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Abstract

Background: Microbial community samples have been accumulating at a speed faster than ever, with hundreds of thousands of
samples been sequenced each year. Mining such a huge amount of multisource heterogeneous data is becoming an increasingly
difficult challenge, so efficient and accurate compare and search of samples is in urgent need: faced with millions of samples in the
data repository, traditional sample comparison and search approaches fall short in speed and accuracy.

Findings: Here we proposed Meta-Prism 2.0, a microbial community sample analysis method that has pushed the time and memory
efficiency to a new limit without compromising accuracy. Based on sparse data structure, time-saving instruction pipeline, and SIMD
optimization, Meta-Prism 2.0 has enabled ultra-fast, memory-efficient, flexible, and accurate search among millions of samples. Meta-
Prism 2.0 was put to test on several data sets, with the largest containing 1 million samples. Results show that Meta-Prism 2.0’s
0.00001-s per sample pair compare speed and 8-GB memory needs for searching against 1 million samples have made it one of the
most efficient sample analysis methods. Additionally, Meta-Prism 2.0 can achieve accuracy comparable with or better than other
contemporary methods. Third, Meta-Prism 2.0 can precisely identify the original biome for samples, thus enabling sample source
tracking. Finally, we have provided a web server for fast search of microbial community samples online.

Conclusions: In summary, Meta-Prism 2.0 has changed the resource-intensive sample search scheme to an effective procedure, which
could be conducted by researchers every day even on a laptop, for insightful sample search, similarity analysis, and knowledge discov-
ery. Meta-Prism 2.0 can be accessed at https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0, and the web server can be accessed
at https://hust-ningkang-lab.github.io/Meta-Prism-2.0/.

Background
Microbial communities have asserted great influences on health
care, environment, and industry [1–4]. As such, an increasing
number of projects have been conducted on microbial communi-
ties around the world, such as those from the “Human Microbiome
Project” [1, 2] and the “Earth Microbiome Project” [3, 4]. Mining
this massive amount of samples has already discovered knowl-
edge about the microbial community and their effects on the en-
vironment and human health [5, 6], providing an opportunity to
study the hidden evolution and ecology patterns among microbial
communities.

A microbial community sample (also referred to as the sam-
ple) is represented by the hierarchically structured taxa (species,
genus, families, etc.) and their relative abundances (also referred
to as the community structure), and these species are functioning
in concert to maintain stability and adapt to the specific environ-
ments (also referred to as the niches or biomes) where the micro-
bial community is living. These samples’ community structures
are often associated with the biomes and a variety of characteris-
tics of the biomes. For example, the community structures of the
human gut microbiome have been linked to multiple aspects of
human life, such as health [6, 7], early development [8], immigra-

tion [9], and pregnancy [10]. Thus, there is a large amount of hid-
den information in the community structures and remains to be
discovered. These challenges in current microbiome research are
calling for a fast community-level comparison and search among
the rapidly accumulating number of microbial communities.

Methods already existed for comparison and search of samples.
The distance-based methods are the first batches designed for the
purpose, whose primary strategy is to compare the similarity or
distance between 2 samples. The simplest distance-based method
is the Jensen–Shannon divergence (JSD) measurement [11], which
only considered species abundances in the community. More ad-
vanced distance-based methods considered both species abun-
dances and their phylogenetic relationships. For example, UniFrac
[12] is a typical distance-based method, which first maps their
respective sets of taxon abundances on the phylogenetic tree
and, second, traverses the tree and executes operation at each
node (each representing a taxon on the phylogenetic tree) to cal-
culate their similarity. Fast UniFrac [13] and Meta-Storms [14]
optimized such a procedure by changing tree traversal to an ar-
ray loop. Striped UniFrac [15] further optimized matrix similar-
ity comparison by reorganizing samples. Dynamic Meta-Storms
enables species-level accuracy by introducing virtual nodes [16].
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Previously, we designed Meta-Prism 1.0, a fast and accurate micro-
bial community sample search tool [17]. Meta-Prism 1.0 generates
an index to rapidly select samples with a similar biome and top
phylum for comparison. Furthermore, Meta-Prism 1.0 uses GPU
to accelerate comparison. However, given that more than a mil-
lion community samples have already been deposited into pub-
lic databases [18, 19], state-of-the-art methods including Meta-
Prism 1.0 face difficulties in comparison and searching among
these samples, while rendering knowledge discovery from sam-
ples formidable. Additionally, microbial community samples’ data
are very sparse. These methods use fixed-length arrays to save
abundances with lengths equal to the entities number of the phy-
logenetic tree, wasting a considerable amount of memory. They
also spend much time operating on these empty nodes.

To solve the large-scale microbial community sample search
problem, we have redesigned and updated Meta-Prism to its sec-
ond version (Meta-Prism 2.0). Facing the large and sparse charac-
teristics of microbial samples, we adopted a special sparse stor-
age format and a fast 1-N calculation method. This greatly re-
duces memory usage and time consumption. As the computing
and storage efficiency increases, it adds a similarity matrix cal-
culation function to analyze more than 100,000 samples’ beta di-
versity. When searching samples, due to the efficiency improve-
ment, Meta-Prism 2.0 no longer needs to generate the index sys-
tem to select high-probability subsets for similarity comparison
but conducts an exhaustive search against the entire database.
Thus, it has higher flexibility (when searching among customized
data sets) and robustness than Meta-Prism 1.0. More important,
with these improvements of efficiency and space, Meta-Prism 2.0
now can deal with 1 million or even more microbial community
samples and is one of the fastest microbial community sample
search methods to date.

Using several data sets including the largest one containing
a million samples, we demonstrated that it can achieve at least
20 times speed-up compared to the contemporary approach (e.g.,
Meta-Prism 1.0 and Striped UniFrac), and Meta-Prism 2.0 is the
only method that can handle the search against a million sam-
ples. The memory utilization is also very efficient: compared with
other methods including JSD, Striped UniFrac, and Dynamic Meta-
Storms, when analyzing data set beta diversity, which has a size
that exceeds 10,000, Meta-Prism 2.0 can at least save 80% of mem-
ory space needed. Though we have saved time and memory by
magnitudes, the accuracy is not compromised. For example, Meta-
Prism 2.0 obtained an area under the curve (AUC) of 0.99 in dis-
tinguishing samples from different biomes for more than 100,000
samples [20]. Meta-Prism 2.0 has changed the traditional compu-
tational resource-intensive sample search to a cheap and effec-
tive procedure that could be conducted by researchers every day,
for the discovery of intricate relationships among samples. Meta-
Prism 2.0 can be accessed at https://github.com/HUST-NingKang
-Lab/Meta-Prism-2.0. Also, the fast and accurate microbial com-
munity sample search can be experienced on the web server at
https://hust-ningkang-lab.github.io/Meta-Prism-2.0/.

Findings
Materials and execution environments used for
evaluation
Through manual curation from the EBI MGnify database [18], we
obtained a data set consisting of 126,727 microbial community
samples belonging to 114 different biomes, defined as the Com-
bined data set. We also generated a data set that consists of 10,270

samples, which have been used in the FEAST study [21], defined as
the FEAST data set (Table 1). According to the biome annotation
of the EBI MGnify database, we categorized these samples into 3
biomes: Fecal, Human (such as forehead, skin, oral, sebum), and
Mixed (such as doorknobs, kitchen counter, light switch). Details
of all samples in the FEAST data set are provided in Supplemen-
tary Table S1. To evaluate Meta-Prism 2.0’s speed and memory ef-
ficiency on the scale of 1 million samples, we synthesized a data
set with 1,000,010 samples based on the Combined data set. All
samples from these 3 data sets are accessible from https://gith
ub.com/HUST-NingKang-Lab/Meta-Prism-2.0. We used SILVA 132
LTPs132 SSU phylogenetic tree [22] in all experiments included in
this study.

Striped UniFrac, Dynamic Meta-Storms, and Meta-Prism 2.0
were compiled by GCC 4.8.5 and run on CentOS 6.7 with Intel Xeon
CPU E5-2678 v3 @ 2.50 GHz and 252 GB memory. The JSD was cal-
culated utilizing Python 3.7.3 and SciPy 1.4.1 and run on the same
CentOS device. The executable Meta-Prism 2.0 steps’ time usage
was compiled by clang-1100.0.33.16, evaluated by Xcode11.5 In-
struments Time Profiler, and run on macOS 10.15 with Intel Core
i7-9750H and 32 GB memory. Meta-Prism GPU version was com-
piled by NVCC 10.1 and run on RTX 2080Ti.

Meta-Prism 2.0 outperforms other methods in
source tracking accuracy
We assessed the search accuracy of different methods in the con-
text of source tracking, namely by checking the consistency of the
predicted biomes and query samples’ actual biomes. This eval-
uation is based on the realization that the microbial communi-
ties collected from the same biome always share similar patterns
in their taxonomical structures and relative abundances [20, 21].
Specifically, we used simple cross-validation for the evaluation,
based on searching 12.5% randomly chosen samples (considered
the query data set) against the rest of the samples (considered
the target data set). For each query sample, we selected the top
100 most similar target samples. The similarity of these samples
is then summed by biome and normalized by dividing by the total
number of samples in the source data set for each biome. After
the resulting values are normalized, it is the probability that the
test sample belongs to each biome.

The evaluation performances are shown in Fig. 2. The varying
classification threshold that generates different sensitivities and
specificities ranges from 0.01 to 1 with a fixed step size of 0.01.
On the FEAST data set, each method predicted the biome for test-
ing samples according to the biomes included in the source data
set (Fecal, Human, and Mixed). Distance-based phylogenetic tree
approaches (Meta-Prism 2.0, Striped UniFrac, and Dynamic Meta-
Storms) showed similarly good performance, while JSD obtained a
lower AUC of 0.9512. On the Combined data set, each method pre-
dicted the biome for testing samples according to 114 biomes in-
cluded in the source data set (87.5% of the Combined data set). JSD
and Dynamic Meta-Storms could not finish the calculation within
an acceptable time (10 days). We only compared Meta-Prism 2.0
and Striped UniFrac. Meta-Prism obtained a higher AUC result of
0.9934, while Striped UniFrac’s AUC result was 0.9153.

Meta-Prism 2.0 shows high efficiency with
regard to time and memory
The time and memory efficiency are the most profound advan-
tage of Meta-Prism 2.0. We first assessed Meta-Prism 2.0’s speed
based on using data sets with different data set sizes and using
different numbers of CPU threads (Fig. 3). The setting was matrix
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Table 1: The Combined data set and FEAST data set used in this study. Details are provided in Supplementary Table S1

Data set Combined data set FEAST data set

Top-level biome Root Human gut
Number of biomes involved 114 3
Number of samples 126,727 10,270
Number of species 45,477 5,762
Average number of species per
sample

411.22 111.05

Notes Selected samples from
MGnify database

Selected samples from the
FEAST study

A

B

C

D

Figure 1: The Meta-Prism 2.0 pipeline with key optimization highlighted. (A) Meta-Prism 2.0 takes taxa abundance as input data, maps data to the
phylogenetic tree, and converts data to sparse abundance data for space optimization. Meta-Prism 2.0 organizes data according to search mode or
matrix mode, then uses the 1-N module to calculate similarities. (B) Space-saving scheme packages sample data to the sparse format for storage,
cutting down both disk and memory usage. For example, when an evolutionary tree has a total of 25 nodes, and one of the samples has 5 nonzero
nodes, a dense format will store all nodes in a fixed array, while a sparse format will only store the abundance and sum of 5 nonzero nodes. (C) The
1-N module saves resources to the maximum extent by removing redundant nodes without losing their abundances and fix the execution order for
fast 1-against-N sample comparison (1–4), followed by SIMD optimization as a compiler-level optimization (5). The dashed lines indicate branches and
nodes to be removed. The black arrows indicate an execution order to be recorded (postorder traversal), and the blue arrows indicate abundance
aggregation from those to-be-removed nodes to their ancestors. (D) The similarities are saved in the format of a customized 16-bit floating point.
Pseudocode about Meta-Prism 2.0 can be accessed from Supplementary Material 1.
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Figure 2: AUC of different methods for sample searches using the FEAST data set and the Combined data set. Note that all these methods could
complete the analysis in due time and reach a good AUC on the FEAST data set, whereas Jensen–Shannon divergence and Dynamic Meta-Storms
couldot complete the analysis on the Combined data set.

A B

Figure 3: Time usage at different steps and multithread performance analysis of Meta-Prism 2.0. (A) Each step’s time usage with variate sample sizes.
Load: load data. Save: save matrix result. Parse: load and parse phylogenetic tree. GenOrder: generates nonredundant phylogenetic tree (without
redundant nodes) in 1-N module. Convert: convert sample data from spare format to dense format for the sample comparison. Calc: 1-against-N
sample comparison. A higher proportion of total time was used by Convert and Calc steps when the number of sample pairs increased. (B) Time and
memory usage for 10,000 samples’ pairwise similarity calculation using the different numbers of CPU threads. Real-time: the actual time usage of
calculation. Core Time: the sum of each CPU core’s time usage.

mode, which takes 1 data set as input and then calculates all sam-
ple pairs’ similarities, and the output is a similarity matrix. The
time cost is split into several parts according to computational
steps. Our 1-N module adds GenOrder and Convert steps, which
increase linearly and quadratically with the increase of data set
size, respectively.

We also evaluated Meta-Prism 2.0 performance on a data set
with 1 million samples (see Materials for details). Meta-Prism 2.0
can efficiently package 1 million samples into a 369-MB-sized file
for storage and load them within 27 seconds. We transferred the
whole workload to a laptop and searched 100 samples against
this data set with a single CPU thread. It took 324.96 seconds
(less than 6 minutes) of CPU time to complete the search us-
ing only 6.9 GB memory. So far as we know, Meta-Prism 2.0 is
the only method that can handle the search against a million
samples.

We further selected data sets with different data set sizes (10,
100, 1,000, 10,000, 100,000, and 126,727) from the Combined data
set to compare different methods. The setting was again matrix
mode. We compared time and memory usage of Striped UniFrac,
Dynamic Meta-Storms, JSD, Meta-Prism GPU, and Meta-Prism 2.0.
Meta-Prism GPU is the only method that uses GPU for calcula-
tion, and we considered real-time usage for the measurement.
In comparison, we took CPU core time usage as other methods’
time usage. JSD and Meta-Storms cannot calculate the similarity
matrix when data set size is ≥10,000 within an acceptable time
(10 days).

Results show that Meta-Prism 2.0 could achieve superior
performance on both time usage and memory usage (Fig. 4).
Specifically, when the data set sizes were no more than 1,000,
Meta-Prism 2.0 used a similar core time compared with Striped
UniFrac (Fig. 4A). When data set size became more extensive, the
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Figure 4: Time and memory usage of samples when calculating similarity matrix for data sets with different numbers of samples. (A) Time usage
comparison. (B) Memory usage comparison. In (A), Meta-Prism GPU time usage with the dashed line is GPU time usage; others are CPU core time usage.

Figure 5: Time usage for different methods and IO Only on data sets
with different sizes. “M/IO” is the ratio of time cost of Meta-Prism 2.0
over that of IO Only.

performance gap between Meta-Prism 2.0 and Striped UniFrac be-
came larger. When calculating the similarity matrix for the Com-
bined data set (generating 126,727 × 126,727 similarity matrix),
Meta-Prism 2.0 was 55 times faster than Striped UniFrac. Meta-
Prism GPU’s real-time usage was smaller than Meta Prism 2.0’s
core time usage. However, when Meta-Prism 2.0 uses 3 CPU cores
or more, it will be faster than Meta-Prism GPU.

Meta-Prism 2.0’s memory usage was only 11.1% of Striped
UniFrac’s when calculating the similarity matrix for the Com-
bined data set with more than 100,000 samples. The utilization
of a customized 16-bit floating point was the key reason because
it can efficiently store the similarity matrix, which is the largest
storage burden that increases quadratically when the data set size
increases.

Wondering how far is the speed of Meta-Prism 2.0 to the the-
oretical lower bound for the sample search, we took IO Only (the
time used solely for loading data and writing matrix calculation
results, without any computation involved) as the lower bound for
the sample search (Fig. 5). The result shows that the time cost of

Meta-Prism 2.0 is only 2 times of IO Only but a magnitude smaller
than that of Striped UniFrac.

Meta-Prism 2.0 shows high accuracy in real data
applications
Meta-Prism 2.0 can precisely identify the biome for samples of
unknown origin, thus enabling the source tracking of samples. For
example, it enables accurate differentiation of samples from close
biomes such as “human skin” and “human oral” (the first appli-
cation), identification of the biome for samples with unclear ori-
gin (the second application), and detection of microbial contam-
ination (the third application). We published these applications’
workflow at Code Ocean for researchers to track and reproduce
(https://codeocean.com/capsule/3103931).

First, we tested Meta-Prism 2.0’s ability to accurately differen-
tiate samples from close biomes. We obtained 1,261 skin metage-
nomic samples (MGYS00005172) [23] and 70 oral metagenomic
samples (MGYS00005569) [24] from MGnify [18]. We used Meta-
Prism 2.0 to calculate the similarities matrix of 1,331 samples on
a laptop, which took only 3.75 seconds and 11 MB of memory. We
also clustered samples based on their similarities by using affinity
propagation from Scikit-learn (version 0.20.3). The samples were
successfully clustered into 2 groups whose sizes were 1,260 and
71 (Fig. 6). Within 1,331 samples, only 9 samples (5 skin samples
and 4 oral samples) were misclustered, proving Meta-Prism 2.0’s
ability to quickly and accurately differentiate samples from close
biomes.

Second, we evaluated the performance of Meta-Prism 2.0 on
source tracking environmental samples from less-studied biomes,
based on searching 11 groundwater samples curated from Saudi
Arabia (MGYS00001601) [25] against the combined data set. The
biome “groundwater” is less studied, with a handful of sam-
ples in the combined data set (MGYS00005245). Results show
that Meta-Prism 2.0 could successfully identify source-related
biomes for samples from “groundwater.” Within the top 100 most
similar community samples for each “groundwater” query sam-
ple, there are on average 64 groundwater-related samples (from
“root-Environmental-Terrestrial,” “root-Environmental-Aquatic,”
“root-Engineered-Wastewater” and “root-Host-associated-Plants”)
for each query sample (Table 2). Nevertheless, there is no

https://codeocean.com/capsule/3103931
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Sample ID Actrual source Predicted source
MGYS00005172-SRR5869138 Skin Oral

MGYS00005172-SRR5869139 Skin Oral

MGYS00005172-SRR5869349 Skin Oral

MGYS00005172-SRR5869533 Skin Oral

MGYS00005172-SRR5869812 Skin Oral

MGYS00005569-SRR11545352 Oral Skin

MGYS00005569-SRR11545359 Oral Skin

MGYS00005569-SRR11545360 Oral Skin

MGYS00005569-SRR11545364 Oral Skin

Skin Oral
Skin 1,256 5 1,261

Oral 4 66 70

Predicted Source

Actrual
source

Total number
of samples

A C

B D

Skin

Oral

Similarity distribution

Figure 6: Clustering result of human samples from close biomes using similarities calculated by Meta-Prism 2.0. (A) Similarity distribution of 1,331
samples. The samples were successfully clustered into two groups, though we did not specify the number of clusters prior. (B) Similarity distribution of
9 samples that are not clustered with samples from the same biome (misclustered). (C) Confusion matrix and the number of samples within each
actual source biome and predicted biome. (D) EBI MGnify study accession, run accession, actual biome source, and predicted biome source of 9
misclustered samples.

Table 2: The search results of 11 groundwater samples against the Combined data set. Count groundwater-related samples in the top
100 matching samples

Sum of groundwater-related samples:

53 58 75 53 38 88 56 79 73

“groundwater” sample in the top 100 similar samples searched
by Meta-Prism 2.0, since “groundwater” samples in the combined
data set are curated from New Zealand, which is in nature dras-
tically different from our query samples. The result suggests that
the geographic origins also influence the community structures,
which was already confirmed by previous studies [26].

Finally, we evaluated the Meta-Prism 2.0’s power in detecting
microbial contamination. We investigated the contamination of
an indoor house surface community by selecting 611 samples
from indoor house surfaces in Chicago as query samples and

searching against 6,285 samples (899 + 3,773 + 721 + 692 + 200
from “human skin,” “environmental,” “mammal,” “plants,” and “in-
secta,” respectively). The analysis took only 6.16 seconds to com-
plete. Our results show that the most closed biome source for in-
door house surface samples is “human skin” (average similarity
0.889), indicating a large proportion of microbial community con-
tamination from human skin, which agrees with previous analy-
ses by SourceTracker [20] and FEAST [21] (Table 3). Again, it proved
the ability of Meta-Prism 2.0 for accurate and fast microbial com-
munity contamination screening.



Efficient searches among microbial samples | 7

Table 3: Average similarities of biomes between 611 sink samples

Environmental Human skin Insecta Mammal Plants

Average similarity 0.7886 0.8896 0.7849 0.8478 0.8313

Meta-Prism 2.0 web server for fast and accurate
sample search
For easy use of Meta-Prism 2.0, we also designed an online web
server for Meta-Prism 2.0 (Fig. 7), with a precompiled Meta-Prism
2.0 executable file and a built-in data set containing more than
0.2 million microbiome samples. This data set includes major
categories such as digestive system, aquatic, and soil, as well
as subcategories such as oil-contaminated clay, thermal springs
sediment, and bioreactor for biological phosphorus removal. The
high efficiency of Meta-Prism 2.0 enables any query against
this huge data set to be completed within 1 second, with high
accuracy.

Methods
Meta-Prism 2.0 calculates similarities between microbial commu-
nities using 2 calculation modes: search mode and matrix mode.
The search mode takes 2 data sets (query and target) as input and
then outputs each query sample’s top N similar matches in the
target data set. The matrix mode takes a data set as input and
outputs a pairwise similarity matrix for all samples in the data
set (Fig. 1A). These data sets can be produced by commonly used
tools such as QIIME [27], MAPseq [28], and MetaPhlAn [29].

Meta-Prism 2.0 has unlocked several key computational tech-
niques for efficient comparison (Fig. 1): first, it utilizes a sparse
data structure to cut down the memory and disk usage (Fig. 1B).
Second, to further cut down the memory usage, Meta-Prism 2.0
only stores essential taxa (taxa appeared in query samples) of
the phylogenetic tree and abundances for similarity calculation
(Fig. 1C (1–4)). Third, to cut down the time usage, Meta-Prism
2.0 discards redundant execution before diving into a similar-
ity calculation (Fig. 1C (3)). Fourth, Meta-Prism 2.0 utilizes a fast
1-N compare module to enable further accelerations through
the instruction pipeline [30] and single-instruction multiple-data
(SIMD) optimization (Fig. 1C (5)). Last but not least, Meta-Prism 2.0
utilizes a customized 16-bit floating point to store the similarity
matrix in a memory-saving manner (Fig. 1D).

Space-saving data format
Each microbial community sample consists of classified taxa and
their relative abundances. Meta-Prism 2.0 will find the taxa in
the phylogenetic tree. For the representation of a single micro-
bial community sample, most of the phylogenetic tree nodes
are redundant. Unlike other methods that store in fixed-length
arrays, Meta-Prism 2.0 stores taxonomic abundance data in a
sparse format, that is, uses a variable-length list to store only
relatively abundant nonzero nodes: the data include their rela-
tive abundance and the node ID of phylogenetic tree (Fig. 1B).
When calculating similarities, Meta-Prism 2.0 converts sparse
data back to dense data (Convert step, Fig. 1C (5), Algorithm 5 in
Supplementary Material 1). The sparse data structure is applied
to disk storage and memory cache to reduce space utilization
globally.

The storage scheme is further optimized at the step of simi-
larity result storage. To store similarity results for a sample pair,

we designed a 16-bit floating point with 4 exponential bits and 12
mantissa bits. Considering that the similarities are between 0 and
1, we removed 2 sign bits of exponent and mantissa to increase
the gamut and precision of the floating point (Fig. 1D).

Similarity measurement independent of data
type and sequencing depth
Our similarity is proposed to measure similarity between a pair
of community samples, independent of data type and sequencing
depth [14]. The details of similarity calculation are shown in Algo-
rithm 6 in Supplementary Material 1 with the default execution
order being generated from Algorithm 2 in Supplementary Mate-
rial 1 with all nodes marked. To calculate the similarity of the 2
samples (n = 1 in pseudocode), we will recursively calculate the
similarity of the relative abundance of the 2 samples at each node
and deduce and then multiply the relative abundance remaining
by 1 minus the evolutionary distance and send it to the parent
node.

Fast 1-N sample comparison
We further optimized the time usage through a fixed execution or-
der and SIMD [31]. Current methods traverse the phylogenetic tree
(with redundant nodes) and execute the operation during similar-
ity calculation (Striped Unifrac calculates the difference at each
node and divides it by the branch distance, Meta-Storm and Dy-
namic Meta-Storm accumulate the similarity at each node and
pass the residual abundance to the parent node, and Meta-Prism
1.0 calculates the difference at each node, divides it by 1 minus the
evolutionary distance, and passes it to the parent node), wasting
time on redundant operations [15–17]. Meta-Prism 1.0 will wast
time calculating at nodes with zero abundance (which also are the
vast majority), without any influence on the result. Some nodes
have only the relative abundance of 1 sample, and the most of
the system’s calculations on them are invalid, which are equiva-
lent to multiplying their abundances by 1 minus the evolutionary
distance and passing these to their parent nodes. To save the time
wasted on such operations, when Meta-Prism 2.0 calculates a 1-
N comparison (S0 against Sn), it will only consider nodes that are
abundant in S0 (marked node) and generate a fixed execution or-
der based on them (GenOrder step, Fig. 1C (2 and 3), Algorithm 2 in
Supplementary Material 1). To deal with nodes that are only abun-
dant in Sn, Meta-Prism 2.0 will multiply the abundance on these
nodes by the cumulative evolutionary distance factor and send
them to the nearest labeled parent nodes (Convert step, Fig. 1C
(4), Algorithm 5 in Supplementary Material 1). Which node to send
and the factor value are calculated in Algorithm 4 in Supplemen-
tary Materials 1. The fixed execution order without branches and
jumps will lead the CPU to use the instruction pipeline. Addition-
ally, Meta-Prism 2.0 is implemented based on SIMD AVX intrinsic
and thus can execute operations to compare a sample S0 with
other multiple samples (referred to as Sn) at the same time (Sim-
ilarityCalculation step, Fig. 1C (5), Algorithm 6 in Supplementary
Material 1). We packaged these steps as the “1-N module” and used
the module to execute fast comparison and search.
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A

B

C

Figure 7: Screenshots for Meta-Prism 2.0 web server. (A) Meta-Prism 2.0 front page. (B) Statistics about sample source biomes for the built-in 200,000
microbial samples. (C) An example output consisting of top 500 matched samples’ IDs and similarity values in table format and statistics about
sample source biomes of top 500 matched samples in text tree and sunburst format.

Discussions and Conclusion
In this work, we designed Meta-Prism 2.0 as an ultrafast and
memory-efficient approach to analyze millions of microbial com-
munity samples. The sample compare and search problems have
encountered great difficulties when faced with millions of sam-
ples, primarily due to the computational space and time limita-
tions. Meta-Prism 2.0 was designed based on a sparse data struc-
ture, time-saving instruction pipeline, SIMD optimization, and ex-
haustive search strategy, enabling flexible, ultra-fast, memory-
efficient, and added beta diversity analysis function.

Results show that compared to the current methods serving
the same purpose, Meta-Prism 2.0 is at least 20 times faster, while
memory cost is at least 4 times smaller. Additionally, the speed
of Meta-Prism 2.0 is close to the lower bound of the search. Fur-
thermore, according to our experiment, Meta-Prism 2.0 can even
store all samples’ community structure from the EBI MGnify data
set (300,000 in total as of October 2020) on a laptop and search
against it at an unprecedented speed. Finally, we provided sev-
eral concrete examples, which have proven the effectiveness and
utility of Meta-Prism 2.0 in knowledge discovery. Also, the fast and
accurate microbial community sample search could also be expe-
rienced on the web server, on which any query against this huge
data set can be completed within 1 second, with high accuracy.

In summary, Meta-Prism 2.0 can perform searches among mil-
lions of samples with low memory cost and fast speed, enabling
source tracking and knowledge discovery from sample mining
at a massive scale. Meta-Prism 2.0 has optimized the traditional
resource-intensive sample search and similarity matrix calcula-
tion into an affordable and effective procedure that researchers
can conduct every day for mining intricate relationships among
samples and discover previously unknown knowledge.

Availability of Supporting Source Code and
Requirements
Project name: Meta-Prism 2.0
Project home page: https://hust-ningkang-lab.github.io/Meta-Pri
sm-2.0/
GitHub repository: https://github.com/HUST-NingKang-Lab/Met
a-Prism-2.0
Operating systems: Platform independent
Programming language: C++
Other requirements: Compiler support C++11
License: GPL-3.0 License
RRID: SCR_021836
bio.tools ID: Meta-Prism 2.0

https://hust-ningkang-lab.github.io/Meta-Prism-2.0/
https://github.com/HUST-NingKang-Lab/Meta-Prism-2.0
https://scicrunch.org/resolver/RRID:
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Data Availability
For enhanced reproducibility, a CodeOcean computational cap-
sule is available [32].

An archival copy of the code and other supporting data are also
available via the GigaScience database GigaDB [33].

Additional Files
Supplementary Material 1. Pseudocode about Meta-Prism 2.0.
Supplementary Table S1. Detailed information of the Combined
data set and FEAST data set.
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