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Abstract

Sudden changes in visual scenes often indicate important events for behavior. For their

quick and reliable detection, the brain must be capable to process these changes as inde-

pendently as possible from its current activation state. In motion-selective area MT, neurons

respond to instantaneous speed changes with pronounced transients, often far exceeding

the expected response as derived from their speed tuning profile. We here show that this

complex, non-linear behavior emerges from the combined temporal dynamics of excitation

and divisive inhibition, and provide a comprehensive mathematical analysis. A central pre-

diction derived from this investigation is that attention increases the steepness of the tran-

sient response irrespective of the activation state prior to a stimulus change, and

irrespective of the sign of the change (i.e. irrespective of whether the stimulus is accelerating

or decelerating). Extracellular recordings of attention-dependent representation of both

speed increments and decrements confirmed this prediction and suggest that improved

change detection derives from basic computations in a canonical cortical circuitry.

Author summary

The world is a dynamic place: visual scenes are changing rapidly, and decisions have to be

taken quickly and reliably to ensure successful behavior and, finally, survival. This creates

a challenge for the brain, since it has to fulfill two requirements at the same time: It has to

detect changes regardless of their magnitude and sign of change, and it has to primarily

focus on behaviorally relevant changes. We here studied transient stimulus-speed change

responses of neurons in motion-sensitive area MT and identify a mechanism supporting

both of these requirements. This mechanism can be realized by an elementary neural

model circuit which closely fits physiological data. The model is based on dynamic divi-

sive inhibition generating fast transient rate modulations in response to rapid input

changes. We analyzed this circuit mathematically and arrived at the formal prediction

that attention will consistently increase the steepness of the transient, irrespective of the

magnitude of the pre-change activation and the sign of the input change, thus allowing for
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faster, reliable reaction to any attended event. By performing single-cell recordings with

both stimulus accelerations and decelerations, which could either be attended or not

attended, the experimental data fully confirmed the predictions from modelling.

Introduction

For change detection in behaviorally relevant situations, stimulus-induced, strong transient

firing rate modulations provide a powerful signal to downstream visuomotor areas on short

timescales [1,2]. Such transients are particularly information-rich [3,4], and the temporal sen-

sitivity of neurons to stimulus changes is suggested to constitute a major function of neuronal

tuning properties [5]. Human behavioral performance to detect speed changes [6] correlates

with the size of area MT change transients [7] and strongly improves with both spatial and fea-

ture-directed attention [8]. Accordingly, both forms of attention were found to increase sus-

tained and transient MT firing rates before and after a stimulus change [9,10], and the

transient response after the change also correlates with reaction times [9].

This close relation between neuronal transients and behavioral change detection perfor-

mance on the one hand, and the general effect of attention to increase neuronal response rates

[11,12] on the other, raises the question how attention exerts its beneficial effects under condi-

tions where firing rate increases seem to impede the formation of pronounced transients and

counteract behavioral performance. For example, because attention-dependent enhancement

of firing rates brings a neuron closer to its maximum activity, a stimulus-induced transient fir-

ing rate increase under attention might be smaller than without attention. Furthermore, a neg-

ative transient would start from a larger pre-change activation level and is presumably having

a smaller absolute negative peak than under conditions of no or remote attention. Absolute fir-

ing rates of the transient, therefore, may only allow for a poor prediction of attention-depen-

dent improvements in behavioral change detection. As a consequence, the neuronal circuit

processing the change depends on some form of normalization to compensate for differences

in absolute activity. Moreover, to facilitate change detection, attentional modulation of the cir-

cuit should induce a consistent effect on neuronal transients that is independent from the

stimulus-induced activation level before the change. It is unclear presently, which feature of a

change-transient can be most consistently modulated by attention independent of the specific

stimulus condition, and which neuronal mechanism might underlie its corresponding

dynamics.

To investigate this issue, we set up and mathematically analyze a biologically plausible,

canonical circuit providing divisive inhibition to an excitatory unit, and apply the model to a

wide range of different stimulus conditions under, at first, passive viewing conditions [7]. By

then introducing an input response gain to simulate top-down modulation of change detection

by visual attention, the model circuit predicts a main effect on response rise times not only for

positive transients but also for the case of negative transients, i.e. rapid rate decreases in a pop-

ulation of neurons. To test this prediction experimentally, we recorded neurons from motion-

sensitive area MT while monkeys were engaged in a change detection task for both speed

increments and decrements, eliciting large positive and negative population transients, respec-

tively. We show that MT activity exactly follows the prediction of the model, having steeper

response slopes irrespective of the sign of the transient. Thus, the model circuit consistently

explains change detection under different stimulus and attention conditions by a rather simple

computational unit, realized in the canonical circuitry of the cortex.
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Results

Transient neural responses in area MT

Neurons in area MT are well-activated by moving stimuli such as localized drifting Gabor

patches presented inside their receptive fields (RFs). Neural responses are tuned to the

direction of movement, exhibiting maximal activity when the stimulus is moving in the

cell’s preferred direction [13]. The additional preference of MT neurons for a particular

stimulus speed can be approached by a Gaussian function in log-velocity space [14,15].

Rapid changes in the input to these neurons result in pronounced, transient changes of

their activation. An example from previous work [7] is showing the population response of

an ensemble of MT neurons (N = 94) to a range of sudden stimulus accelerations and decel-

erations (Fig 1A). Transients show up as fast increases (or decreases) in firing rate, followed

by a slower decrease (or increase) in firing rate back to a sustained level of activation. Such

transients are visible in response to any instantaneous change in stimulation (black arrows

in Fig 1A): stimulus onset, motion onset, speed change, motion offset, and stimulus offset.

Due to their causal relation to visual perception and change detection [16], we aimed to

study their properties and non-linear dynamics in a theoretical framework providing access

to a comprehensive mathematical analysis, and to experimentally test predictions derived

from it.

Model for transient activation in area MT

For modeling transient responses, we consider a circuit where an input I activates an excitatory

and an inhibitory unit, with output Ai of the inhibitory unit providing divisive inhibition to

Fig 1. Transient responses in area MT and model circuit. (A) Population response of 94 MT neurons exhibiting large transients (black

arrows) in response to stimulus onset (at t = 0.25 s), movement onset (at t = 0.5 s), speed change (at t = 1.25 s), movement offset (at t = 2.0 s)

and stimulus offset (at t = 2.25 s). Color scale indicates sign and magnitude of the speed change (blue for decelerations, red for accelerations).

Speed change magnitudes are given in Weber fractions, i.e. with the lower speed as the reference. Modified from [7]. (B) Model circuit

providing divisive inhibition Ai to an MT neuron with activation Ae. τe and τi denote time constants and me and mi denote gains of the

corresponding units. (C) Example response of the model circuit (upper graph) to a positive input change at time tchange (lower graph).

Starting from activation level Apre
e ¼ 50 spikes/s, the circuit exhibits a fast transient increase in activation reaching a peak response Apeak

e
before decreasing more slowly to a post-change, sustained activation level Apost

e ¼ 100 spikes/s (with parameters: τe = 10 ms, τi = 40 ms,

Amax
e ¼ 120 spikes/s).

https://doi.org/10.1371/journal.pcbi.1009595.g001
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the excitatory unit (Fig 1B). The dynamics of the circuit is given by the following differential

equations:

te
dAeðtÞ
dt
¼ � Ae tð Þ þ ge

IðtÞ
AiðtÞ þ s

� �

ð1Þ

ti
dAiðtÞ
dt
¼ � Ai tð Þ þ gi I tð Þð Þ; ð2Þ

where output Ae(t) of the excitatory unit represents the instantaneous firing rate Ae of a neuron

in MT at time t, with I being the external input provided by the visual stimulus. Terms τe, τi
denote time constants, σ is a constant positive offset, and ge, gi represent gain functions realized

by threshold-linear rectification, with me, mi indicating gain factors, and θe, θi indicating

thresholds:

geðIÞ ¼ meðI � yeÞ for I > ye; and 0 otherwise ð3Þ

giðIÞ ¼ miðI � yiÞ for I > yi; and 0 otherwise; ð4Þ

With constant suprathreshold input I0, the steady-state solution

Asteady
e ¼ Ae t !1ð Þ ¼ me

I0
miðI0 � yiÞ þ s

� ye

� �

ð5Þ

for Eq (1) is equivalent to a standard divisive normalization model [17,18], where Ai represents

feedback from co-activated neighboring MT columns. As such, our model can be interpreted

as a dynamical reformulation of static divisive normalization, with relaxation dynamics similar

to those proposed for recurrent divisive normalization or low-pass filtering the output of a

divisive normalization circuit [19,20]. The advantage of having two time constants for excita-

tion and inhibition is the explicit representation of transients, allowing activation Ae to quickly

follow changes in I on a fast time scale τe, while divisive inhibition is acting on a longer time

scale τi, bringing the output towards a sustained, steady-state level of activation (Fig 1C).

Model fit to transients from experimental data

To investigate how well the model explains experimental data, Ae(t) was fitted to MT stimulus

onset transients. Because MT neurons exhibit spontaneous activity with low firing rates even

in absence of a visual stimulus, we assume θe = θi = 0 and I(t)>0, which allows to replace Eqs

(3) and (4) by linear gain functions to simplify the analysis. By modeling stimulus onset as an

instantaneous change in external input at t = tchange from Ipre to Ipost, Eq (2) can be explicitly

solved, assuming that for t<tchange the system is in its steady state for a constant input Ipre. The

result can be rewritten in terms of the sustained activation Apre
e before stimulus onset, and sus-

tained activation Apost
e after decay of the transient response, to account for the fact that experi-

mental access is given to the output of the neuron rather than to its input:

te
dAe

dt
¼ � Ae þ Amax

e

1

Apost
e
� 1

Apre
e

1

Apre
e
� 1

Amax
e

exp �
t � tchange

ti

� �

þ
Amax

e

Apost
e

" #� 1

ð6Þ

The ratio of the two gain factors Amax
e ¼ me=mi designates the theoretical maximum sus-

tained activation of the circuit. We used a grid search to find the remaining free parameters τe,
τi, and Amax

e to minimize the average quadratic error between model activation and recorded
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MT firing rate during the transient response, excluding units yielding total spike counts that

were too low to allow for successful fits (cf. Methods).

This structurally very simple model allowed for a close approximation of transient and sus-

tained MT responses to motion onsets, despite the significant differences in their shape, caused

by, among other things, the different tuning of individual neurons to actual stimulus speeds.

Three examples of multi-unit responses and corresponding model fits are given in Fig 2A–2C,

and the Chi-squared distributions for the total of 48 (monkey 1 (M1)) and 44 (M2) remaining

units are shown in Fig 2D. The χ2/Nt ratio was sufficiently close to 1 for most units (M1:

1.49 ± 0.74 SD, M2: 1.37 ± 0.5 SD), indicating that fits were estimating the mean response

nearly as good as the experimental data. This conclusion was confirmed by a comparison to

surrogate distributions with the same statistical power and known "ground truth" (Fig 2D, see

Methods for more details).

Excitatory time scales were much faster than inhibitory ones, as to be expected for the

dynamics of transients (Fig 2E). For M1, mean τe was 17 ± 16 ms SD, mean τi was 45 ± 30 ms,

average ratio τe/τi was 0.4 with SD 0.98, and average Amax
e was 87 ± 54 spikes/s. For M2, mean

τe was 20 ± 9 ms, mean τi was 52 ± 25 ms, average ratio τe/τi was 0.38 with SD 0.34, and average

Amax
e was 127 ± 99 spikes/s.

We also tested whether less than three free parameters per individual MT neuron would be

sufficient to explain the different shapes of transient responses across the population of neu-

rons. We therefore fixed one or more parameters (τe, τi, Amax
e ) for all units in a population, and

repeated the fitting procedure. With one fixed global parameter, the time-averaged chi-square

Fig 2. Model fits to stimulus onset transients. (A–C) Activity of three example multi-units (thin lines) and corresponding model fit (solid lines). Gray shading

indicates standard error over 5–10 trial repetitions, light gray box indicates fitting interval. Time axis is shown relative to neural response onset. Note that actual

responses were not smoothed for visual purposes. (D) Model Chi-square distributions of the recorded units for two monkeys (M1, black bars; M2, gray bars). Solid

lines show surrogate data distributions for artificially generated spike data from models with known parameters (M1, black; M2, gray). (E) Scatter plot for fitted

time scales τe versus τi (M1, crosses; M2, open circles).

https://doi.org/10.1371/journal.pcbi.1009595.g002
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measure between model fit and experimental data increased by 3.3% (M1) and 2.8% (M2) on

average. Which of the three parameters was globally defined was largely irrelevant, but fixing

the time constant ratio τe/τi had the smallest impact, increasing the fitting error by only 1.6%

(for both monkeys). With two or three global parameters fixed, however, the error increased

strongly (14.7% (M1) and 13.8% (M2) for two fixed parameters, 42.3% (M1) and 36.6% (M2)

for three fixed parameters).

Transient response characteristics to stimulus changes

After the model had been calibrated to motion onset transients, we were next interested to

investigate whether it is capable to predict and explain the complex non-linear scaling of tran-

sients in response to changes in speed, which depend on the sign and magnitude of the physi-

cal speed change and the individual neurons’ tuning characteristics [7]. Because time scales τe
were shorter than τi, an idealized version of the model can be considered by assuming that the

excitatory unit reacts infinitely fast to input changes. With this approximation, it is possible to

solve Eq (6) explicitly for τi>0 and obtain the peak of the transient shortly after t = tchange ana-

lytically (cf. Eqs (12) & (13) in Methods).

Peak amplitudes obtained from the model in this manner reproduced an important and so

far, unexplained characteristic of MT change transients. In MT, peak amplitudes in response

to speed changes exceed those expected from the neuron’s speed tuning profile significantly if

the speed before the change is away from the neuron’s preferred speed. Neurons well-tuned to

the pre-change speed are very poor change detectors, while neurons for which the pre-change

speed is on the flank of their tuning curve have a strong impact on the population response

[7]. This tuning-dependent, non-linear relationship between pre-change stimulus speed and

individual neuronal tuning profiles is well captured by the model. Simulated speed changes,

realized by step functions applied to the circuit’s input at time tchange (Fig 1C), predict speed

change transients very closely matching the experimental data with regard to sign and ampli-

tude of the peak for both changes occurring on the ascending and the descending flank of the

tuning curve (Fig 3). Thus, the model reproduces the full dynamics of physiological change

transients, including the over- and undershooting of peak amplitudes.

Model predictions for attention-dependent modulation of change

transients

Because transients signal stimulus changes in a rapid and pronounced manner, they were pre-

viously suggested as a possible target for attentional modulation and a neuronal mechanism to

speed up reaction times [9,21,22]. In area MT, using speed changes of 100% magnitude, atten-

tion was found to modulate both the peak amplitude and latency of a change transient [9,10].

Modulations due to other magnitudes of change, including negative changes, have not been

investigated yet. Therefore, in our model, we next studied the dynamical effects of attention on

transients for speed changes of arbitrary magnitude (without separation of time scales as in the

previous subsection, allowing for arbitrary combinations of excitatory and inhibitory time

constants). We included attention by simply assuming a multiplicative scaling [11] of the

input I by a factor α>1, I!αI (Fig 4A, top left).

Ideally, to improve computation and, ultimately, perception, the effect of attention should

be consistent across the entire dynamical range of the circuit. In particular, for attention to be

effective, any change in the external input I causing a positive (or negative) transient (as e.g.

the traces for the ± 100% changes in Fig 1A) should be associated with attention-dependent

modulations preserving the sign of the transient independent from the neuron’s pre-change

activation, as e.g. a consistent increase (or decrease) in the transient’s peak amplitude. If,
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Fig 4. Model predictions for attention-induced changes in slope, peak, and sustained responses. (A) Attention is included into the model by a simple

multiplicative gain change of the input (top left schematic). Ideally, attention should elicit a consistent modulation of the neuronal change response, as e.g.

enhancing a neural response feature for positive input changes (above diagonal, red shading), and suppressing it for negative input changes (below diagonal, blue

shading) irrespective of the particular pre-change activation level. (B) Predicted attention-dependent changes in slope ΔFrise (top left, indicating consistent

modulation by attention), sustained activation ΔFsus (top right, indicating inconsistent, pre-change activation-dependent modulation by attention), and relative

peak height ΔFpeak (bottom plots). Relative peak height critically depends on the time scale ratio τe/τi and becomes similar to ΔFrise for τe/τi!0 and similar to

ΔFsus for τe/τi!1. Axes and color scales are identical for all plots in (B), indicated at the top left and right chart.

https://doi.org/10.1371/journal.pcbi.1009595.g004

Fig 3. Transient/sustained rate changes following stimulus speed changes. Experimentally observed transient

(black) and sustained (gray) rate changes in response to positive and negative speed changes (dashed lines) of different

magnitude, and corresponding predictions from model analysis (solid lines). Base speed before the change was located

either on (A) the ascending flank, or (B) the descending flank of the cells’ speed tuning curves.

https://doi.org/10.1371/journal.pcbi.1009595.g003
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however, peak amplitude is only increased for low pre-change activation levels, but decreased

for high pre-change activation levels for otherwise identical stimulus conditions, the effect of

attention would be inconsistent. Fig 4A (bottom right) exemplifies a consistent pattern of

attentional modulation for stimulus-change responses associated with positive and negative

rate changes, normalized to a dynamic range between 0 (lowest level) and 1 (highest level).

The colored surface illustrates a consistent (i.e. pre-change activity independent) positive mod-

ulation by attention for stimulus-induced rate increases (above diagonal), and a corresponding

negative modulation by attention for stimulus-induced rate decreases (below diagonal).

The model was used to investigate three different change-response features regarding their

dependence from attention and pre-change activity: the initial slope Frise of the transient (i.e.

rise/decay time), the maximal amplitude Fpeak of the transient, and the sustained activation

Fsus following the transient. For analysis, pre- and post-change activities Apre
e and Apost

e were

normalized from absolute values to activations apre
e ¼ Apre

e =A
max
e 2 ½0; 1� and apost

e ¼

Apost
e =Amax

e 2 ½0; 1� relative to the hypothetical maximum response Amax
e . Peak and sustained

responses were quantified relative to pre-change activation, assuming that any plausible

change detection circuit needs to base its computation on the number of spikes exceeding or

falling below this level. The initial slope becomes

Frise apre
e ; a

post
e ; a

� �
¼

dAe

dt

�
�
�
�
t¼tchange

¼
1

te

apost
e � apre

e

1 � apre
e

a

apre
e ða � 1Þ þ 1

ð7Þ

and its attention-induced change ΔFrise is visualized in Fig 4B (left). Similarly, the sustained

activation level Fsus is given by

Fsus apre
e ; a

post
e ; a

� �
¼

a

a � 1þ ðapost
e Þ

� 1
�

a

a � 1þ ðapre
e Þ
� 1

ð8Þ

and its attention-induced change ΔFsus relative to the pre-change activity is plotted in Fig 4B

(right). Finally, the relative change in maximal amplitude ΔFpeak depends on the specific ratio

of the excitatory and inhibitory time constants τe/τi. Numerical evaluations for different values

of τ reveal that for τe/τi!0, ΔFpeak approaches ΔFrise, while for τe/τi!1, it approaches ΔFsus

(Fig 4B, bottom panels). These computations reveal two main insights: First, the slope and the

sustained response indicate the two extremes of the analysis. The slope is subject to a strong

and consistent pattern of attentional modulation, which is independent of both the overall

activity and the sign of the rate change, indicating generally faster transients with attention for

both speed increments and decrements. In contrast, the sustained response exhibits an incon-

sistent pattern of attentional modulation, with the sign of the modulation depending on the

overall activation of the neuron before the change. Second, as a function of the specific ratio of

excitatory and inhibitory time constants, the modulation of the peak amplitude shifts between

these extremes. Attentional modulation becomes stronger and more consistent the smaller the

ratio τe/τi, but is attenuated (and, theoretically, even inconsistent) for larger values of τe/τi.
Thus, the model makes the explicit prediction that, like positive transients, negative transients

(i.e. rapid decreases in firing rate) will have a steeper rise time, i.e. shorter latencies, under the

influence of attention as well as higher relative peaks, assuming τe/τi being in the previously

estimated range (Fig 2E). The inconsistent pattern of attentional modulation as predicted for

the sustained response can be explained by having a closer look at the steady state in Eq (5)

with θe and θi set to zero, which can be rearranged into the form of a Naka-Rushton equation.

For an attention-scaled input of αI with α>1 for small inputs I, the function rises more steeply

(Fig 4B right, red region above diagonal) than with α = 1 (no attention). From a critical input
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strength I > s=ð
ffiffiffi
a
p

miÞ on, however, this behavior reverses and the function rises more slowly

with attention (Fig 4B right, blue region above diagonal).

Interestingly, the qualitative results depicted in Fig 4 remain identical also when consider-

ing a more general class of models in which attentional modulation of inputs to the excitatory

and inhibitory units can be different (Eqs (16) and (17)). As long as attentional modulation αe
of excitatory input is equal or larger than the corresponding modulation of inhibitory input αi,
the expression in Eq (16) yields a positive result for apost

e > apre
e (steeper rise), and a negative

result (steeper decay) otherwise. Conversely, the expression in Eq (17) can be positive or nega-

tive for apost
e > apre

e , depending on the model parameters and pre- and post-change activation.

Assuming a different input Ii to the inhibitory population is mathematically equivalent to

rescaling the gain factor mi and leads also to the same qualitative results as long as the corre-

sponding input to the excitatory population Ie is equal or larger.

Experimental investigation of model predictions

Because attention is generally found to facilitate the response of visual neurons to the initial

stimulus, any decrease in the population firing induced by a corresponding change of the

behaviorally relevant stimulus would be antagonized by the opposite effect of attention, in

terms of absolute firing. For this problem, the model’s prediction of generally faster rise times

and potentially more pronounced relative peak firing rate changes as a result of attention offers

a particularly attractive solution for effective detection of stimulus changes. Changes in rise

time (and, under appropriate conditions, relative peak firing rate changes), provide a mecha-

nism independent of absolute firing to transmit attentionally selected information to down-

stream areas of the visuomotor pathway.

To test the model predictions, we recorded neuronal responses from motion-sensitive area

MT of two macaques (M3: N = 45 units, M4: N = 25 units). Monkeys performed a speed-

change detection task requiring them to either attend towards or away from the recorded

unit’s RF and to detect increments or decrements of the target’s speed (Fig 5A). Peri-stimulus

time histograms (PSTHs) aligned to the speed change of the stimulus displayed higher pre-

change firing rates when the stimulus inside the RF was attended, and strong, transient

increases and decreases of the firing rate in response to increments (accelerations) and decre-

ments (decelerations) of motion speed, respectively (Fig 5B). Interestingly, neither pre-change

firing rates (Wilcoxon signed rank tests, [attend-in (M3 M4), attend-out (M3 M4)]: P = [1 0.77

0.53 0.36], N = [43 21 43 21]), nor attentional modulation before the change (Wilcoxon signed

rank tests on attentional modulation index AI ¼ ðApre;A
e � Apre;N

e Þ=ðApre;A
e þ Apre;N

e Þ, M3, M4:

P = [0.1 0.7], N = [43 21]) differed between blocks of speed increments and decrements. This

indicates that both activity and attentional modulation during the pre-change period were

independent from the sign of the speed change to be detected, despite the block-wise design of

the experiment. Spike counts for all attentional conditions and all 25 ms time intervals between

400ms before and 200ms after a speed change exhibited a variance close to their mean (Fig 5B,

insets), compatible with the statistical properties of a Poisson process (used below for assessing

significance of spike count differences).

To analyze these transients according to model predictions, we assessed first, response

slopes and second, relative firing rate changes during the transient time period of 50 to 200 ms

following the speed change. First, for analyzing slopes, we calculated excess cumulative spike

counts representing the number of spikes over- or undershooting the mean firing rate before

the speed change as a proxy for the initial slope. Because rates increase or decrease almost line-

arly for the first 40 ms following the population transient onset, a larger (smaller) cumulative

count is equivalent to a steeper positive (negative) slope. In contrast to estimating slopes
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directly from the PSTHs, the cumulative measure has two advantages. First, because accumula-

tion is based on integration, noise does not become amplified but attenuated. Second, accumu-

lation does not need smoothing of data to more reliably calculate specific response parameters,

which is problematic if transients are faster than the width of the PSTH filter kernel used.

Fig 5. Experimental speed change detection paradigm and example PSTHs. (A) Monkeys were detecting positive

and negative speed changes (presented block-wise) at pre-cued locations. Each trial started with a cue indicating the

hemifield of the rewarded stimulus (small gray box, left or right of the central, red fixation spot). After monkeys

properly fixated and pressed a lever, two moving gratings appeared, one of which was placed inside the RF of the

recorded neuron (dashed white circle), while the other was placed in the opposite hemifield, mirrored across the

fixation spot. Following a pseudo-randomized delay of 0.66 to 5.5 s, the RF-stimulus rapidly increased (top row) or

decreased speed (bottom row). Any speed change of the stimulus in the uncued hemifield had to be ignored. Keeping

fixation and releasing the lever within 750 ms after the speed change was rewarded with some drops of water or diluted

grape juice. Depending on the cued stimulus location, the RF stimulus was either attended or non-attended, giving rise

to four experimental conditions (right plots, color-coded). (B) PSTHs for two example multi-unit sites (one from each

monkey), illustrating rapid firing rate adjustments in response to speed changes. Note that because negative speed

changes result in a decrease of the firing rate, the stimulus-induced modulation of the firing rate is opposite to the

attention-induced modulation before the change. Insets show spike counts and variances assessed in time intervals of

25 ms from -400 ms to +200 ms relative to stimulus change for all units. Color coding of the different attentional

conditions is indicated in panel (A).

https://doi.org/10.1371/journal.pcbi.1009595.g005
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Consistent with the prediction of the model, the excess cumulative spike count was found to

rise more steeply for positive transients, and to decay more rapidly for negative transients

when attention was directed to the stimulus (Fig 6A and 6B). Onset of the population transient

was around 55 ms after the stimulus change, which is well in the range of typical MT response

latencies [23,24]. Attention-dependent differences in excess cumulative spike counts become

significantly different from 0 already shortly after response onset (Fig 6C). The steepening of

the PSTH’s slope by attention causes the neurons to reach a certain rate increase or decrease

earlier than without attention. To quantify the induced time advantage, we computed the aver-

age smoothed PSTH (Gaussian kernel, RMS width 10ms) for each condition and monkey, and

extracted the time difference in reaching a certain rate increase or decrease with and without

attention. Attention provided a time advantage of up to 10 ms and more for both accelerations

and decelerations, which corresponds to the typical attention-dependent latency reduction in

area MT and goes along with a reaction time decrease of 50 ms and more (cf. Table 1 in

Ref. [9]). Significantly different cumulative spike counts following speed increments were

found for 60% of all recorded units during the onset of the transient (Fig 6E), and of those,

85% confirmed the predictions of the model (Fig 6F). Likewise, for speed decrements, 46% of

all units displayed significantly different spike counts (Fig 6E), and 76% of those were confirm-

ing the model’s prediction of steeper slopes (Fig 6F). This result was evident for both monkeys,

Fig 6. Quantification of attention-induced rate changes. (A) Population average of speed change-induced rate modulations for the four attentional

conditions. Data taken from M3. (B) Corresponding excess cumulative spike counts relative to the pre-change firing rate. (C) Attention-induced differences

in excess cumulative spike count, separately for accelerations (red) and decelerations (blue). Differences are significantly larger than 0 (p<0.01) outside

shaded regions. (D) Time advantage (i.e. latency difference) induced by attention for different read-out thresholds (i.e. absolute rate changes ΔAe), as

measured in the experimental data shown in (A–C). (E) Histogram of attention-induced differences in excess cumulative spike count over individual sites,

separately for acceleration and deceleration conditions. Dark colors indicate samples with values being significantly different from zero. Samples were taken

at 95 ms after stimulus change. (F) Percentage of significantly modulated individual units for which cumulative counts were significantly larger with

attention in the speed-up condition or significantly smaller with attention in the speed-down condition. Black line, M3; gray line, M4. Dashed line indicates

the time for which the samples for the histogram in panel (E) were taken. (G) Percentage of significantly modulated units for which spike count differences

between activities before and after the stimulus change were significantly larger in the speed-up condition or significantly lower in the speed-down

condition, separately for successive time intervals of 25 ms length.

https://doi.org/10.1371/journal.pcbi.1009595.g006
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with 84% (M3) and 72% (M4) of all significantly modulated units being in accordance with the

model prediction. Interestingly, units with strong rate increases in the acceleration condition

also showed strong decreases in the deceleration condition. Performing a linear regression

analysis on the excess spike count for deceleration vs. acceleration revealed a consistent antic-

orrelation with slope -0.20 ± 0.02 STD and offset -0.11 ± 0.02 SD for monkey M3 and slope

-0.13 ± 0.04 SD and offset 0.00 ± 0.02 SD for monkey M4 (variability assessed by bootstrap

using one-leave-out method).

Second, for analyzing the transient’s peak in response to the stimulus change, the firing rate

was calculated in consecutive bins of 25 ms width. For both speed increments and decrements,

up to more than 90% of units were found to have significantly higher and lower rates, respec-

tively, in the attend-in condition during the time intervals of 50 to 100 ms post-change (Fig

6G). Yet, because this ratio decreased rapidly for later bins of the transient, consistent atten-

tional modulation was limited to a brief period immediately following the stimulus change.

Taken together, the experimental data confirmed the model predictions for both the effect

of attention onto the slope of positive and negative transients and, for the initial part of the

transient, onto the modulation of relative peak responses for time constant ratios of τe/τi�1,

as found in the response onset fits (Fig 2E). As a novel physiological result, they provide evi-

dence that attention modulates the same features of a negative transient than it does for posi-

tive transients, suggesting that processing of visual information, and its perception, can rely on

information contained in reductions of firing rates.

Discussion

The ability to detect rapid changes in complex, ever-changing environments is fundamental

for both animal and human behavior. Neuronal responses to fast stimulus transitions usually

come as brief episodes of increased or decreased neuronal activity, followed by a steady-state

level of lower absolute amplitude. Pronounced transient changes in neuronal activation were

observed in the brain of many different species, spanning the range from invertebrates to pri-

mates [25–28], suggesting that they represent a basic principle in neuronal network dynamics.

We here show that such a canonical computation can be realized by a very simple circuitry,

essentially built of only one excitatory and one inhibitory unit, in which the excitatory unit’s

output time course is normalized through divisive inhibition. The circuitry can be expressed

by a set of equations with only three free parameters, obtained by fitting the model to each

neuron’s onset response (to cover the individual unit’s kinetics). Note that, although we

assumed a log-Gaussian speed tuning during the steady state of the neurons to calculate sus-

tained firing rates, the prediction of transients did not depend on any assumption about the

underlying speed tuning profile (which may be influenced by higher-order parameters as e.g.

stimulus history and rapid response adaptation [29,30]). The simplicity of the model allowed

for a comprehensive mathematical analysis of neuronal response dynamics and the reproduc-

tion and prediction of physiological transients in response to a wide range of stimulus transi-

tions, including the interesting case of attentional modulation of rate-decreasing events.

Non-stationary normalization by divisive inhibition

A key element of the model is normalization of the circuitry’s output by divisive inhibition.

Normalization by divisive (shunting) inhibition was initially suggested as a means to explain

nonlinearities in the response of neurons in visual cortex [17]. It consists of dividing the

response of a given neuron, or group of neurons, by the average response of a pool of normal-

izing units, either within the same cortical area or between areas [31–35]. Since its introduc-

tion, the concept was successfully used to explain neural response characteristics in a range of
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different contexts and neural systems, both with and without attention (for overview: [18,36]).

Most work, however, has focused on static divisive normalization to describe modulations of

sustained neuronal responses, while the circuitry we here introduce explicitly addresses the

temporal response dynamics. Static normalization in our model emerges as the fixed point of

the activation dynamics for a constant input. Static models may be capable to reproduce MT

responses to dynamic stimuli to some extent [37], but they have limits to capture fast neural

responses and they are inappropriate to explain non-monotonic transient responses to sudden

input changes.

Temporal low-pass filtering combined with delayed inhibition was previously suggested to

circumvent these limitations and allowed modelling the time course of MT responses during

pursuit eye movements [38]. While low-pass filtering converts an instant input change to an

exponentially saturating input current, divisive inhibition kicks in later than excitation and

thus allowed us to successfully predict change-transients as observed experimentally. With

inhibition following the dynamics of excitation instantaneously [39], it is not possible to repro-

duce the time course and the peak (or trough) of a change transient. The relaxation differential

equations in our model thus have the same effect as in [38]—low-pass filtering the input drive,

and delaying inhibition by assuming a larger time constant for the rise of the divisive term.

However, the earlier model has a large number of free parameters and multiple functional

modules for allowing detailed fits of neural responses to pursuit eye movements of different

velocity, while the model we here introduce has its focus on structural simplicity. This property

enables thorough mathematical analysis for a large variety of stimulus conditions, with and

without the effects induced by attention, and allowed to predict neuronal response dynamics

under so far untested experimental conditions.

Dynamic divisive normalization has recently been applied also by other models. A recent

study, for example, implemented dynamic divisive normalization in a model to investigate the

response to competing visual stimuli under different forms of attention [40], but focused only

on stationary states. Other dynamical models incorporate divisive interactions via recurrent

inputs. For example, recurrent divisive inhibition was used to study effects of feature-based

attention [41], and for creating an abstract model of a cortical column that accounts for signal

filtering and nonlinear gain control in combined feedforward and feedback pathways [42]. In

decision-related neuronal circuits recurrent divisive inhibition was shown to generate both

positive and negative transients [20]. In general, recurrent inhibition allows for very ’rich’

model dynamics and, through reverberating activity, is also capable to generate oscillations

[19,20,42], whose origin can be understood through linear stability analysis.

Yet, mathematical analysis of the dynamical properties of recurrent models becomes

quickly intractable. In contrast, the feedforward model we here introduce is allowing a thor-

ough mathematical analysis, while it still explains the complex firing rate dynamics of our

experimental data. The anatomical origin, however, of divisive normalization may be rooted

in a recurrent circuit. A possible test of this, and a continuation of our work, is to implement

divisive normalization in a recurrent, ‘ring-model’-like network, which consists of identical

elementary circuits to represent neuronal columns with different preferred motion directions

as in [31,36,43], yet including temporal dynamics for inhibitory feedback [19]. In conjunction

with appropriate experimental data, this would allow 1) to test whether the effects we here

describe are compatible with a recurrent origin of divisive inhibition, 2) how attentional mod-

ulation in this network would affect the response of a heterogeneously tuned population, and

3) further illuminate the physiological mechanism underlying dynamic divisive inhibition.

Note, however, with regard to the latter, that it was recently put into question whether divisive

inhibition constitutes a physiological mechanism on its own, or whether it may simply emerge

as a network effect [44], possibly in conjunction with noise [45].
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Relation between transients and information processing, perception, and

behavior

Biologically relevant signals usually occur on very short time scales, and the brains of both verte-

brates and invertebrates generate rapid visual percepts, decisions, and motor behaviors. Flies,

for instance, track and chase other flies with response times as short as 30 ms [46], carnivorous

vertebrates possess extremely fast sensorimotor programs for visually guided pursuit predation

[47], and primates, both human and non-human, categorize objects and perform appropriate

motor responses within tens of milliseconds [48–50]. These findings imply that, while different

behaviors in different species may involve different neuronal substrates and mechanisms, the

brain strongly relies on fast neuronal codes to account for the strong temporal variability of sen-

sory input during eye movements, self- and object-motion. Transient firing rate changes of

small groups of neurons in response to sudden changes in sensory input are likely part of this

code. Accordingly, such transients not only participate in detection of objects and events but

carry detailed information about stimulus properties. In monkey temporal cortex, transients

were shown to exhibit specificity for different head views within 25 ms following onset of the

population response, and to contain more information than later epochs of the response

[51,52]. A corresponding pattern was found in primary visual cortex V1, reaching a peak for

detectability and discriminability of oriented gratings within 150 ms of the onset response, and

in area MT, where most information on motion direction is available within the first 100 to 200

ms after stimulus onset [3,4,53]. This higher information content of onset transients is likely

due to a larger gain and smaller variance as compared to steady-state activation levels during

continuous stimulation [53,54]. Accordingly, because brief episodes of coherent motion or

rapid speed changes were found to induce firing rate changes significantly correlating with

behavioral choices, transients were linked to perceptual judgments [9,55–59]. The results of the

current study show that the simple circuitry we used to implement rapid firing changes in

response to input changes is fully reproducing the experimentally observed MT responses,

including the over- and undershooting during change transients in comparison to firing rate

changes expected from steady-state tuning properties [7]. Furthermore, although the excess

spike counts in Fig 6 might seem small, they will have a substantial effect in a population of neu-

rons: assuming only 10 to 100 presynaptic neurons projecting to a target unit, about 100ms after

a speed change this unit would have received 10 to 100 spikes more than without attention—a

number which can readily make the difference for the target unit to either remain silent or fire

an action potential. Assuming a fixed threshold for excess spikes, such as in standard race mod-

els, this would allow to detect changes 10 to 20ms earlier, given the size of effects in our data

(graphs not shown). Because we recently showed that thresholding of transients permitted the

read-out of information in full accordance with human behavioral performance both for rate

increments and decrements [6], our results provide a mechanistic explanation for computations

within sensory cortex underlying the perceptual process of change detection and discrimination,

basically realizable by non-stationary divisive inhibition within a simple cortical circuitry.

Modulation of change transients by selective attention

Due to the close relation between transient firing rate patterns and perceptual judgments on

the one hand, and the influence of selective attention on neuronal processing and behavioral

performance on the other, transients are likely targets for attentional modulation. Recent mon-

key neurophysiological studies reported attention-dependent modulation of amplitudes, laten-

cies, and gamma coherence during stimulus onset or stimulus change responses in various

visual areas [9,21,60–63], and a close relation between reaction times to attended speed incre-

ments and the latency of the change transient [9]. All of these results, however, were obtained
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by investigating stimulus events eliciting an increase in firing rate. If specific parameters of

transient firing rate changes indeed underlie perceptual performance, the question arises how

attention influences a population of neurons for stimuli inducing a decrease in mean activa-

tion. The mathematical analysis of our model dynamics predicted—not without surprise–that

negative transients would basically be modulated by attention in the same way as positive

ones, with the slope and the relative peak height being the response features to allow for consis-

tent attentional modulation independent of the pre-change activation level of the neuron, and

independent of the sign of the transient. The experimental confirmation of this prediction pro-

vides new physiological insights for understanding change detection and its modulation by

attention. As an important result, they indicate a relevant constraint of task-dependent modu-

lation. Because attention was implemented as a positive gain to the input of the circuitry in the

model, firing rates during the pre-change epoch were always larger with attention than with-

out, regardless of the type of change occurring later. These new physiological results show that,

albeit speed increments and decrements were presented block-wise and allowed the animals to

make correct predictions on the sign of the upcoming change, pre-change firing rates were not

different between acceleration and deceleration trials and attention consistently increased neu-

ronal responses during the pre-change epoch by about the same factor. These results strongly

suggest that attention-dependent modulation in early visual cortex is generally associated with

a positive gain of neuronal responses, as opposed to a mechanism modulating responses in the

same direction as the sensory event. This conclusion is consistent with recent results on both

spatial [9] and feature-directed [10] attention, which were found to exert very similar effects

during both the pre-change epoch and transient firing. Particularly, it was recently shown that

feature-directed attention exerts a positive, tuning-independent gain even in the absence of a

visual stimulus [10]. This tuning-independent effect likely constitutes the main source of top-

down modulation during feature-directed attention, while tuning dependent modulation, as

proposed by the feature-similarity hypothesis [64,65], is likely evolving on top of this and

seems to be limited to early visual areas [66]. The new results on consistent pre-change atten-

tional modulation in acceleration and deceleration trials are fully in line with this.

Moreover, the model predicted steeper response slopes with attention for both stimulus changes

inducing an increase and a decrease in neuronal firing. This prediction was a direct consequence

of the model’s inherent dynamics, since apart from input gain no other parameter of the model

was changed to implement attention. In line with this prediction, the physiological experiments

show a significant influence of attention on both the rise and the decay time of the change tran-

sient, being steeper with attention than without, i.e. attentional modulation was independent of

whether the stimuli induced an increase or a decrease in the firing of neurons. Based on the mod-

el’s temporal dynamics, a mechanistic explanation of this effect is that the stronger drive of both

the excitatory and inhibitory unit allows a faster effect of divisive normalization with attention.

Because normalization is acting in the direction of the input change, it is affecting the slope of both

positive and negative transients likewise. Both the computational and the physiological data sug-

gests that not only rapid positive changes in firing rate, but also rapid negative changes provide

important information to downstream areas that are used for subsequent visual processing.

Methods

Ethics statement

Housing of animals, experimental and surgical procedures were all in accordance with the Direc-
tive 2010/63 issued by the European Commission and with the Regulation for theWelfare of
Experimental Animals issued by the Federal Government of Germany, and were approved by the

local authorities (Der Senator für Gesundheit, Freie Hansestadt Bremen, Az. 522-27-11/02-00).
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Subjects

MT data used to develop and test the model were partly recorded in the context of previously

published studies [7,10]. Additional data to test model predictions were recorded using non-

human primate standard behavioral and neurophysiological procedures. Data were acquired

from two male macaque monkeys, six and eight years old, both kept pair-wise with another

male. Initial surgical interventions were performed under anesthesia and strictly sterile condi-

tions. Anesthesia was initiated by ketamine/medetomidine and was maintained by propofol,

supplemented with isoflurane. Remifentanil and Carprofen were given for peri- and post-

operative analgesia, respectively. Monkeys were given sufficient time to recover before behav-

ioral training in the laboratory. Further details on surgical procedures are given elsewhere

[10,67]. Both monkeys were familiar with laboratory standard procedures and general task

conditions. They received additional training on detecting negative speed changes during the

course of several weeks using water and fruit juice as reinforcer for performing the task. On

non-training and nonrecording days, monkeys received fruits and liquid in their home com-

partments, consisting of large indoor rooms with daily access to equally sized outdoor com-

partments. All compartments were enriched by a manifold of monkey toys, puzzles, and

climbing opportunities. Health and well-being were checked by daily monitoring and regular

visits by veterinarians, and body weight was checked several times a week.

Electrophysiological data

Recordings were performed using tungsten microelectrodes (2–5 MOhm, 125 mm shank

diameter; Frederic Haer, Bowdoin, ME) and standard electrophysiological equipment. The

pre-amplified signal was filtered between 0.7 and 5 KHz and sampled with a frequency of 25

KHz. Spikes were detected online by thresholding the signal. All spike data were then subjected

to offline semiautomatic spike sorting using Klustakwik [68], followed by manual adjustment

of spike clusters using a custom-made algorithm for spike form and spike parameter illustra-

tion [69]. Visual stimulation, control, and documentation of behavioral data was performed

using custom-made Matlab scripts and in-house software. Eye movements were controlled by

a custom-made video-oculography system with 0.2-degree resolution.

Visual stimulation and behavioral paradigm

Monkeys were tested in a behavioral task requiring detection of a rapid change in the speed of

a moving stimulus, either an acceleration (speed change by a factor of ~2), or a deceleration

(speed change by a factor of ~0.5), presented block-wise. The basic task design was the same as

in previous studies9,10. Each trial started with appearance of a small red fixation spot

(0.14-degree side length) at the center of the screen (22-inch cathode ray tube monitor, resolu-

tion 1.280 x 1.024-pixel, 100 Hz refresh rate). Monkeys initiated the trial by gazing at the fixa-

tion point, pressing a lever, and keeping it hold. Following a delay of 250 ms, a spatial cue

appeared for 700 ms to indicate the location of the upcoming target stimulus, followed by

another delay of 200 ms and subsequent appearance of two static Gabor stimuli (sine wave spa-

tial frequency: 2 cycles/degree, Gaussian envelope: σ = 0.75 degree at half height), one centered

above the RF of the recorded neuron and the other one mirrored across the fixation spot.

Mean Gabor luminance was identical to background luminance (10 cd/m2). Gabors started to

intrinsically move (speed: 2.17 degree/sec) 200 ms after onset, with motion direction adjusted

to the preferred direction of the recorded neuron, as described elsewhere [9]. In about 40%–

50% of the trials, the uncued stimulus changed speed before the target stimulus, which had to

be ignored by the monkeys. Following the speed change of the target, monkeys had to keep fix-

ation for another 300 ms (to avoid contamination of the neuronal post-change response by eye
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movements) and to release the lever within a response window of 150–750 ms. Speed changes

occurred within 0.66 and 5.5 sec after motion onset. Subsequent trials were separated by an

intertrial interval of 3–4 sec. Releasing the lever outside the response window and eye move-

ments of more than one degree from the fixation point caused immediate termination of a

trial. Monkeys were rewarded with a few drops of water or diluted fruit juice for each correctly

performed trial.

Model steady-state activation and response to step functions

The model consists of two units driven by external input I, with one unit providing divisive

inhibition on the other unit (Fig 1B). Their dynamics are described by the differential Eqs (1,

2) and threshold-linear gain functions (3, 4), with the steady-state activation resulting from a

constant, suprathreshold input I0 given by

Asteady
e ¼ Ae t !1ð Þ ¼ me

I0

Asteady
i þ s

� ye

� �

; ð9Þ

Asteady
i ¼ Aiðt !1Þ ¼ miðI0 � yiÞ ð10Þ

Inserting (10) into (9) provides Eq (5). Assuming zero thresholds θe = θi = 0 and a supra-

threshold input I(t)>0 allows to replace (3)–(4) by linear gain functions, simplifying further

analysis. Instantaneous stimulus changes are considered as step functions providing a change

in constant external input from Ipre to Ipost at t = tchange. Assuming that the model is in its steady

state for t<tchange, Eq (2) can be explicitly solved and Eq (1) for post-change activation

(t�tchange) can be written as:

te
dAe
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Using Eq (5), Ipre and Ipost, which are unknown in an experiment, can be expressed as func-

tions of their corresponding steady-state (sustained) activations Apre
e and Apost

e via Eq (6).

Model fit to physiological data

88 recordings from M1 and 53 recordings from M2 (single- and multi-units) were used to fit the

model to stimulus onset transients. Transients were caused by the appearance of a grating inside

a neuron’s RF, moving into its preferred direction while monkeys performed a simple fixation

paradigm (cf. Ref. [7] for experimental details). While the model responds immediately to a

change in its input at time tchange, the physiological change response is delayed by the processing

time between retina and area MT. To account for this, response onset delays Δτ relative to stimu-

lus onset were estimated by visual inspection of the PSTHs binned at different temporal resolu-

tions, individually for each unit (averages: M1: 31 ms +/- 12 ms SD, M2: 32 +/- 10 ms). Sustained

responses Apre
e and Apost

e before and after stimulus change were determined by computing the aver-

age spike rate over all trials in the intervals [-100 ms, 0 ms] and [200 ms, 500 ms], respectively

(time denoted relative to stimulus onset). Apre
e and Apost

e allow to numerically solve Eq (6) and

compare it directly to the delay-compensated, trial-averaged physiological response by computing

the Chi-square function, which relates the quadratic error between observation and prediction to

the standard error of the observation via w2=Nt ¼ hkAeðtÞ � Aexp
e ðt � DtÞk2=s

expðt � DtÞi, aver-

aged over a 200ms interval after response onset. Values of χ2/Nt around 1 are considered good

fits because the average deviation between model and observed data is then comparable to the

variability of the data. Experimental Aexp
e was sampled within 5 ms time bins and the model’s
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response was downsampled to the same temporal resolution for comparison. Neural units were

excluded from the fitting procedure if their spike count summed over all available trials was less

than 100 (i.e., an average of only 2.5 spikes per time bin, due to a poor response to the applied

speed, which was purposefully not adjusted to the neuron’s tuning properties), which provides insuf-

ficient data to yield a well-shaped PSTH. Applying this criterium left 48 and 44 units from monkey

M1 and M2, respectively, for fitting. Parameters τe, τi, and Amax
e for explaining physiological dynam-

ics were determined by an iterative grid search for minimizing the quadratic error. Because Amax
e

must be at least the value of Apost
e , and values higher than 3 Apost

e were never reached by the optimiza-

tion procedure, initial grid search ranges for Amax
e were set to [1.03 Apost

e , 3 Apost
e ]. Ranges for τe and τi

were set to [1 ms, 100 ms] and [1 ms, 500 ms], respectively, with the upper limits being well above

the observed rise/decay times of the PSTHs. The resolution of the search grid was 40 bins for

Amax
e , and 15 bins for the two time constants. Four iterations with subsequently refined grids

resulted in a precision of 0.01% for the parameter estimates within the initially chosen range.

For determining the goodness-of-fit we compared the empirical distribution of χ2/Nt with sur-

rogate spike data drawn from model responses generated with parameters sampled from the dis-

tributions of the fitted parameters. This surrogate data yielded distributions perfectly shadowing

the empirical distributions, and thus all fits of the selected units were considered as appropriate,

valid parameter estimates.

Calculation of transient and sustained activation changes

Under the condition τe�τi (separation of time scales), the peak response during the transient

can be approximated by:

Apeak
e � Apost

e
Amax

e � Apre
e

Amax
e � Apost

e
: ð12Þ

Under assumption of a log-Gaussian velocity tuning [14,15], sustained activation can be

expressed in terms of the stimulus velocity v:

Asteady
e vð Þ ¼ A0 þ Apref

e exp �
ðlogðvpref Þ � logðvÞÞ2

2s2
v

 !

; ð13Þ

with spontaneous activity A0, tuning width σv and maximum response amplitude Apref
e for pre-

ferred speed vpref. Computing Asteady
e for stimulus velocities vpre and vpost before and after the

speed change, respectively, provides Apre
e ¼ Asteady

e ðvpreÞ and Apost
e ¼ Asteady

e ðvpostÞ for Eq (14), to

obtain analytical expressions for Apeak
e =Apre

e and Apost
e =Apeak

e for arbitrary acceleration/decelera-

tion ratios vpre/vpost (Fig 3). For evaluating Apeak
e =Apre

e and Apost
e =Apeak

e in comparison to experi-

mental data (Fig 3), we chose A0 = 0, a tuning half-width of 2.5 octaves (σv = log(22.5)�1.73)

and Amax
e ¼ 1:4Apref

e .

Modulation by attention

Attention is modeled by multiplicative modulation of input I by a factor α>1, I!αI (Fig 4A).

Expressing absolute activation Ae relative to Amax
e ; ae≔Ae=Amax

e provides scaled pre- and post-

change sustained activities apre
e ¼ Apre

e =A
max
e and apost

e ¼ Apost
e =Amax

e ranging in the interval [0, 1].

The initial slope Frise
a

of the transient response as a function of apre
e and apost

e in dependence on

α yields

Frise
a

apre
e ; a

post
e

� �
:¼

dae

dt

�
�
�
�
t¼0

¼
1

te

apost
e � apre

e

1 � apost
e

a

apre
e ða � 1Þ þ 1

; ð14Þ
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and the change in sustained activation level Fsus
a

relative to the pre-change level becomes

Fsus
a

apre
e ; a

post
e

� �
≔

a

a � 1þ ðapost
e Þ

� 1
�

a

a � 1þ ðapre
e Þ
� 1
: ð15Þ

For assessing the attention-induced modulation in these quantities (Fig 4B), we computed

DFrise
a
¼ Frise

a
� Frise

1
and DFsus

a
¼ Fsus

a
� Fsus

1
. Peak activation Fpeak

a
during transient responses

must be computed numerically, thus DFpeak
a
¼ Fpeak

a
� Fpeak

1 was obtained by solving Eq (6)

explicitly in dependence on the chosen time constants τe and τi.
As a control, and for the purpose of generalization, we extended the model to have different

attentional modulation factors αe and αi as input to the excitatory and inhibitory units, such

that the attention-induced modulations become:

DFrise
a

apre
e ; a

post
e

� �
≔
ðapost

e � apre
e Þða

pre
e ðai � 1Þ þ ð1 � aeÞÞ

teða
post
e � 1Þðapre

e ðai � 1Þ þ 1Þ
ð16Þ

DFsus
a

apre
e ; a

post
e

� �
≔ apost

e � apre
e

� � ae

ðapost
e ðai � 1Þ þ 1Þðapre

e ðai � 1Þ þ 1Þ
� 1

� �

ð17Þ

Calculation and comparison of physiological response parameters

In total, N = 45 sites were recorded in M3 and N = 25 sites in M4. For inclusion to data analy-

sis, we required the speed-up condition to be associated with a significant firing rate increase

in the attend-out condition (assessed in the time interval 140 to 160 ms after stimulus change,

one-tailed test on Poissonian distribution around mean firing rate before stimulus change,

p< 0.05), which was given for Nup = 36 sites in M3 and Nup = 19 sites in M4. Similarly, the

speed-down condition was required to be associated with a significant firing rate decrease in

the attend-out condition, which was fulfilled for Ndown = 42 sites in M3 and Ndown = 21 sites in

M4. Rise times and relative spike counts of the experimentally observed transients (Fig 5) were

calculated to compare physiological data against model predictions for ΔFrise and ΔFpeak. First,

rise times of physiological transients were assessed by determining excess cumulative spike

counts following the stimulus change, defined as the number of spikes exceeding the spike

count of a neuron continuing to fire with its observed pre-change rate. By visual inspection,

we estimated an average response delay of tchange = 55 ms for both monkeys. For estimating

pre-change activity, we computed the summed firing rate Fpre over all trials of a given attention

condition in the time window [-400 ms, tchange]. Excess cumulative spike count ec(t) was then

defined for t>tchange by

ecðtÞ ¼ � Fpreðt � tchangeÞ þ
R t
tchange

dðt0 � tkÞdt
0 ð18Þ

where tk denote the times of K spikes k = 1,. . .,K, considering all trials of the respective condi-

tion. For comparing the initial slopes of two attention conditions N and A, we first computed

their cumulative excess responses ecN(t) and ecA(t). We then evaluated the difference ΔecAN(t)
= ecA(t)−ecN(t) and tested statistically whether ΔecAN(t) was significantly deviating from zero.

The transient of condition A was considered to rise significantly faster (or slower) than the

transient of condition N, if ΔecAN(t) was above (or below) a time-dependent threshold. Thresh-

olds were set to�z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFpre

A þ Fpre
N Þðt � tchangeÞ

q
, where z = 2.32 was chosen to yield a significance

level of p<0.01.
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Second, spike counts for individual attention conditions and during different periods of the

transient were calculated as the difference Δac between the absolute spike count before and

after the speed change, Δac(itv) = acpost(itv)−acpre, where itv denotes intervals of 25 ms length,

taken between 50 ms and 200 ms following the speed change for the transient. The steady-state

response before the change was estimated during the period from -400 ms to tonset. The differ-

ence between two relative spike counts was considered significantly different from zero when

it exceeded
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
narpreA þ nar

post
A þ nar

pre
N þ nar

post
N

p
, where var designates the spike count variance in

the corresponding attentional condition pre- or post-stimulus change.

Supporting information

S1 Data Code Repository. The archive ‘S1_Data_Code_Repository.zip’ contains all rele-

vant data sets and program code for generating the results reported in the manuscript.

Running the code requires Matlab R2020a (The MathWorks, Inc.) and Python (Version 3.6).

To perform all data analyses and fits, execute script ’PLOS_run_all.m’ from the main directory.

See the comments in the scripts named ‘PLOS_run.m’ in the subdirectories for further infor-

mation on the result plots and files created by running the code.
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