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A B S T R A C T

With the dawn of personalized medicine, secreted microRNAs (miRNAs) have come into the very focus of
biomarker development for various diseases. MiRNAs fulfil key requirements of diagnostic tools such as i) non or
minimally invasive accessibility, ii) robust, standardized and non-expensive quantitative analysis, iii) rapid
turnaround of the test result and iv) most importantly because they provide a comprehensive snapshot of the
ongoing physiologic processes in cells and tissues that package and release miRNAs into cell-free space. These
characteristics have also established circulating miRNAs as promising biomarker candidates for toxicological
studies, where they are used as biomarkers of drug-, or chemical-induced tissue injury for safety assessment. The
tissue-specificity and early release of circulating miRNAs upon tissue injury, when damage is still reversible, are
main factors for their clinical utility in toxicology. Here we summarize in brief, current knowledge of this field.

1. Introduction

The extracellular presence of miRNAs was described for the first
time in 2008, in plasma of patients with lymphoma [1]. By now, de-
tection of circulating miRNAs was reported in 12 different biofluids,
among them plasma, serum, cerebrospinal fluid, saliva, and urine [2].
They are remarkably stable, due to the fact that they are either en-
capsulated in extracellular vesicles (EV) or associated with proteins,
mainly Ago2 or apolipoproteins [3]. Environmental epigenetic studies
have provided evidence that miRNAs regulate gene activity upon en-
vironmental changes or after exposure to toxic substances [4]. Tox-
icant-induced changes in miRNA expression are informative markers
for the evaluation of toxic effects on multiple tissues and organs.
Therefore, miRNAs are considered to be predictive biomarkers or in-
dicators of tissue injury due to toxicant exposure [4]. Since miRNAs
regulate mRNA expression, their altered transcription profiles are
helpful to elucidate and define adverse outcome pathways of specific
toxicants [5].

A wide range of toxicants alter miRNA levels in target organs
(Fig. 1). These changes can be detected in a non- or minimally invasive
fashion using liquid biopsies, for example serum/plasma or urine.

2. MicroRNAs in liver toxicity

Standard biomarkers of drug induced liver injury (DILI) include
alanine aminotransferase and aspartate aminotransferase (AST).

However, both the specificity and sensitivity of these markers are
limited since there is lack of correlation of liver enzyme changes and
observable histopathological damage [6]. Moreover, elevated serum
level of alanine aminotransferase (ALT) also a commonly used bio-
marker of hepatocellular injury, also reflect muscle injury. Therefore,
more sensitive and specific biomarkers are needed for better prediction
of liver toxicity. Circulating miRNAs, e.g. miR-122-5p and miR-192-5p,
are both highly enriched in the liver tissue and exhibit dose and ex-
posure duration-dependent changes in the plasma that are parallel to
the serum aminotransferase levels and the histopathology of liver de-
generation [7]. Moreover, miR-103a-3p was reported as an appropriate
biomarker among the circulating miRNAs identified in rats with acet-
aminophen-induced hepatotoxicity [8]. Furthermore, a study in human
and mouse models suggested that circulating miR-122-5p can be used
as a potential novel early, predictive and reliable blood marker for
viral-, alcohol-, and chemical-induced liver injury [9].

3. MicroRNAs in neurotoxicity

In the nervous system, miRNA regulation contributes to the devel-
opment, differentiation, function, and pathogenesis of neurodegenera-
tive diseases. Several nervous system–enriched or nervous system-spe-
cific miRNAs have been reported [10]. Recently it was investigated,
that circulating nervous system–enriched miR-9-3p and hippocampus-
enriched miR-384-5p could be indicators for trimethyltin-induced of
neurotoxicity in serum [11]. As far as neurotoxicity is concerned,
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biomarkers present in the cerebrospinal fluid (CSF) can be particularly
valuable because of the co-localization of CSF with the target tissues
and the relative inaccessibility of CSF to biomarkers indicative of
changes in other tissues. MiRNAs in CSF have not been widely studied
yet. One study has identified miR-922, miR-181c-5p and miR-633 as
differently expressed in multiple sclerosis (MS) patients [12]. A second
more recent study of miRNAs in the CSF of people with MS has iden-
tified miR-150-5p as a novel candidate biomarker for MS [13].

4. MicroRNAs in kidney toxicity

Kidney injury is currently quantified by serum creatinine. However,
patients with acute kidney injury (AKI) are not in steady-state with
regard to kidney function and serum creatinine is slow to report cellular
damage. Serum creatinine also lacks specificity, becoming elevated by
non-renal pathologies such as dehydration and muscle injury [14]. New
biomarkers are needed to report drug-induced kidney injury with en-
hanced sensitivity and specificity. Recently it was shown, that miR-21-
5p miR-155-5p and miR-18a-5p were among the highest upregulated
miRNAs in the kidney after injury. Moreover this upregulation was
observed in multiple models of AKI but not following liver damage,
which confirms the robustness, reproducibility and specificity of the
miRNA response. And finally, the excretory profile of miR-21-5p and
miR-155-5p in urine could successfully distinguish patients with and
without AKI [15]. Factors such as IL-19 have been identified to be se-
creted by human RPTECs, the secretion levels in urine samples can be
used as a marker for kidney toxicity. This concept can certainly be
translated to secreted miRNAs [16], and this is indeed the case for miR-
574-3p, miR-30a, miR-30c, miR-194, miR-197 and miR-200 [17] miR-
203, miR-320, let-7d [18]. Interestingly, small non-coding RNAs are not
only potential biomarkers of kidney toxicity, because when used as
therapeutics small RNAs are suggested to be specifically toxic to the
kidney. In order to assess the adverse effects and identify non-toxic

RNAi chemistries, in vitro-models using renal epithelial cell line
RPTEC/TERT1 have been established [19].

5. MicroRNAs in cardiotoxicity

Cardiotoxicity is one of the major safety concerns in drug devel-
opment. Muscle-specific miRNAs, so-called myomiRs (miR-1-3p,
miR133a-3p, miR-208a-3p/b-3p, and miR-499a-5p) are abundantly
expressed in the myocardium [20]. They play a central role in cardio-
genesis, heart function and pathology. While miR-1-3p and miR-133a-
3p predominantly control early stages of cardiogenesis supporting
commitment of cardiac-specific muscle lineage from embryonic stem
cells and mesodermal precursors, miR-208a-3p and miR-499a-5p are
involved in the late cardiogenic stages mediating differentiation of
cardioblasts to cardiomyocytes and fast/slow muscle fiber specification
[21]. In acute myocardial infarction (MI) circulating levels of cardiac
miRNAs are significantly elevated making them to be a promising
biomarker for early diagnosis of acute MI [21]. In doxorubicin induced
cardiotoxicity circulating levels of miR-34a-3p [22] and miR-208a-3p
[23] were enhanced. Moreover, it was shown that miR-133a-3p/b,
specific markers of muscle toxicity, in combination with miR-208a-3p
can be used to differentiate cardiac from skeletal muscle toxicity [24].

6. Conclusion and future perspective

The clinical utility of circulating miRNAs in body fluids as tox-
icological biomarkers, and the link between miRNA-related pharmaco-
genomics and adverse drug reactions is a matter of current and future
investigations. Due to the strategies and challenges associated with the
risk management of toxicants and the relationship between toxicity and
disease states, the analysis of miRNA expression changes, as in-
formative markers for toxic effects on the tissue level, will become
extremely useful. The presented examples might be extended as

Fig. 1. MicroRNAs altered by toxicants in target organs. Changes can be
detected in a non- or minimally invasive fashion using liquid biopsies, for
example serum/plasma or urine.
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different adverse outcome pathways might also lead to differential se-
cretion of MicroRNAs.
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