggest that 30 UTR evolution and sfRNA production are important determinants

of DENV adaptation, survival, and epidemiological fitness.
Limitation of the Study

This study has benefitted from the wealth of information embedded in the large number of DENV genomic

sequences that have been submitted to NCBI GenBank in the last four decades. However, the viral sample

collection, processing, and sequencing methodologies might have introduced some bias in the raw data

for this study. For instance, most of the currently available DENV genomes were obtained from human

serum samples and very few of them were isolated from mosquitoes, as indicated in the Transparent

Methods section. A larger sampling of mosquitoes could provide a more nuanced picture in terms of
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sequence identity, variability, and substitution rates, when compared with what the authors have observed

in this study. Finally, this article is primarily hypothesis generating by adopting an evolutionary interpreta-

tion of the bioinformatic data. Experimental studies to systematically test these hypotheses will be needed

to validate the notions proposed herein.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.05.019.
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Figure S1, related to Figure 1A and Figure 1B. Detailed view of sequence conservation and secondary structures in domain I of 
DENV 3’UTRs.
(A) Alignment of Domain I sequence logos. Sequence logos for the 3’UTR of all DENV were aligned based on the multiple sequence 
alignment of DENV 3’UTRs sequences (consensus sequence logo). The highly variable (HVR) and semi-variable (SVR) regions in domain 
I are highlighted at the bottom of the figure. Nucleotides are color-coded (Blue = Cytosine, Green = Uracil, Yellow = Guanine, Red = 
Adenine).
(B) Consensus model for the secondary structure of Domain I in DENV 3’UTRs. The statistical support for covarying base pairs was 
estimated by G-statistics in Rscape software.
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Figure S2, related to Figure 1A and Figure 1B. Detailed view of sequence conservation and secondary structures in domain II of 
DENV 3’UTRs.
(A) Alignment of Domain II sequence logos. Sequence logos for the 3’UTR of all DENV were aligned based on the multiple sequence 
alignment of DENV 3’UTRs sequences (consensus sequence logo). Nucleotides are color-coded (Blue = Cytosine, Green = Uracil, Yellow 
= Guanine, Red = Adenine).
(B)Consensus model for the secondary structure of Domain II in DENV 3’UTRs. The statistical support for covarying base pairs was 
estimated by G-statistics in Rscape software.
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Figure S3, related to Figure 1A and Figure 1B. Detailed view of sequence conservation and secondary structures in domain III of 
DENV 3’UTRs.
(A) Alignment of Domain III sequence logos. Sequence logos for the 3’UTR of all DENV were aligned based on the multiple sequence 
alignment of DENV 3’UTRs sequences (consensus sequence logo). Nucleotides are color-coded (Blue = Cytosine, Green = Uracil, Yellow 
= Guanine, Red = Adenine).
(B) Consensus model for the secondary structure of Domain III in DENV 3’UTRs. The statistical support for covarying base pairs was 
estimated by G-statistics in Rscape software. 
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Figure S4, related to Figure 1A. High sequence conservation in some segments of Domain II and III in the 3’ UTR of dengue 
viruses. 
The sequences have been involved in genome cyclization, viral replication and translation.On the top panel, the conserved sequences are 
mapped on the secondary structure of DENV 3’UTRs. Sequence logos and the sequence conservation of these segments are shown at 
the bottom of the figure, left and right hand sides respectively.
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R-scape analysis:
Input file:
- Multiple sequence alignment:
 -  Number of sequences: 1825
 -  Length: 501 nucleotides
 -  Average identity: 83.17%
- RNA secondary structure:
 -  Number of base pairs: 126

R-scape test:
- Covariation statistical method:
  APC-corrected G-Test statistic
- E-value threshold: 0.05

R-scape output:
- Number of base pairs after filter: 105
- Covarying base pairs: 14
- Covarying non base pairs: 0
- Range of scores: [-4.13 ; 1604.74]
- Sensitivity: 13.33
- Positive predictive value: 100

Base pairs with significant covariations  
Left 

position 
Right 

position 
score E-value 

61 95 973.31 0.0340113 
74 90 1192.42 0.00682436 

157 170 1486.24 0.00076987 
188 205 1604.74 0.000307065 
189 204 1355.32 0.00201342 
199 215 1540.87 0.00049705 
227 260 1204.55 0.00625533 
228 259 1189.19 0.00682436 
235 251 1275.27 0.00370847 
313 384 1003.30 0.027391 

 

314 383 1117.62 0.0115008 
325 352 1174.07 0.00777609 
329 348 947.33 0.0404361 
331 346 1517.10 0.000592138 
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Figure S5, related to figure 1B. G-statistics were applied to identify significant covariation of ribonucleotide base pairs in the 3’ 
UTR of dengue viruses.
(A) Covariation scores survival functions. Two survival functions of scores are obtained upon G-test statistic implementation in R-scape 
software. In red, we drew the survival function of scores for all possible pairs in the input alignment excluding those proposed as base 
pairs. In blue, we plotted the survival function of scores for proposed base pairs in the input alignment. The survival function for the null 
alignments is depicted in black. The black line corresponds to fit to a truncated Gamma distribution of the tail of the null distribution.
(B) Summary of input alignment statistics, R-scape test parameters and R-scape output statistics.
(C) List of proposed base pairs with significant covariation. Nucleotide positions correspond to the position in the 2D model in figure 1B. 
Score and E-value are also shown.



Table S1, related to Figure 1A. A detailed analysis of RNA sequence alignments exposed the variability within and across DENV 
3’UTRs. 
(A) Statistical analysis on the multiple sequence alignments from the 3’ UTR of dengue viruses. This table summarizes the sequence 
conservation analysis on this segment of DENV genome. It includes number of sequences, the mode and range of sequence length, the 
absolute and relative number of identical sites (100% conserved sites) and the average identity.
(B) Nucleotide composition and sequence conservation in distinct segments of DENV 3’UTRs. This table summarizes the conservation 
analysis of the different domains in the 3’ UTR of DENV. The comparison across the three domains within each dengue virus type revealed 
a significantly (p<0.05) higher CG content in domain II and a lower average identity in Domain I (p<0.05) (highlighted in red). Further 
analysis also revealed significant differences (highlighted in blue) between the Highly variable region (HVR) and the semivariable region 
(SVR) in Domain I.
(C) Nucleotide composition and sequence conservation of spacer sequences in DENV 3’UTRs. This table summarizes the conservation 
analysis of the different Spacer sequences.  Adenine enrichment of the spacers is significant in all dengue virus types (p<0.05).

Table S1C. Nucleotide composition and identity of Adenylate-rich spacers in DENV 3’UTRs. 

Spacer Serotype Sequences 
n 

Length Nucleotide composition (%) Identical sites  Average 
identity 

(%)  Mode [Range] A G C U CG n (%) 
HVR DENV-1 1486 51 [22–51] 55.8 13.6 14.4 16.2 28.0 1 (2.0) 88.1 

 DENV-2 1073 34 [25–36] 55.4 14.5 18.4 11.6 33.9 2 (5.6) 82.7 
 DENV-3 831 28 [17–34] 52.5 6.1 26.9 14.5 33.0 2 (5.) 77.1 
 DENV-4 154 30 [30–48] 50.4 25.6 7.6 16.4 33.2 6 (12.5) 84.5 

fNR1–fNR2 DENV-1 1486 7 [7–8] 71.6 14.4 0.2 14.1 14.4 2 (25.0) 99.0 
 DENV-2 1073 7 [7] 72.5 14.4 0.1 13.0 14.5 4 (57.1) 97.4 
 DENV-3 831 10 [10] 70.0 20.0 0.0 10.0 20.0 8 (80.0) 99.9 
 DENV-4 --- --- --- --- --- --- --- --- --- --- --- 

fNR2–DB1 DENV-1 1486 8 [8–9] 62.6 0.4 27.7 9.3 28.1 4 (44.4) 94.4 
 DENV-2 1073 9 [8–11] 66.4 0.1 16.4 17.1 16.5 2 (18.2) 91.1 
 DENV-3 831 7 [7–8] 54.0 3.2 28.6 14.3 31.8 4 (50.0) 94.6 
 DENV-4 154 11 [10–11] 46.5 0.6 28.8 24.1 29.4 5 (45.5) 84.6 

DB1 DENV-1 1356 9 [9–13] 62.4 10.3 14.9 12.4 25.1 1 (7.7) 83.5 
 DENV-2 1071 14 [13–15] 56.7 17.1 17.9 24.2 19.1 1 (6.7) 90.5 
 DENV-3 822 9 [9] 54.9 11.8 22.2 11.1 34.0 4 (44.4) 98.4 
 DENV-4 153 16 [16–18] 63.2 6.0 18.8 12.0 24.8 7 (38.9) 92.0 

DB2 DENV-1 1356 9 [8-10] 69.8 0.2 14.5 15.5 14.7 1 (10) 91.7 
 DENV-2 1071 10 [10–12] 85.4 4.2 9.3 1.1 13.5 0 (0) 89.4 
 DENV-3 822 9 [8–9] 87.3 0.1 2.1 10.5 2.2 1 (11.1) 95.4 
 DENV-4 153 9 [8–9] 77.7 0.0 27.3 0.0 22.3 8 (88.9) 99.7 

3’ UTR
Region Serotype Sequences 

n 

Length Nucleotide composition (%) Identical sites Average 
identity 

(%) Mode [Range] A G C U GC n  (%) 
Domain I DENV-1 1486 196 [167–198] 35.0 21.5 25.3 18.2 46.8 82  (41.4) 95.1  

 DENV-2 1073 183  [173–184] 36.7 21.9 22.8 18.6 43.7 66  (35.1) 93.4  

 DENV-3 831 175 [161–180] 30.4 24.6 27.8 17.2 52.4 91  (50.0) 94.8  

 DENV-4 154 113 [113–131] 31.3 26.9 21.4 20.4 48.3 76  (58.0) 93.4  
HVR DENV-1 1486 51 [22–51] 55.8  13.6 14.4 16.2 28.0 1  (2.0)  88.1  

 DENV-2 1073 34 [25–36] 55.4  14.5 18.4 11.6 33.9 2  (5.6)  82.7  

 DENV-3 831 28  [17–34] 52.5  6.1 26.9 14.5 33.0 2  (5.9)  77.1  

 DENV-4 154 30  [30–48] 50.4  25.6 7.6 16.4 33.2 6  (12.5)  84.5  

SVR DENV-1 1486 145 [144–147] 27.6 24.4 29.1 18.9 53.5  81  (55.1) 97.6 

 DENV-2 1073 151 [148–154] 28.0 23.5 28.8 20.2 51.3  65  (42.2) 95.7 

 DENV-3 831 147  [147–148] 26.5 27.9 28.0 17.6 55.9  89  (60.1) 98.1 

 DENV-4 154 83 [83] 24.2 27.3 26.7 21.8 54.0  70  (84.3) 96.8 
Domain II DENV-1 1356 167 [167–173] 29.0 25.7 32.0 13.3 57.7  52  (29.9) 97.8 

 DENV-2 1071 169 [169–171] 31.6 24.7 29.9 13.8 54.6  75  (43.4) 97.6 

 DENV-3 822 166 [166–169] 28.7 26.8 31.5 13.0 58.3  94  (55.6) 98.8 

 DENV-4 153 172 [172–174] 29.7 26.6 31.3 12.4 57.9  138  (58.0) 98.4 
Domain III DENV-1 1140 102 [102–105] 30.1 24.9 25.1 19.9 50.0 35  (33.3) 99.2 

 DENV-2 1008 102 [102–103] 30.7 24.8 24.1 20.4 48.9 30  (28.8) 99.5 

 DENV-3 715 102 [102–104] 29.1 24.7 25.4 20.8 50.1 53  (51.0) 99.6 

 DENV-4 151 102 [102] 28.8 24.6 25.9 20.7 50.5 84  (82.4) 98.5 

Table S1B. Nucleotide composition and Identity in the three domains of DENV 3’UTRs. 

Serotype Sequences Length Identical sites Average 
identity 

n Mode Range n (%) (%) 
DENV-1 1486 465 [436–475] 169 35.4 96.5 

DENV-2 1073 454 [444–469] 158 33.7 96.0 

DENV-3 831 443 [429–455] 238 52.3 97.1 

DENV-4 154 387 [387–407] 298 73.2 96.9 

Table S1A. Sequence length and Identity in the DENV 3’UTR alignments.



TRANSPARENT METHODS 

Sequence conservation analysis 

Complete DENV genome nucleotide sequences were downloaded 

directly from the GeneBank database. The search included the 

keywords “Dengue virus type X” (X=1–4). In total, 1486, 1073, 831 and 

154 sequences were included in the analysis of the 3’ UTR of DENV-

1, DENV-2, DENV-3 and DENV-4, respectively. Most of the sequence 

dataset was reported to be isolated from human serum samples. Only 

25 mosquito-isolated DENV sequences were available (4, 17 and 4 

from DENV1, 2 and 3 respectively). All DENV mutants, laboratory 

adapted strains, replicons, vaccine candidate strains, serially passage 

strains, and duplicated sequences were previously excluded. We built 

multiple sequence alignments for each serotype using MAFFT 

(Multiple sequence alignment using Fast Furier Transformation) 

software (Katoh and Standley, 2013). The sequence alignments were 

limited to the 3’UTR, starting from the Stop codon in NS5. We used 

Geneious platform to calculate nucleotide composition, sequence 

length (mode and range), average identity (i.e. average nucleotide 

conservation in the alignment) and number of identical sites (100 

percent conserved positions) in the 3’ UTR of DENV (Kearse et al., 

2012). To visualize the nucleotide composition pattern and 

conservation in the 3’ UTR of each serotype, we generated sequence 

logos from the 3’UTR alignments using Weblogo server (Crooks et al., 

2004) (see Figure 1A). We used standard colors to represent each 

type of nucleotide in the alignment (Blue = Cytosine, Green = Uracil, 

Yellow = Guanine, Red = Adenine).  

To further characterize the nucleotide conservation, composition and 

distribution in the 3’UTR of dengue viruses, we identified some 

conserved stretches that mapped to the start and end of the Dumbbell 

(DB) structures in the Domain II, as described by Shurtleff et al. (2001) 

and Gerhald et al. (2011). We used them to establish a clear border 

between the different domains in the 3’ UTR of DENV and to perform 

subsequent sequence analyses in these domains. The statistical 

analysis of the nucleotide conservation and composition analysis was 

performed using STATA software (StataCorp, 2015). We used 

Analysis of Variance (ANOVA) with Bonferroni correction and Chi-

square to test hypotheses from absolute values (average identity) and 

relative frequencies (nucleotide composition). Due to substantial 

differences across the sample size in the four data sets (see Table 

S1A), all statistical comparisons were performed to test hypotheses 

within each serotype. 

Sequence comparative analysis and RNA structure determination  

To obtain secondary RNA structures and tertiary interactions, we 

applied a ‘divide, learn and conquer’ approach. It combines (1) an 

insightful 3’ UTR sequence conservation analysis within each flavivirus 

and within flavivirus groups to identify the presence of conserved RNA 

structures, (2) the power of RNA structure prediction software to solve 

preliminary RNA secondary structures from short RNA segments and 

(3) the robustness of a sequence comparative analysis – or RNA 

phylogeny – to validate, improve and build a consensus RNA structure 

for the 3’ UTR and sfRNA of flaviviruses (Jaeger et al., 1993). The 

strength of the RNA phylogeny approach relies upon the identification 

of evolutionary conserved functional RNA structures whose nucleotide 

sequences changed overtime but kept the RNA secondary and tertiary 

structures. Hence, it was possible to identify conserved functional RNA 

structures through sequence conservation analysis, to predict 

preliminary RNA structures using base-pairing probabilities and 

thermodynamic methods on the conserved stretches using RNAfold 

and HotKnots software (Lorenz et al., 2011 and Ren et al., 2005) and 

to validate secondary and tertiary interaction by identifying co-

variations in the RNA nucleotide sequences, exploiting the growing 

sequencing dataset and high nucleotide substitution rate in RNA 

viruses. G-test statistics was implemented to further test whether 

observed RNA covariations occurred above phylogenetic expectation 

(Rivas et al., 2017) (see Figure S5). We drew secondary RNA 

structures and pseudoknots using VARNA software (Darty et al., 

2009).  

Detecting natural selection in DENV sfRNA 

To determine whether the RNA structures in the sfRNA play a role in 

the evolution of DENV, we explored natural selection pressure in a site-

by-site basis in the sfRNA structure using a maximum-likelihood (ML) 

method (Wong and Nielsen, 2004) (see Figure 2A). We modeled the 

evolution of coding and non-coding regions and assumed a constant 

neutral (synonymous) nucleotide substitution rate in both regions in 

each serotype viral genome. We modeled the evolution in the open 

reading frame of DENV genome and determined its synonymous 

substitution rate, using a model of codon evolution (General Time 

Reversible, GTR+) that has been generally applied to study the 

coding region of DENV genome (Weaver & Vasilakis, 2009). On the 

other hand, we calculated the nucleotide substitution rate in the sfRNA 

sequence in site-by-site basis. We used PHASE 3.0 software and a 

combined model of non-conding RNA evolution (Loop model: Hanley 

and Knott Regression, HKR+ and Stem model: 16D) based on the 

RNA secondary structure for the sfRNA from each serotype (Allen and 

Whelan. 2014). We normalized the nucleotide substitution rate in each 

position of the sfRNA sequence by the synonymous substitution rate in 

the coding region of each DENV serotype and estimated a  parameter. 

Thus, a nucleotide position that exhibited a similar nucleotide 

substitution rate to the synonymous substitution rate (  1) was 

assumed to be under a neutral evolution, whereas when  was found 

to be significantly higher or lower than 1 in a given position in the sfRNA 

sequence we assumed that it has experienced the action of positive or 

negative selection, respectively. To provide statistical significance to  

parameter ratios, we calculated a 95% confidence interval (CI) for  

parameter across each DENV serotype genome. If the  value of a 

given position was within the 95%CI, we confirmed neutral evolution. If 

the  value was above or below the 95%CI, we reported a significant 

positive and negative selection, respectively. 

DENV2 sfRNA Phylogenetics tree 

We constructed a phylogentics tree for the sfRNA of DENV-2 from an 

alignment of 356 unique and representative 3’UTR DENV-2 

sequences. We used PHASE 3.0 package (Allen and Whelan, 2014) 

to build a maximum likelihood phylogenetic tree using the same 

composed model of nucleotide substitution (Loop model: HKR+ and 

Stem model: 16D) based on the predicted RNA secondary structures 

in the sfRNA of DENV-2. The statistical support for the topology of the 

tree was determined by 1000 bootstrap replications. 

DENV-2 sfRNA 3D modeling   

We modeled the 3D RNA structure of DENV-2 sfRNA using RNA 

composer (Popenda et al. 2012). We used for the input file all the 

secondary and tertiary interactions that we obtained from the RNA 

phylogeny approach. The modeling of DENV-2 fNR structures was 

optimized through comparative RNA modeling, using ZIKV fNR crystal 

structure as template (5TPY). This was performed using ModeRNA 

software (Piatkowski et al., 2016). The local geometry in preliminary 

models were refined through energy minimization using the AMBER 

force field in the Molecular Modelling toolkit (Hinsen, 2000). The final 

simulations were inspected for steric clashes using the find-clashes 

function in ModeRNA. Although the de novo and comparative modeling 

of structured RNA elements in the sfRNA was highly reproducible, the 

presence of non-base-paired spacers rendered the orientation of 

structured elements in relation to each other poorly reproducible. 



Therefore, only a representative model is shown in Figure 2D. The final 

sfRNA model was visualized, colored and labeled using pyMOL 

software. 

Construction of a sfRNA fitness landscape 

A fitness landscape is a XYZ plot that depicts in the XY plane the 

genotypic space and every point in the genotypic space projects a 

fitness value to the Z plane. For the sfRNA fitness landscape, the 

extend of the genotypic space was defined in the X and Y planes by 

the product of all possible fNR and DB sequences. The number of 

possible sequences corresponded to sequence length to the power of 

5, accounting for the possibility of having U, C, A, G or a missing 

nucleotide in every position. Thus, the overall genotypic space covers 

1.342514 points (fNR length = 75 nucleotides, BD length = 179 

nucleotides, genotypic space = 755x1795). Domain III of DENV 3’UTR 

was not integrated into the 2D genotypic space. Its length (102 

nucleotides, see Table S2) would substantially increase the size of the 

genotypic space to be computed and analyzed (1.342514x1025) and it 

will not contribute to resolve the 2D space due the high sequence 

identity in this part of DENV 3’UTR (>99%, see Table S2). The fitness 

value was obtained from the relative combined abundance of fNR and 

DBs sequences among all DENV full genome sequences in NCBI 

database. Thus, if a combination of fNR-DB sequences conferred high 

fitness to the bearing strain, they would pass through subsequent viral 

generations in the mosquito- human interspecies transmission, they 

would be sampled and sequenced. The sequences would them appear 

in the NCBI database. Unfortunately, some strains have been more 

frequently sampled and sequenced than other strains and the NCBI 

database holds a sequencing bias. To adjust the fitness value and 

reduce the impact of the sequencing bias, a phylogenetic based 

normalization was implemented. Every clade was weighted according 

to it proportional contribution to the total number of nucleotide 

sequences from every DENV type, this weighting was then transferred 

to every sequence in the clade. Thus, if a clade contains 40% of all the 

DENV sequences – an over-sampled clade, every sequence in this 

clade would no longer count as 1 in the sum for the Z value, it will rather 

count as 0.6. If the clade represents 0.1% of the all sequences, every 

sequence in the clade will add 0.99 to the Z Value. FASTAptamer-

cluster software was used to cluster sequences into sequence families 

based on a fixed Levenshtein edit distance (Alam et al., 2015). The 

fitness landscape was plotted using gnuplot graphing utility in LINUX 

Operating System. An XYZ plot was generated by the splot command 

and the surface plot was obtained after a gaussian approximation to 

the XYZ raw data by the gauss kernel under dgrid3d command. Figure 

2C shows only a small section of the overall fNR-DB genotypic space 

(3.38-9 %, 453882 XY points), where a Z value could be assigned. The 

rest of the genotypic space is completely deprived of fitness peaks and 

is not shown. 

Data and Software Availability  

The raw DENV genomic data, phylogenetic data and secondary 

structure models for DENV 3’ UTRs are available as a Mendeley 

dataset. The annotation of DENV 3’UTR RNA elements is also 

available in the four DENV reference sequences (GeneBank: 

NC_001477, NC_001475, NC_002640 and NC_001474). 
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