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Therapeutic enzyme engineering 
using a generative neural network
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Sreyoshi Sur1, Iain McFadyen1, Wei Zheng1 & Stuart Licht1*

Enhancing the potency of mRNA therapeutics is an important objective for treating rare 
diseases, since it may enable lower and less-frequent dosing. Enzyme engineering can increase 
potency of mRNA therapeutics by improving the expression, half-life, and catalytic efficiency of the 
mRNA-encoded enzymes. However, sequence space is incomprehensibly vast, and methods to map 
sequence to function (computationally or experimentally) are inaccurate or time-/labor-intensive. 
Here, we present a novel, broadly applicable engineering method that combines deep latent variable 
modelling of sequence co-evolution with automated protein library design and construction to rapidly 
identify metabolic enzyme variants that are both more thermally stable and more catalytically active. 
We apply this approach to improve the potency of ornithine transcarbamylase (OTC), a urea cycle 
enzyme for which loss of catalytic activity causes a rare but serious metabolic disease.

Protein engineering has the potential to improve on natural enzymes by altering their functional properties, 
including stability, catalytic activity, and substrate specificity1. Engineering strategies such as rational design 
and directed evolution have had remarkable success in applications ranging from industrial chemical synthesis 
and biodegradation to biosensing2–6. Therapeutic enzymes may also benefit from such efforts: more stable or 
catalytically active proteins would have the potential to enable decreased dosages or dosing frequency, thereby 
reducing manufacturing costs and facilitating patient compliance by simplifying therapeutic regimens. However, 
therapeutic proteins must function in vivo, and thus the number of mutations in a therapeutic enzyme should 
ideally be kept to a minimum to reduce potential immunogenicity6.

Amino acid sequence alignments of protein families are powerful tools for exploring functional sequence 
space and understanding the relationships between sequence and function. Protein engineering methods that 
leverage sequence conservation, such as consensus sequence design, have demonstrated success in improving 
protein stability, but these methods require screening of many sequence variants over several rounds7–9. Models of 
pairwise sequence covariance, such as Statistical Coupling Analysis (SCA)10–13, add another layer of evolutionary 
detail for protein engineering11–14, but they still fall short of capturing the full and complex epistatic relationships 
that exist between locations distributed across the entire protein sequence. It has been estimated that while a 
typical site in a protein can tolerate an average of 8 natural amino acid types, about 90 percent of all amino acid 
substitutions are neutral or beneficial only in the context of their genetic background15. Thus, the most effec-
tive sequence design methods may need to consider not just position- or pair-wise conservation when making 
mutations, but also the interactions between all positions in a given sequence alignment.

Despite the potential importance of utilizing all the positional information in a set of functional protein 
sequences, extracting this information in useful form is not straightforward. However, the ever-increasing num-
ber of sequenced genomes and advances in machine learning have created new possibilities for predicting (and 
maximizing) protein function from sequence16. One approach has been to build regression models from muta-
tion datasets, which enables either interpretation of the parameters of these models to guide manual sequence 
design or combination of the models with search heuristics to optimize over sequences directly. Recent work has 
improved this methodology by using data-driven numerical representations of sequences as input17,18, deploy-
ing more powerful models18–21, and/or applying more effective optimization techniques22–26. An alternative 
approach has been to directly model the distributions of families of protein sequences using generative deep 
learning18,24,27–34. This approach allows for sampling novel sequences, but most studies have not tested novel 
variants in vitro or in vivo.

The advent of mRNA therapeutics and gene editing technologies expands the scope of therapeutic protein 
engineering beyond extracellular proteins to intracellular proteins as well. An example of an intracellular thera-
peutic target that might benefit from protein engineering is ornithine transcarbamylase (OTC), a metabolic 
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enzyme that, in eukaryotes, is localized in the mitochondrion and functions in the urea cycle, and, in prokary-
otes, functions in arginine biosynthesis35,36. OTC deficiency is the most common urea cycle disorder in humans, 
affecting approximately 1 in 60,000 to 1 in 72,000 births37. Liver transplantation may be curative but requires 
assessment on a case-by-case basis. Human OTC (hOTC) has at least 312 disease-causing mutations, and non-
synonymous mutations are found at 150 unique locations across the entire length of the protein37.

OTC’s role in arginine biosynthesis has resulted in a high degree of functional conservation with high 
sequence diversity across all kingdoms of life. For example, the E. coli variants ArgF and ArgI have 5–10 × higher 
specific activity38, but only 33% sequence identity with hOTC. This combination of functional conservation 
and sequence diversity suggests an extensive landscape of functional sequence space to draw upon to engineer 
improved catalytic activity, stability, or both.

In this work, we apply these recent advances in generative deep learning to the problem of engineering an 
improved OTC. By training a neural network on a large alignment of OTC sequences, we sample novel, near-
human versions of OTC that maintain the correlations present in known functional OTCs. The majority of these 
novel variants exhibit improved stability, specific activity, or both. The deep learning derived library outperforms 
a consensus library that does not incorporate residue-residue correlations, suggesting that these correlations 
make a meaningful contribution to enzyme function in this system. Taken together, these results also suggest 
that, by virtue of its ability to capture the diversity of existing sequences directly, generative modeling has great 
potential utility for engineering proteins with improved functional properties.

Results
Neural network modeling and library design.  To leverage evolutionary information to improve OTC 
activity, we built a large multi-sequence alignment of OTC homologs obtained by BLAST search. After filter-
ing these sequences to remove those that caused the most gaps, we were left with 3818 sequences, of which 
approximately 100 were mammalian, 263 were eukaryotic or archaea, and the remaining 3558 were prokaryotic 
(Fig. 1A). These sequences formed the basis of our training data set and spanned a range of similarities, with 
microbial sequences averaging about 45% similarity with each other and 58% similarity with hOTC.

To better capture the full extent of co-evolutionary conservation present in known OTC sequences, we applied 
variational autoencoders (VAEs), a recent advance from the deep learning literature39. VAEs are probabilistic 
neural network models comprising of an encoder, a stochastic sampling step, and a decoder (Fig. 1B). The 
encoder maps each sequence in the training dataset to a small set of latent factors that represent the parameters 
of a multi-dimensional Gaussian distribution. During training, we encode, sample at random from these dis-
tributions (one for each sequence), and finally pass the samples through the decoder. The training objective for 
the networks is to reproduce the original sequences from the decoded samples. VAEs are one of many types of 
models referred to as "generative," because once trained they can produce new and unique samples that share 
the properties of the training dataset.

We first assessed how well our model fit primary and secondary relationships in our training data. For any 
multiple sequence alignment, the variability at a given location can be represented as a categorical distribution 
over amino acids. Alignment averages of the training data and random samples from the model matched excep-
tionally well (Fig. 1C, Pearson’s R2 of 0.99), suggesting that the VAE effectively captures site-wise conservation sta-
tistics in our training data. To assess pairwise conservation, we calculated the mutual information (MI) between 
all alignment locations for the training data (Fig. 1D, left) and random samples from the model (Fig. 1D, middle). 
In this context, MI measures how much is known about the amino acid at a particular alignment location if 
the amino acid at the second location is known. A linear fit to all pairwise MI values shows strong correlations 
(Fig. 1D, right, Pearson’s R2 of 0.99), indicating that the VAEs effectively capture pairwise correlations between 
positions across the entire alignment.

Figure 1.   A Variational Autoencoder (VAE) effectively models co-evolutionary dependencies in ornithine 
transcarbamylase (OTC). (A) Species distribution of the training dataset. Top, relative percentages of 
mammalian, eukaryotic and prokaryotic sequences, ordered by Hamming distance to human OTC (hOTC). 
Bottom, Hamming distances to hOTC for all sequences used in the training data. (B) VAE model schematic 
and parameters. The VAE consists of an encoding convolutional neural network (CNN) (left) which takes 
one-hot encoded sequences as input, and outputs the parameters of a multivariate Gaussian distribution ( Zµ 
and Zσ ). Samples from this distribution ( Z ) are passed through a second decoding CNN. Both the encoder and 
decoder consist of multiple layers of convolution, batch normalization and pooling/up-sampling. The model 
is trained end-to-end to reproduce its input and regularized such that the distribution Z matches a Gaussian 
prior. (C) Per position amino acid frequency in VAE samples match those in the training data. Top left, average 
training data. Columns are distributions over amino acid frequency at each location in the alignment. Bottom 
left, as above, but for samples from the VAE model. Right, scatter plot of all amino acid frequencies (training 
vs. samples), (Pearson’s R2 value of 0.99). (D) Second-order correlations in VAE samples match those in the 
training data. Left, mutual information between all alignment locations in the training data. Middle, mutual 
information between all alignment location in VAE samples. Right, a scatter plot of position-to-position mutual 
information between the training data and the samples (Pearson’s R2 value of 0.99). (E) Positive correlation 
between Hamming and latent space distance. Left, scatter plot of Hamming distance and Euclidean distance in Z 
for a model with sequences weighted proportional to their Hamming distance to hOTC; right, same but with all 
sequences weighted equally. Overall correlations when considering all sequences are similar (Pearson’s R2 values 
of 0.25 vs 0.26, solid lines). In the weighted model, the 5% most similar training data exhibit higher correlation 
than the training data as a whole (Pearson’s R2 values of 0.81 vs 0.56, dashed lines).
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Based on these results, we expected that many of these sampled OTC sequences would be functional enzymes. 
However, the strong bias for microbial genomes in sequence databases results in a type of class imbalance, where 
the number of eukaryotic (and specifically mammalian) OTCs are in the minority. Since VAEs are trained 
to reproduce their inputs, random sampling from an unweighted model is likely to result in prokaryotic-like 
sequences that might be less suitable for therapeutic applications due to the potential immunogenicity of highly 
mutated sequences relative to human wildtype.

We addressed the issue of class imbalance in two ways. First, we trained both an unweighted VAE and a VAE 
where the training data was sampled to favor human-like sequences (the weights are inversely proportional to the 
Hamming distance between each sequence and hOTC). Previous work has suggested that the distance between 
latent space encodings ( Zdist ) is correlated with sequence distance18,24,40. To address the question of whether a 

Figure 2.   Sampling near-human OTCs. (A) Sampling schematic. By fixing µ to be Zµ OTC and progressively 
increasing σ , we obtained 87 mutants with minimal mutations with respect to hOTC. (B) Alignment of VAE 
OTCs highlighting mutation locations. Center, alignment of sequences ordered by mutation count. Yellow 
marks a difference with respect to hOTC. Right marginal, summed mutation counts for each sequence; top 
marginal, summed mutation counts, per position. (C) Summary metrics of mutations. Left, distribution of 
mutation count with respect to hOTC; right, distributions of predicted �� G values for all possible single 
substitutions and for the VAE substitutions only. (D) Mapping of mutation locations onto hOTC structure 
(PDB: 1OTH). A cartoon representation of a single hOTC monomer of the homotrimer is shown in the inset 
with the ornithine analog N-phosphonacetyl-L-ornithine shown in cyan sticks. Mutation locations predicted by 
the VAE model only are shown in yellow spheres, and those predicted by both VAE and consensus models are in 
purple spheres.
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weighted model might better represent the sequence space most closely related to the human enzyme, we cal-
culated the correlation between these measures in both of the models (Fig. 1E). The unweighted VAE exhibited 
similar correlation than the weighted VAE when comparing all training sequences (Pearson’s R2 of 0.29 vs 0.25, 
Fig. 1E, solid lines), but lower correlation when the comparison was restricted to the closest 5% of sequences 
(Pearson’s R2 of 0.56 vs 0.81, Fig. 1E, dashed lines). The lower overall correlation for all sequences reflects the 
much larger diversity of prokaryotic sequences in general. This result suggests that the weighted model better 
captures relationships in the sequence space surrounding hOTC, and we used it for all sequences generated in 
this work.

Secondly, instead of randomly sampling from the latent space of our model or interpolating between 
sequences, we decided to encode hOTC and sample repeatedly from its encoded distribution (Fig. 2A). By scal-
ing the variance of this distribution, we could exploit the close relationship between Zdist and sequence distance 
and limit the number of mutations relative to hOTC. This method yielded 87 unique near-hOTC variants (with 
an average of > 98% and no less than 95% identity) with mutations spanning the length of the gene at 32 distinct 
locations (Fig. 2B). The variants on average contained 8 amino acid substitutions relative to hOTC (Fig. 2C); 
these changes were distributed more or less evenly between the core and surface of the protein (Fig. 2D). Interest-
ingly, none of the substitutions suggested by the VAE model are in the OTC active site (i.e., are known catalytic 
residues or within 5 Å of the substrate).

As an engineering control, we built a variant library based on consensus sequence design. Using the consensus 
sequence from our 3818-member OTC sequence dataset, we identified 18 amino acid differences between the 
hOTC wildtype sequence and the consensus. We encoded these amino acid substitutions into a fully combina-
torial library of ~ 107 variants and randomly selected 91 unique variants after transformation in E. coli, colony 
picking, sequence verification, and filtering for quality and fidelity to the library design (see “Methods”).

Bacterial growth assays with VAE and consensus variants.  To distinguish between the VAE and 
consensus libraries in terms of function in biological context, we first screened all OTC variants for their ability 
to rescue growth of an E. coli arginine auxotroph. This strategy is feasible owing to the remarkable similarity 
between the urea cycle pathway in humans and the arginine biosynthesis pathway in E. coli (Fig. 3A, left and 
right respectively)35,36; four out of six urea cycle enzymes are conserved in E. coli, and deletion of any one (in 
case of argG and argH) or two (in case of carA/carB or argF/argI) of these enzymes produces a strain that cannot 
grow in the absence of arginine. Figure 3B (top panel) shows the phenotype of the ∆argF∆argI (i.e., ∆OTC) dou-
ble knockout strain without arginine. Growth can be rescued upon arginine supplementation (Fig. 3B, middle 
panel) or by transforming the knockout strain with an external plasmid that supplies the missing gene, in this 
case hOTC (Fig. 3B, bottom panel).

To determine whether growth selections in the knockout strain can distinguish between enzymes of varying 
catalytic activities, ∆argF∆argI E. coli were transformed with recombinant plasmids encoding for different genes, 
and liquid cultures of the resulting strains were grown in the absence or presence of arginine. As seen in Fig. 3C, a 
negative control plasmid (YFP) lacking OTC activity cannot rescue growth of the auxotroph (black open circles) 
but does not interfere with rescue via addition of arginine (black solid circles). Human OTC is capable of rescuing 
growth at a doubling time of 3–4 h (green), while E. coli OTC-transformed bacteria (ArgF and ArgI in pink and 
light purple, respectively) show doubling times of 1.5–2 h, approaching the maximum growth rate of the strain 
as observed when arginine is added to the medium (black solid circles). These experiments demonstrate that E. 
coli growth selections recapitulate known differences in the catalytic efficiencies of human and E. coli OTC; the 
E. coli enzyme has been reported to have a five–tenfold higher kcat/KM than hOTC38,41–43. Additional controls 
using known mutants of hOTC with lower catalytic activities44,45 confirm that growth rate can also be tuned down 
relative to hOTC (Fig. S1 in Supplemental Information). We note here that growth rate is only partially controlled 
by OTC catalytic activity; other parameters such as enzyme stability and translation-dependent expression may 
also be governing the observed doubling times. Nonetheless, these combined studies indicate that auxotroph’s 
growth rate can report directly on OTC enzymatic activity. We therefore predicted that OTC library variants of 
higher specific activity would promote faster doubling times than hOTC, enabling not only the identification of 
any individual variants with improved properties, but also observation of any library-wide differences between 
the VAE and consensus libraries, such as differences in the number of improved variants.

To test the prediction that variants of higher specific activity would promote faster doubling times, plasmids 
carrying unique VAE or consensus variants were individually transformed into the E. coli auxotroph and their 
impact on growth rate in defined media was assayed using a Biolector Pro microfermenter as described in the 
Methods section, with optical density at 600 nm (OD600) serving as a measure of growth rate. Figure 3D shows 
the OD600 of each culture after 8 h of incubation. Control cultures performed similarly to our previous observa-
tions (Fig. 3C) where growth rate increased in the order YFP < hOTC < ArgF with a fivefold difference in OD600 
between hOTC and ArgF (data not shown). Remarkably, almost all VAE (84/87, orange) and consensus (87/91, 
blue) variants outperformed hOTC (green), promoting OD600 increases of 1.5–2.5-fold and, in some cases, 
approaching ArgF levels of growth rescue. Since a majority (~ 96% for both libraries) of the variants exhibited 
improvement relative to hOTC, we decided to recombinantly produce and characterize them all to understand 
differences between the two protein engineering approaches.

Biochemical characterization of recombinant hOTC variants.  As mentioned above, the growth 
rate of the E. coli auxotroph is controlled by multiple parameters, including protein expression (from improved 
translation or stability) and enzymatic activity. Upon observing that the VAE and consensus libraries performed 
similarly in the auxotrophic growth assays, we aimed to address two main questions. First, we sought to deter-
mine the fraction of VAE variants with improved specific activity and/or thermostability relative to hOTC (that 
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is, improved catalytic rate normalized to enzyme concentration). Second, we asked if the VAE method provided 
any improvements in the hit rate relative to the consensus approach.

To address these questions, all OTC variants (i.e., both VAE and consensus variants) were recombinantly 
produced, and activity and thermostability were characterized as described in the Methods section. The results 
of these experiments are summarized in Fig. 4. The specific activity of hOTC as reported in literature38 and 
measured herein is 100–150 μmol/min/mg. Figure 4A shows the distribution of OTC specific activity relative to 
hOTC (green circle, dotted lines). Fifty-eight out of the 87 VAE variants (~ 66%) showed > 20% improvements 
in specific activity, with the best variant catalyzing citrulline formation at ~ 350 μmol/min/mg (i.e., a 2.5-fold 
increase over hOTC). Seventeen of the variants (~ 20%) were within 20% of hOTC activity, and the remaining 

Figure 3.   Auxotrophic growth assay for evaluation of hOTC variants. (A) Schematic of the urea cycle pathway 
in humans (left) and arginine biosynthesis in K12 E.coli (right). The first two enzymatic steps, catalyzed by CPS1 
and OTC, in humans occur in the mitochondria. The remaining steps occur in the cytosol. Unlike humans, E. 
coli possess two genes each in place of CPS1 (carA/carB) and OTC (argF/argI). (B) Phenotype of the ∆argF∆argI 
double knockout E. coli strain. ∆argF∆argI cannot grow in the absence of arginine (top panel). Growth can 
be rescued either by arginine supplementation (middle panel) or by transformation of an external plasmid 
encoding hOTC (bottom panel). Black markings on the plates indicate growth media and plating conditions, see 
Methods for details. (C) Growth curves of the ∆argF∆argI strain expressing different OTC genes. The auxotroph 
was transformed with plasmids encoding YFP (negative control, black open circles), hOTC (green), E. coli ArgF 
(pink) or E. coli ArgI (purple) and growth was assessed in liquid medium lacking arginine. Solid black circles 
represent the growth rate of the strain when arginine is supplemented in the medium. (D) Growth rescue of the 
auxotroph by consensus and VAE hOTC variants. OD600 values at 8 h are shown for the auxotroph transformed 
with hOTC (green) or the variants (blue and orange for consensus and VAE, respectively). The hOTC data were 
collected multiple times within the same experiment and on separate days to show the spread in values. Only 
single data points were collected for the consensus and VAE variants; however, as seen by the data most of the 
variants have OD600 values greater than the highest measurement recorded for hOTC.
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variants (~ 14%) had lower activity (by > 20%) than hOTC. By contrast, only 6 out of 91 (~ 6.5%) consensus 
variants improved activity > 20% relative to hOTC. Thirty-three consensus variants (36%) were within 20% of 
hOTC activity while 52 of the variants (57%) showed lower than 20% hOTC activity. Finally, comparison of 
the mean activity between the two libraries (solid black lines) indicates a statistically significant difference (p 
value < 0.0001); the consensus library on average has a mean activity that is 0.96-fold relative to hOTC while the 
VAE library shows a significant improvement with a mean activity of 1.4-fold relative to hOTC.

In contrast to the specific activity observations, all VAE variants exhibited improved thermostability with 
respect to hOTC (Fig. 4B, green circle, dotted line). The average melting temperature (Tm) of the VAE library 
was 73 °C (solid black line), a 12 °C improvement over hOTC. Similarly, the consensus approach also yielded 
variants with improved thermostability; the average Tm of the consensus library was 68 °C (solid black line) or a 
8 °C improvement over hOTC. However, unlike the VAE library, the consensus variants showed a wider spread 
of values between 60–80 °C.

To determine whether there was any relationship between thermostability and enzymatic activity in these sets 
of variants, Tm was plotted as a function of activity (fold change relative to hOTC; Fig. 4C). The dotted crosshair 
indicates the position of hOTC, and the VAE and consensus variants are shown in orange and blue, respectively. 
As described above and summarized in the Figure, both VAE and consensus approaches can be used to identify 
OTC variants of improved thermostability. However, the most striking difference between the two methods is 
seen when comparing the two quadrants in the upper half of the panel. The consensus approach yields more 
variants in the upper left quadrant (improved thermostability, but decreased specific activity), while the VAE 
method boosts the hit rate in the upper right quadrant (improved thermostability and improved specific activ-
ity). Thus, while both approaches produce OTC variants that improve activity to a similar level (> twofold over 
hOTC), VAE produces more of those variants (Fig. 4A,C).

Based on the results of these experiments, the 12 VAE sequences with highest specific activity were synthe-
sized as codon-optimized mRNAs for in vitro evaluation.

Performance of variant mRNAs in HepG2 mammalian cells.  A key concern for development of 
therapeutic enzymes is the translatability of observations from bacterial growth models and biochemical char-
acterization to in vitro mammalian cell models, in vivo animal disease models, and ultimately, patients. A com-
plex array of biological factors can lead to poor translatability from model to model; for mRNA therapies, these 
factors include modified nucleotide chemistry, manufacturing process impurities, mRNA translation and decay, 
post-translational modifications of protein, cell-specific protein degradation pathways, and protein activity and 
stability. In the case of OTC specifically, the enzyme also requires co-translational translocation into the mito-
chondria and cleavage of the leader peptide to generate the active trimeric version46; similar issues of intracel-
lular processing and localization are expected to be relevant for many other metabolic enzyme targets.

To determine whether recombinant OTC proteins with improved specific activity also show benefits when 
translated from mRNA in the cellular milieu, we synthesized codon-optimized mRNAs of the top 12 VAE vari-
ants. We do not anticipate the computational method (VAE vs consensus) to have an impact on translatability, 
since it is expected to depend on cell model factors that are independent of sequence engineering methods. We 
therefore chose to perform these experiments only with selected VAE hits.

Figure 4.   Specific activity and thermostability of recombinant protein for VAE and consensus hOTC variants. 
(A) Specific activity (μmol citrulline/min/mg protein) distribution of recombinant protein for VAE (orange) 
and consensus (blue) hOTC variants. Specific activity of hOTC is indicated by a green dot and the dashed line, 
and the mean specific activity by the solid line. Each point represents the average of three separate trials for a 
unique variant. (B) Melting temperature (Tm in °C) distribution of recombinant protein for VAE (orange) and 
consensus (blue) hOTC variants. Tm of hOTC is indicated by a green dot and dashed line, and the mean by 
the solid line. Each point represents the average of three separate trials for a unique variant. (C) Scatter plot of 
thermal stability (∆Tm in °C) vs specific activity (fold-change) for all OTC variants relative to hOTC. Histograms 
of each population are plotted on the top and left axes. Orange dots represent VAE variants, and blue dots 
represent consensus variants. Variants show a mix of improved specific activity, thermal stability, or both. The 
hOTC values are indicated by the dashed line and green dot.
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The 12 VAE OTC mRNAs were synthesized as described in Materials and Methods and transfected into 
HepG2 cells, a liver cancer cell line that is typically OTC low/deficient47. OTC protein expression and activity 
were measured in total lysates one day after transfection. The data (in log2) are shown in Fig. 5A–C and represent 
the averages of three biological replicates (i.e. three separate transfections) and two technical replicates. Expres-
sion levels of the variants were on par or lower (0.5–0.75-fold) than that observed with hOTC (Fig. 5A, dotted 
black line). Despite these lower expression levels, seven of the variants showed the same or slightly improved 
total activity in cell lysates relative to hOTC (Fig. 5B), indicating higher specific activities. The total activity from 
panel B was normalized to protein expression from panel A, with the normalized values (specific activities) shown 
in Fig. 5C. As seen in the Figure, the specific activities of all OTC variants were 1–1.5-fold greater than that of 
hOTC (black dotted line) with four variants showing a statistically significant improvement in specific activity. 
Since OTC is only enzymatically active upon transport and proteolytic processing in the mitochondria46, this 
improved activity (and the absence of detectable pre-proteolyzed enzyme as judged by western blot, Figure S2) 
indicate successful translocation and processing of the OTC variants. These data thus confirm that the biochemi-
cal observations with the recombinant OTC proteins translate into mammalian cell-based systems where protein 
is made from mRNA.

Identification of important mutation‑function relationships.  The VAE and consensus library vari-
ants have a range of specific activities, yet none of the represented substitutions are found in the active site 
(Fig. 2D). Furthermore, many variants show simultaneously improved activity and thermostability, defying the 
stability-activity trade-off assumption48. Attempts to understand the effects of individual mutations are con-
founded by the diversity of the sequence variants sampled from the VAE and consensus libraries, each of which 
contain between 5 and 25 mutations relative to the parental hOTC sequence (Fig. 2C).

We used regularized least squares linear regression to estimate the effects of individual mutations on specific 
activity and thermostability. This technique is a commonly used statistical tool for estimating contributions by 
the independent variables (e.g., individual mutations) to a set of observations of the dependent variables (e.g., 
specific activity and Tm). Regularization is especially helpful when the data suffer from multicollinearity, whereby 
the independent variables are not fully independent.

Figure 5.   Performance of VAE hOTC variants in mammalian cells. (A) OTC expression in HepG2 cells 
transfected with OTC mRNAs. Expression was normalized relative to hOTC (black dashed line). Data points 
indicate the average values of three biological replicates and error bars indicate standard deviation. (B) Total 
OTC activity (nmol/min/mg total protein normalized to hOTC) in HepG2 cells transfected with OTC mRNAs. 
Data points indicate the average values of three biological and six technical replicates. Black error bars represent 
standard deviations. (C) OTC activity in HepG2 cells transfected with OTC mRNAs. Total activity (panel B, 
nmol citrulline/min/mg total protein) was normalized to the expression observed in panel A to determine 
specific activity of VAE OTCs. Asterisks represent significance of < 0.004 under Bonferroni-corrected t test.
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The resulting coefficients from regularized Ridge regression49 of the single mutations are plotted with respect 
to specific activity and melting temperature (Tm) in Fig. 6. A large positive coefficient for a mutation suggests 
that the mutation has a large positive effect on the measurement, whereas a negative coefficient suggests an anti-
correlated effect. Deletions at K70, I159, and K353 have deleterious effects on enzymatic activity, but the N33-K34 
double deletion appears to improve activity. With the exception of a few particularly harmful mutations, most 
substitutions appear to be neutral or beneficial to activity. G83A, A135T, Q145H, and A217I correlate positively 
with stability. Nearly all of the deletions appear to decrease stability.

The “library” coefficient captures experimental trial-specific differences in the measurement, as the consensus 
and VAE libraries were assessed in separate trials. For both Tm and activity, the negative coefficient for “library” 
suggests that the experimental bias partially explains the result, wherein the consensus library experiments 
yielded lower values than the VAE experiments. Figure 4A tells a similar story, in that the specific activity of the 
hOTC control is lower in the consensus experiment than in the VAE experiment. However, when normalized to 
hOTC, the VAE library has higher average activity relative to the consensus library.

Several single mutations either mutually increase specific activity and melting temperature (e.g., A217I, 
A217V, S60A) or decrease both properties (e.g., A217T, and K70 and K353 deletions). A few mutations seem 
to affect one property while being neutral to the other (e.g., G83A, A135T, Q145H, S184G, G257A for Tm, and 
K34N, D149E, T150L, Q216R for activity). Note that A135T, Q145H, S184G, and G257A are also highly con-
served consensus substitutions among the OTC homologs (Fig. S6). Finally, a few substitutions seem to trade off 
one property for the other (e.g., T150K, H255K, N33-K34 double mutant). Taken as a whole, however, specific 
activity and melting temperature do not appear to be globally anti-correlated, as might have been expected if 
the sequences were close to optimal with respect to both high specific activity and high melting temperature.

Several mutations of interest are highlighted on the OTC crystal structure in Fig. 7. OTC seems particularly 
sensitive to mutations at A217. A217 is in a beta sheet that is buried in the hydrophobic core of the protein 
(Fig. 7), so mutations to hydrophobic Val or Ile may be more space filling than Ala and more compatible with 
the OTC structure than polar Thr. A135T and G83A have the most positive effects on melting temperature. A135 
is found at the C-terminal cap of a helix at the trimer interface, and G83 is on a nearby beta-sheet (G83 C-alpha 
is roughly 4 Å from the A135 C-beta). Computational ∆∆G predictions suggest that A135T and G83A are 
energetically favorable (negative ∆∆G, Fig. S8), and Gly is considered to be a poor beta sheet-forming residue50.

Though most of the deletions assessed here are deleterious, the K34 single deletion and N33-K34 double dele-
tion appear to enhance activity (the N33 deletion has a neutral effect on activity and Tm). K34N also appears to 
enhance activity. N33 and K34 are the N-terminal residues of the active enzyme after proteolytic processing to 
remove the mitochondrial leader peptide. K68, K70 and K353, three harmful deletions, are surface-exposed, the 
first two at the end of a helix and the latter at the C-terminus. I159 is in a short, buried beta strand, so removing 
it further shortens the beta strand, though the Ile sidechain is effectively replaced by I160.

Figure 6.   Effect of individual amino acid mutations on activity and stability. OTC activity vs. stability 
coefficients. The coefficients of linear ridge regression models relating amino acid mutations to activity and 
stability are plotted with standardized melting temperature (Tm) and activity on different axes. Points in the 
upper right quadrant represent mutations that contribute to both stability and activity, whereas points in the 
lower left decrease both. Histograms of the coefficients are plotted on the right and top axes. Dashed lines 
represent the zero axes. Deletions are indicated by a delta (∆) prefix. The linear model is regularized by ridge 
regression.
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Discussion
In this work, we trained a machine learning model on a dataset of natural OTC sequences, from which we then 
sampled tens of near-human variants. We also used the same set of OTC sequences and a consensus-based 
approach to generate a control library of similar size. Sequences from both libraries supported improved growth 
in a growth selection with auxotrophic bacteria; the large percentage (~ 96%) of VAE sequences demonstrated 
to have improved properties in the auxotrophic bacteria suggests that this screening step might be omitted in 
future metabolic enzyme engineering efforts. Because the key difference between the VAE and consensus librar-
ies is that the VAE library incorporates residue-residue correlations, a comparison of the functional properties 
of these two libraries provides an approach to understanding the role of such correlations in OTC stability and 
catalytic function.

The VAE library, but not the consensus library, had a mean specific activity higher than the human wild-
type OTC; this difference is modest (1.4-fold), but statistically significant (p value < 0.0001; Fig. 4). However, 
the variance in catalytic activity was comparable between the two libraries (0.32 for the consensus library and 
0.3 for the VAE library; Fig. 4). The enhanced mean activity observed for the VAE library suggests that the 
epistatic interactions captured in this library contribute to increased catalytic rate. However, the observation 
that the VAE and consensus libraries exhibit comparable variance in activity suggests that the residues involved 
in epistatic interactions do not dominate in their contributions to catalytic activity. If those interactions made 
the bulk of the contributions to catalytic activity, the consensus library would have been expected to sample a 
smaller range of values for catalytic activity than the VAE library, since it would be missing the largest positive 
or negative contributions.

With respect to thermal stability, both consensus and VAE approaches yielded libraries with substantially 
elevated average melting temperatures: a 8 C° improvement for the consensus library and a 12 C° improvement 
for the VAE library. However, although the mean Tms were similar, the consensus library contains more vari-
ants at the extremes; the variance in Tm is 35.5 for the consensus library and 4.4 for the VAE library. Consensus 
mutation strategies have previously been shown to be effective in generating protein variants with comparably 
high levels of stabilization7,14,51. The similarity in thermal stability between the libraries may reflect the fact that 
the VAE library is highly enriched in consensus mutations and suggests that the effects on stability are mostly 
accounted for at the individual residue level, rather than epistasis between residues.

In contrast, the difference in the spread of thermal stability in the OTC libraries is consistent with two 
countervailing selective pressures operating at the level of residue-residue correlations. First, there may be a 
general selective pressure to enrich for individual mutations which stabilize the protein. These may enhance the 
overall evolvability of the sequence, as they would provide a permissive context for subsequent mutations that 
improve other functions at the cost of stability. This would manifest itself in the consensus mutations exhibiting 
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Figure 7.   Structural mapping of important individual residues onto hOTC monomeric structure. A structure of 
the hOTC monomer (white cartoon) bound to a substrate analog (N-phosphonoacetyl-L-ornithine, cyan sticks) 
(PDB: 1OTH) is used to highlight amino acid positions mutated in the VAE-sampled sequences (magenta 
sticks). (A) Amino acid positions of mutations that have a beneficial/positive effect on Tm and specific activity. 
(B) Amino acid positions of mutations that have a beneficial/positive effect on either Tm or specific activity, but 
not both. (C) Amino acid positions of mutations that negatively affect Tm and specific activity. (D–G) Close-up 
views of A217, A135 and G83, the small beta-sheet consisting of I159 and I160 and the three important lysines 
at K68, K70 and K353.
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increased thermal stability, as observed. However, there also may be a countervailing selective pressure against 
unchecked upward drift of thermal stability; extremely stable enzymes may have reduced catalytic rates and/
or a prohibitively high energetic cost of degradation. The push and pull of these forces over time would select 
against variants at the extremes of the stability spectrum and such selection would be encoded in residue-residue 
correlations. Accordingly, we see a tighter distribution of thermal stabilities in the VAE library, which preserves 
these correlations, than in the consensus library, which does not.

Taken together, these results support the conclusion that different residues contribute differentially to changes 
in stability and catalysis, as expected. Perhaps surprisingly, however, no trade-off between stability and catalysis is 
observed; this might be due to mutational effects on these properties generally being uncorrelated in this system, 
and/or to a selection against mutations with correlated effects in the starting set of natural sequences. The results 
also suggest that interactions between residues contribute differentially to thermal stability and catalysis. How-
ever, we were limited in the number of variants we tested, and further experiments and analysis will be needed 
to fully investigate the physical/mechanistic basis of library mutations on OTC stability and catalytic activity.

The results of this study suggest future applications of VAE models both in enzyme engineering and in the 
study of enzyme structure–function relationships. For enzyme engineering, the use of the VAE model enables 
design of a library that yields improved variants (up to a ~ twofold increase in catalytic activity with greater 
thermal stability) with a library size of only ~ 102, indicating that the VAE model is sampling a highly functional 
region of sequence space. This characteristic of the VAE sequences also may enable detailed structure–function 
studies of epistatic contributions to enzyme catalysis in OTC and other enzymes. Because the VAE generates a 
potentially large number of variants with residue-residue correlations, highly correlated mutations can be char-
acterized to determine functional epistasis, potentially allowing the mapping of functional interaction networks 
in the enzyme structure.

By capturing higher-order co-evolutionary relationships, generative machine learning models have the poten-
tial to aid in understanding protein structure and function in novel ways. Training on natural sequences implicitly 
limits exploration of sequence space, greatly improving the odds of finding variants. A posteriori examination 
of the relationship between sampled mutations and protein function can generate specific testable hypotheses 
for experimental biologists. Combined with large-scale unsupervised approaches18,20 and multiple rounds of 
sampling, generative models are poised to usher in an exciting new generation of protein engineering approaches.

Methods
Materials.  The ∆argF∆argI double knockout E. coli strain was constructed by the Coli Genetic Stock Center 
at Yale. ATUM Bio supplied the backbone vector (pD884) for cloning. Terrific Broth (TB), M9 minimal medium, 
carbenicillin (100 mg/mL), kanamycin (50 mg/mL), and Luria broth (LB)/agar plates containing carbenicillin/
kanamycin were obtained from Teknova. Ampicillin, L-rhamnose monohydrate, triethanolamine hydrochlo-
ride, sulfuric acid, acetic acid, lithium carbamoyl phosphate dibasic hydrate, L-ornithine monohydrochloride, 
diacetyl monoxime and L-citrulline were purchased from Sigma Aldrich. Thermo Fisher Scientific provided 
B-PER Complete Bacterial Protein Extraction Reagent, HisPur Ni–NTA spin plates, antipyrine, SYPRO Orange 
(5000X) dye, Lipofectamine 2000 and the bicinchoninic acid (BCA) assay kit. Novus Biologicals provided the 
rabbit polyclonal OTC antibody (NBP1-87408) for western blot analysis. All oligonucleotides in this work were 
purchased from IDT and Q5 DNA polymerase (NEB) was used for all PCR reactions.

Training dataset generation.  The initial set OTC homologs was obtained by a BLASTp search of the 
“nr” database (“non-redundant protein sequences”) with canonical human OTC (UniProt ID: P00480) as the 
query sequence. Default parameters were used (BLOSUM62 similarity matrix, expect threshold 10, gap open 
penalty 11, gap extension penalty 1, no filter, 5000 result limit). The resulting sequences were then re-aligned to 
the parental hOTC sequence using the multiple sequence alignment (MSA) software tool MAFFT52 (v7.407).

For OTC and other urea cycle enzymes, the evolutionary history of homologous enzymes that began with de 
novo arginine biosynthesis in bacteria and archaea provides an extensive set of sequences for use in modeling. 
This sequence family is highly diverse; we attempted to filter out structurally dissimilar homologs by assuming 
that sequences that introduce large gaps in an alignment with hOTC have dissimilar structures. We score the 
“gappiness” of each sequence i in our alignment as

where j is the alignment column index, Gi is the subset of column indices at which sequence i has a gap letter, N 
is the number of sequences in the alignment, Nj

gap is the number of gap letters in column j, and w ∈ [0, 1] is the 
gap count weight for thresholding if a column should be scored as a gap or not.

Each sequence was assigned a gappiness score with w = 0.9 , and those sequences i with si > 10 (1011 
sequences) were removed from the alignment. An additional 162 sequences were removed because their 
ungapped sequence lengths were too short (< 290 amino acids) or because they lacked “Ornithine” in their 
Genbank sequence description. Finally, the sequence alignment was sliced to remove any remaining gaps in the 
aligned hOTC sequence.
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Neural network modeling and variant sampling.  Variational autoencoders are a recently developed 
class of probabilistic latent variable models that have been applied to a wide variety of data modalities, including 
biological sequences. These models assume that the data are the result of a random process involving continuous 
unobserved variables z ∈ Z . Generation of data involves first sampling a particular zi from a prior probability 
distribution ( p(z) ), and then a data point xi ∈ X is generated from a conditional distribution pθ (x|z) , where θ 
represents the parameters of the decoding neural network. In general, we would like to compute

but for most z , pθ (x|z) will be nearly zero and comprehensively sampling from p(z) is intractable. Instead, VAEs 
approximate logpθ (x) with the Evidence Lower BOund (ELBO):

Here, qφ is a family of normal distributions approximating p(z|x) represented by encoding neural network, 
and DKL is the Kullback–Leibler divergence. The variational autoencoder simultaneously learns pθ and qφ by 
minimizing the ELBO via gradient descent39.

OTC sequences were represented as two dimensional one-hot matrices, where the size of the first dimension 
was 322 (the length of the OTC alignment), and the second was 21 (20 amino acids + gap). Weighted sampling 
with replacement was used to preferentially select training data for each batch based on the similarity to hOTC. 
These weights were calculated by raising the fraction of sequence identity to the 2.25 power, which has the effect 
of preferentially down-weighting distant sequences. We used a 90/10 training/test split and a batch size of 128.

Our VAE consists of two convolutional neural networks (an encoder and a decoder). The encoder contained 
three consecutive blocks of two-dimensional convolution, batch normalization, ELU non-linearities, and max 
pooling. The number of filters in the encoder blocks were 128, 96, and 64 respectively, and the outputs were 
pooled two-fold in the length dimension only. Similarly, the decoder contained three consecutive blocks of two-
dimensional convolution, batch normalization, ELU non-linearities, and nearest neighbor upsampling (in the 
length dimension only) with a final soft-max layer to normalize over the amino acid dimension. The number of 
filters in the decoder blocks were 64, 96, and 128 respectively. We used a latent space of dimension 64. Network 
weights were initialized with the default “Kaiming normal” approach53. All code was written in Python 3.6 and 
models were specified in the PyTorch framework (code available upon request).

The two terms of the right-hand side of the ELBO above correspond to the cross entropy and divergence 
components of the total VAE loss we minimize. Following a common procedure from the literature, we annealed 
the divergence loss with a scalar β that varied from 0 to 1, increasing linearly on every epoch of training. We 
minimized the loss using the PyTorch Adam optimizer until test loss convergence, which took 30 epochs.

To sample near-human variants from the VAE for testing, we first encoded the hOTC sequence, resulting in 
a set of means and variances. We used these means and scaled the variances to sample Z values that we passed 
through the decoder and converted to biological sequences by picking the amino acid with the highest prob-
ability at each location (an argmax over the amino acid dimension). A variance of near 0 thus resulted in the 
maximum a posteriori Z value for hOTC, which when decoded resulted in a sequence with the minimal number 
of mutations relative to hOTC. We then repeatedly increased the variance and sampled until we reached an 
upper limit of mutations in any given variant of 16, or ~ 5%. After removing duplicates, this resulted in the 87 
variants tested in this work.

Design and sampling of consensus variant library (engineering control).  We compared our VAE-
enabled data-driven protein design approach to consensus design, a simple and effective data-driven approach 
that derives the consensus sequence from an alignment of homologous sequences, and then suggests substitu-
tions that convert the target sequence (hOTC) to the consensus7. The OTC consensus sequence was derived 
from the same multiple sequence alignment used to train the VAE, and the resulting consensus substitutions 
were converted into a combinatorial library using degenerate codons optimized by SwiftLib54. The consensus 
combinatorial library (~ 107 possible variants) was assembled from degenerate codon oligonucleotides using 
overlap extension PCR and Gibson assembly as described in the Automated Gene Synthesis Platform section.

The library was transformed into the ∆argF∆argI double knockout E. coli strain, plated on LB agar plates 
containing 100 µg/ml carbenicillin and 50 µg/ml kanamycin, and incubated 16 h at 30 °C. 192 transformants 
were picked from the resulting colonies, inoculated into 2-ml 96-deep well plates containing 1 ml TB animal-free 
media (Teknova) containing 100 µg/ml carbenicillin, and incubated for 16 h at 37 °C with shaking at 300 rpm. 
Plasmid DNA was isolated from each clone via mini-prep and sequence confirmed using Sanger sequencing. 
Ninety-one sequence-verified consensus clones were selected for further testing.

Information theoretic analysis of VAE model.  To assess the ability of our VAE model to capture first-
order sequence conservation and second-order sequence correlations in the evolutionary dataset, we use two 
metrics from information theory: entropy and mutual information. Entropy, also called information entropy 
or Shannon entropy, is a measure of information content in a random variable (in our case, a column in our 
sequence alignment) and is defined as

logpθ (x) = log

∫
pθ (x|z)p(z)dz

logpθ (x) ≥ Eq[logpθ (x|z)] − DKL

(
qφ(z|x) � p(x)

)

Hj = −
∑

a∈A
p̃aj logp̃

a
j
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where j is the alignment column index, naj  is the number of observations in the jth column of letter a from the 
amino acid alphabet A, and N is the number of sequences in the alignment. The value p̃aj  is intended as a rough 
approximation of the probability distribution of A, though we make no statistical assumptions or rare event 
corrections.

Similarly, mutual information serves as a proxy for residue-residue correlations. For a pair of sequence align-
ment column indices j and k, the mutual information (MI) is defined as

where na,bj,k  is the number of occurrences of a pair of letters a and b (paired in a single sequence) in columns j 
and k. Alternatively

where Hj,k is the joint entropy

Automated gene construction platform for synthesis of hOTC variants.  The target set of 87 
amino acid sequences sampled from the VAE were reverse translated to DNA sequences that were codon opti-
mized for E. coli K12 strains. These DNA sequences were then converted into a library of short overlapping 
oligonucleotide fragments that could be assembled into the target sequences by overlap extension PCR. Oligonu-
cleotide overlaps were globally optimized over the 87-member sequence alignment, with consideration for GC 
content and hairpin and tandem repeats. In addition, the oligonucleotide library was designed to avoid diversity 
in the overlap regions, and the terminal oligonucleotides also include overlaps for Gibson assembly55,56 into the 
pD884 (ATUM Bio) E. coli plasmid.

To clone each OTC variant, we utilized an internal, automated gene synthesis method. Eighty-seven explicit 
combinations of oligos, which include complementary overhangs to allow for assembly into full length dsDNA 
fragments, were pooled using a Hamilton liquid handler. Each oligo pool was then assembled into full length 
dsDNA fragments and amplified using PCR. As the oligos contain errors in sequence, an enzymatic error cor-
rection step was included during synthesis of the explicit dsDNA fragments. After synthesis, each fragment 
was cloned into plasmid backbone using NEB’s 2X HiFi Gibson Assembly master mix. DNA products from the 
Gibson assembly reactions were individually transformed into NEB 10β for isolation of clones and sequence 
confirmation using Sanger sequencing.

Growth assays in E. coli auxotroph.  Purified plasmids carrying WT hOTC, VAE and consensus hOTC 
variants were transformed into the ∆argF∆argI double knockout E. coli strain. Single colonies were inoculated 
into 2-ml 96-deep well plates containing 1 ml LB media containing 100 µg/ml carbenicillin and 50 µg/ml kana-
mycin, and incubated for 16 h at 37 °C with shaking at 300 rpm. After cultures were grown to saturation, 1 µl of 
each culture/well was transferred into 2-ml 96-deep well plates containing 0.5 ml M9 minimal media with 20 g/l 
glucose, 40 µM arginine, 100 µg/ml carbenicillin and 50 µg/ml kanamycin, and incubated for 24 h at 37 °C with 
shaking at 300 rpm. Following growth of these seed cultures to saturation, they were used to inoculate Biolec-
tor Pro 48-well culture plates containing 0.8 ml M9 minimal media with 20 g/l glucose, 100 µg/ml carbenicillin 
and 50 µg/ml kanamycin to an initial OD600 of 0.05. Initial growth curves (Figure S3) showed that cultures hit 
logarithmic phase after 6–8 h of growth at 37 °C, 1500 rpm. Subsequently, single-time point measurements of 
each culture were recorded using a microplate spectrophotometer. Strains with plasmid-borne Human wild-type 
OTC (hOTC) and E. coli ArgF were analyzed simultaneously as controls.

Recombinant expression and purification of OTC variants.  Variant VAE and consensus OTCs were 
over-expressed as N-terminal hexahistidine (His6)-tagged proteins under the control of a rhamnose promoter. 
Protein expression steps were performed in 2-mL deep 96-well plates. Briefly, plasmids encoding the variants 
were transformed into BL21 chemically competent cells. Cells were diluted into fresh LB medium + ampicillin 
(100 μg/mL) and grown overnight at 37 °C with shaking. Starter cultures were used to inoculate (1:100 dilution) 
fresh TB medium containing ampicillin and grown at 37 °C until an OD600 of ~ 0.8 was reached, at which point 
L-rhamnose (0.05% w/v final) was added to induce protein expression. Growth was continued for an additional 
4 h, and cells were harvested by centrifugation (3000×g, 10 min). Cell pellets were lysed in B-PER Complete 
and His6-tagged OTC proteins were purified using 96-well Ni–NTA agarose-containing spin plates following 
the manufacturer’s protocol. Final protein concentrations were determined using A280 and confirmed by SDS-
PAGE analysis (Figure S4).
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Enzyme activity assays.  Recombinant OTC variants were measured for their ability to catalyze citrulline 
formation from ornithine and carbamoyl phosphate using the method of Ceriotti57. Assays were performed in 
96-well plates in a total volume of 100 μL; reaction mixtures contained 5 nM OTC enzyme, 1 mM carbamoyl 
phosphate and 1 mM ornithine in 270 mM triethanolamine HCl, pH 7.7. Samples were incubated at 37 °C for 
5–15 min and quenched with 100 μL of a color reagent (two parts antipyrine/H2SO4 and one part 6% diacety-
loxime in 5% acetic acid). Samples were incubated in the dark (16 h at room temperature), exposed under a fluo-
rescent light equipped with a 22 W single-bulb lamp (20 min at 45 °C), and measured for absorbance at 490 nm 
using a BioTek Cytation 3 multi-mode reader. Citrulline dilutions of known concentrations were simultaneously 
treated with the color reagent and processed as described above. This standard curve was used to calculate spe-
cific activity of the OTC variants (μmol citrulline/min/mg protein).

Differential scanning fluorimetry (DSF) assays.  Protein stability as a function of temperature was 
measured via observation of the interaction of the hydrophobic SYPRO Orange dye with unfolded protein58. 
OTC variants (~ 0.25 mg/mL), SYPRO Orange (10X final concentration) and 100 mM triethanolamine HCl 
(pH 7.7) were combined in a volume of 25 μL in 384-well PCR plates. DSF assays were performed on a Bio-Rad 
CFX384 Touch Real-Time PCR Detection System. Temperature was increased from 25 °C to 90 °C in 0.5 °C 
increments. Samples were incubated for 5 s at each temperature prior to fluorescence measurement. Tm values 
were obtained from the top of the peaks in derivative plots (i.e., d(fluorescence)/dT vs temperature).

Variant mRNA synthesis.  OTC mRNAs were codon-optimized and synthesized as previously described59; 
mRNA synthesis utilizes in vitro transcription of linearized DNA templates by T7 RNA polymerase. The tran-
scription reaction replaces all uridines with N1-methylpseudouridine and installs the 5ʹ and 3ʹ untranslated 
regions and the poly-A tail. OTC mRNAs were purified following 5ʹ cap addition.

Activity of OTC variants in HepG2 cells.  OTC mRNAs (0.25 μg) were transiently transfected into HepG2 
cells (ATCC, HB-8065) seeded in 6-well plates using a 3:1 μL/μg ratio of lipofectamine 2000:mRNA. Cells were 
lysed after one day in 10 mM HEPES (pH 7.4) containing 0.5% Triton X-100, 2 mM dithiothreitol and 1X pro-
tease inhibitor cocktail. Total protein content in clarified lysates was determined using the bicinchoninic acid 
assay (Thermo Fisher). OTC protein expression was assessed by western blot analysis and activity was measured 
in 1–2 μg liver extracts using the colorimetric assay of Ceriotti57 as described above. Enzyme activity (expressed 
as nmol citrulline/min/mg total protein) was normalized to relative OTC expression as judged by densitometry 
analysis of the western blot. Statistical analysis of specific activity differences took multiple comparisons into 
account using Bonferroni’s correction.

Statistical analysis of assay results to identify top individual substitutions.  Linear regression 
analysis is a popular statistical tool for estimating contributions to a set of observations (i.e., sequence variants) 
of the dependent variables or responses (i.e., specific activity and Tm) by the independent variables or predictors 
or features (i.e., individual substitutions). A linear model is simply a weighted sum of p predictors x = {x1 . . . xp}

where β = {β1 . . . βp} are the weights or coefficients, y is the response, ε is the error, and ⊤ indicates a vector 
transpose operation.

Ordinary least squares regression attempts to solve the following objective function given the linear model 
of coefficients β̂ = {. . . β̂p} for n observations of the response y = {y1 . . . yn} and p-dimensional predictors 
X ∈ R

n×p:

Our observations include all 87 sampled VAE sequences and 85 of 90 consensus library sequences after some 
initial filtering to remove entries with null data ( n = 182 ). For each of the two response variables for specific 
activity and melting temperature (Tm), the triplicate measurements are averaged and standardized into z-scores:

where µy and σy and the mean and standard deviation of y , respectively.
The predictors are a set of binary categorical variables denoting presence (1) or absence (0) of a specific 

mutation (substitution or deletion). Because the VAE and consensus library variants were assayed separately, we 
also include an additional categorical predictor to indicate the assay group (i.e., VAE or consensus). The group 
predictor is 0 for any VAE observations and 1 for the consensus observations. The total number of predictors 
from the combined sampled VAE and consensus libraries is 48 (Fig. S6).

We apply multilinear regression with Ridge (L2-norm) regularization. Regularization is a useful technique 
that reduces overfitting by applying a constraint term to the minimization objective, e.g., a penalty on the mag-
nitude of the weights. We apply Ridge linear regression to both the standardized specific activity and melting 
temperature measurements.
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Structural analysis of substitutions.  Fixed-backbone changes in folding free energy due to mutation 
(∆∆Gs) were predicted using the Rosetta macromolecular modeling suite60,61. High-resolution crystal structures 
of hOTC with different substrates (PDB: 1OTH, 1EP9, 1FVO, 1C9Y) were prepared by removing water and ions 
and then minimizing with heavy-atom crystallographic constraints using the Rosetta constrained minimization 
protocol minimize_with_cst. These minimized models were assessed for quality by checking RMSD from the 
reference crystal structures and filtering those models without any steric clashes or other residue-level abnor-
malities highlighted by the Rosetta score function. Finally, all possible single substitutions in the prepared struc-
tures were scanned using the Rosetta ddg_monomer protocol. Results were tabulated and summarized using the 
Python Pandas package. Secondary structures were determined from the PDB secondary structure records and 
also by DSSP62. Relative solvent accessible surface area calculated using MDTraj63.
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