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Abstract

‘Omics analysis (transcriptomics, proteomics) quantifies changes in gene/protein expression, providing a snapshot of
changes in biochemical pathways over time. Although tools such as modelling that are needed to investigate the
relationships between genes/proteins already exist, they are rarely utilised. We consider the potential for using Structural
Equation Modelling to investigate protein-protein interactions in a proposed Rubisco protein degradation pathway using
previously published data from 2D electrophoresis and mass spectrometry proteome analysis. These informed the
development of a prior model that hypothesised a pathway of Rubisco Large Subunit and Small Subunit degradation,
producing both primary and secondary degradation products. While some of the putative pathways were confirmed by the
modelling approach, the model also demonstrated features that had not been originally hypothesised. We used Bayesian
analysis based on Markov Chain Monte Carlo simulation to generate output statistics suggesting that the model had
replicated the variation in the observed data due to protein-protein interactions. This study represents an early step in the
development of approaches that seek to enable the full utilisation of information regarding the dynamics of biochemical
pathways contained within proteomics data. As these approaches gain attention, they will guide the design and conduct of
experiments that enable ‘Omics modelling to become a common place practice within molecular biology.
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Introduction

Transcriptome and more recently proteome analysis are

capable of producing vast amounts of data that provide snapshots

of changes in gene expression through time in relation to

developmental or environmental variation [1–10]. This has been

fuelled by technological developments in the last decade that

enable large sample throughput and expression analysis of a

growing number of species. Whilst much of this work has been

developed in model species such as Arabidopsis [3,10,11], there is

increased interest in species of applied significance such as crops

[4,6,12,13]. However, extracting biological meaning from the

abundance of ‘Omics data can be limited by a shortfall in the

uptake of tools such as modelling [14,15]. One of the central goals

of ‘Omics is to understand the biochemical pathways and networks

that link environmental changes to phenotypic effects. The

standard presentation of an ‘Omics study is to compare differential

gene expression under contrasting environmental conditions, with

the assumption that the two are causally linked. Similarities in the

physiological function of differentially expressed genes/proteins

may then indicate the biochemical pathways involved. Progress

towards describing the biological process requires inference and

modelling to assess the significance of likely relationships. Several

studies that have initiated a movement towards integrating

modelling tools with ‘Omics data have tended to use single celled

organisms and well characterised systems as an exploration of

modelling capabilities [14,16–18]. An important challenge is to

test these modelling tools with ‘Omics datasets for previously

uncharacterised or descriptive whole organism systems, to enable

modelling to become standard practice of ‘Omics data analysis.

Proteomics methods (including 2-D electrophoresis (2DE) and

mass spectrometry (MS)) are particularly important for detecting

and identifying post-translational modifications (PTMs). PTMs

can have an important role in plant physiology, for example the

degradation of the multi-subunit protein Rubisco. Rubisco has a

crucial role in carbon fixation, but is relatively inefficient and limits

the rate of photosynthesis. Therefore, the structure and function of

Rubisco and its genes receives much attention to understand how

its efficiency in carbon fixation could be improved, which would

have a dramatic impact on crop production [19,20]. Rubisco is

also involved in a second important plant process – nitrogen

remobilisation [20,21]. Due to the inefficiency of Rubisco, plants

need to produce high levels of it in order to photosynthesise.

Consequently, a high level of plant nitrogen (up to 30%) is

contained within total plant Rubisco and is therefore an important

component of a plants’ N budget for growth and seed production

[22]. In cereal crops such as wheat, nitrogen does not permanently

remain in leaves. Nitrogen is used for the synthesis of proteins such

as Rubisco in young growing leaves. Wheat leaves start to

senescence shortly after leaf elongation, synchronised with the

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e87597



growth of new leaves higher up the plant. Proteins in the senescing

leaf are degraded, to enable the remobilisation and transportation

of nitrogen to the young leaf for the synthesis of new Rubisco.

Rubisco is thought to be degraded in two cellular compartments;

degradation can initially occur within the chloroplast by reactive

oxygen species (ROS) that make it more susceptible to peptide

hydrolases (e.g. metaloendopeptidases), which produces a Rubisco

fragment that has increased infinity to bind to the chloroplast

envelope to be transported out of the chloroplast [23]. Outside the

chloroplast, Rubisco fragments can be contained within specific

bodies (Rubisco containing bodies) within vacuoles or in the

cytoplasm [24] where the Rubisco fragments can be further

degraded by vacuolar cysteine endopeptidases [25]. Rubisco

nitrogen is eventually transported from the senescing tissue in

the form of peptides or amino acids via the phloem to young

growing leaves or seeds. Despite the appearance of well-regulated

pathways of protein degradation for N remobilisation, it is not

100% efficient. In wheat, approximately 80–90% of plant N

uptake is eventually remobilised into the grain, depending on

wheat variety and crop management factors [26,27]. Nitrogen that

has not been transported out of the leaf prior to death remains in

the tissue and therefore cannot be used in any further growth or

grain production. Understanding the factors that affect the

efficiency of nitrogen remobilisation, particularly the dynamics of

the degradation process of nitrogen rich Rubisco, may aid

attempts to increase the efficiency of nitrogen remobilisation via

crop breeding and optimisation of production regime [23]. For

example, environmental factors such as N deficiency can increase

the efficiency of nitrogen remobilisation, however it is not clear

how plants regulate the efficiency of this process [27,28]. To

understand the dynamics of the protein degradation process there

is need for a statistical modelling approach that makes testable

predictions and tests hypotheses regarding the relationships

between the protein and its degradation products. This would

address important questions such as how many stages of

degradation does Rubisco go through and how the degradation

process is affected by the proteins’ environment (e.g. plant

nutritional status).

In this study we consider the potential for using Structural

Equation Modelling (SEM) to investigate protein-protein interac-

tions in a proposed Rubisco protein degradation pathway using

data from Tétard-Jones et al [27]. SEM investigates relationships

between different processes by partitioning them among variables

on the basis of a hypothetical pathway of interaction that are

identified a priori. Paths between variables are defined in equation

form, where response variables can be related to multiple predictor

variables and response variables in one prediction can form the

predictor in others. SEM uses the variance and covariance matrix

to test whether the variables in the path are interrelated. The

simplest and best explanation model for the available data is then

identified from goodness-of-fit criteria. Whilst SEM has been used

in the analysis of a wide range of areas from ecological through to

medical contexts [29–32], its use in ‘Omics analysis has been less

frequent [33] particularly in proteomics. A more frequently used

approach in ‘Omics use Bayesian methods [17,34]. Combining

Bayesian methods with SEM (Bayesian estimation of SEM)

enables the use of prior information, improving parameter and

latent variable estimates, statistics for model comparison and

provides more reliable results for datasets that are based on ‘small’

sample sizes as is typical of ‘Omics experiments [18,35].

We used the Rubisco degradation process as a test system to

trial a novel framework for modelling protein degradation

processes based on the available data from 2DE and MS proteome

analysis [36]. The combination of 2DE and MS produces data for

both protein expression and protein sequence, which adds a

physical reality to the statistical model output connecting

degradation products to the native/intact protein. This study

represents an early step in the development of approaches that

seek to enable the full utilisation of information regarding the

dynamics of biochemical pathways contained within proteomics

data.

Methods

Development of a Prior Model
We developed a prior model of the Rubisco degradation process

involving all intact Rubisco subunits and their degradation

products (Fig. 1). This model was based on several pieces of

information from a published study that had used 2D electropho-

resis (2DE) and mass spectrometry (MS) to detect changes in the

wheat leaf proteome at three time points [36]. Protein identifica-

tion and mass allowed us to separate intact Rubisco subunits from

its degradation products. Protein sequence information (from MS)

enabled the placement of degradation products in a conceptual

stepwise pathway. We assumed that if a degradation product

contained a portion of the whole protein sequence of a particular

Rubisco subunit (either Rubisco Large Subunit (RLS) or Small

Subunit (RSS)), this indicated a link between that intact subunit

and the primary degradation product. Similarly, if a degradation

product contained a smaller portion of the same protein sequence,

then this indicated a link between the primary and secondary

degradation product (i.e. a further degradation product of a

degradation product). In addition, we included links based on

information from another published study showing that produc-

tion of Rubisco Large Subunit (RLS) can be regulated by feedback

(self-regulation when in excess) and up-regulated by the presence

of Rubisco Small Subunit (RSS) [37].

Testing the Validity of the Prior Model
Structural Equation Modelling (SEM) was used to investigate

the relationships among the intact Rubisco subunits and their

degradation products in the prior model. The model was tested for

each degradation product and possible relationship with Rubisco

subunits, whilst non-significant pathways were removed. The

presence of latent variables, composed of proteins that had near

identical expression (multi-collinearity) was also tested. The level of

accuracy for the model to explain variation in the data due to

relationships between variables (correlations or covariances) is

termed ‘‘goodness of fit’’, for which several indexes are available.

In our analysis, Goodness of fit was assessed using i) the root mean

square error of approximation (RMSEA), which should be ,0.1

with a p-value .0.05 and a 90% confidence interval 0.05–0.10, ii)

Standardised Root Mean Square Residual, and iii) consideration

of the significance of the individual path coefficients. Whilst the fit

indexes were used to evaluate the accuracy of the model-data fit,

the physical reality of the protein mass and sequence data were

used to guide alterations to the model. The SEM models were

fitted using maximum likelihood (ML) estimation in R lavaan

package. Small sample size (,200, or ,10x the number of

connections between variables in the model) is a problem for

acquiring valid statistical inference from SEM. Therefore we were

only able to use SEM to indicate model structure. This is a useful

first step in modelling before adopting a Bayesian estimation of

SEM [18,35,38].

The best fit model from SEM was translated into a Bayesian

model in Jags in R (rjags package). Jags uses Markov Chain Monte

Carlo (MCMC) simulation to generate a posterior distribution of

the model parameters (variables) that is tested for convergence, i.e.

Modelling Pathways to Rubisco Degradation
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whether the model explains the distribution of the observed data

[39]. We used the Gelman-Rubin convergence diagnostic, which

measures the difference within several chains and the variance

between several chains of the MCMC simulation by the potential

scale reduction factors (psrf). Convergence is met when the output

from all chains is indistinguishable. The R code for both the SEM

and Jags models are provided in Supporting Information Text S1

and Text S2.

Results

Rubisco Degradation Model Validation using Structural
Equation Modelling (SEM) and Bayesian Estimation
We initiated model validation with the observed data using

SEM to investigate relationships between intact Rubisco subunits

and their degradation products. After several rounds of model

adjustment and model testing, we obtained a ‘good fit’ that

converged normally after 109 iterations; RMSEA (Root Mean

Square Error of Approximation) 0.082, 90% confidence interval:

0.000 0.164, p-value RMSEA 0.269, SRMR (Standardised Root

Mean Square Residual) 0.100. The removal of non-significant

pathways greatly improved the model fit, and the final model with

all of the non-significant variables removed is shown in figure 2,

with standardised coefficients for each of the modelled relation-

ships. Testing for multi-collinearity (correlation ,0.9) identified

two latent variables, which represented the two Rubisco Small

Subunits (RSS) and two of the secondary degradation products

(dplat). This SEM model was then translated into Jags (full R code

with parameters are provided in Supporting Information Text S1

and Text S2) following Song and Lee [18,35]. To test whether the

model explained the variance observed in the data we used the

Gelman-Rubin convergence diagnostic. If convergence is

achieved, then all chains in the Markov Chain Monte Carlo

(MCMC) simulation should be indistinguishable, i.e. converge.

This can be visualised with the development of the potential scale

reduction factors (psrf) over the chain iterations (figure 3). We

obtained a multivariate psrf of 1 indicating that complete

convergence was achieved for all of the model parameters and

that the model had explained the variance observed in the data.

Bayesian Estimation of a SEM Model for Rubisco
Degradation
The hypothesised relationship between Rubisco Large Subunit

(RLS) degradation products dp39 to dp7 and dp15 and dp17 was

confirmed, indicating that Rubisco is degraded in a stepwise

process (rather than all degradation products produced from the

intact RLS at the same time). By testing for multi-collinearity

(correlation .0.9) we identified a latent variable composed of

dp15 and dp17, as well as a second latent variable for the Rubisco

Small Subunits (RSS174 and RSS175). The main difference

between the prior and actual models was the relationship between

the intact Rubisco subunits (RLS2 and RSS) and the degradation

products. We had assumed (based on protein sequence data) that

degradation products would be most strongly related to proteins

that they were products of, i.e. RLS2– dp39/12/37 and RSS –

dp44. However, these pathways were not significant, and the

observed data indicated significant pathways between RLS2 and

dp44 (RSS degradation product) and RSS with RLS2 degradation

products. Although counter intuitive, this may be due to the time

points that these proteins were measured. If they were too far apart

in time, the data may have captured indirect protein – degradation

product relationships. For example in the original proposed

pathway of RSS-RLS2-dp39 we may have missed the direct links

with RLS2 leaving RSS-dp39 as a remnant of this pathway.

Discussion

‘Omics technology is capable of producing vast amounts of data

that provide snapshots of gene expression during a time series that

tracks changes in an organism’s phenotype associated with

variation in the environment [1–10]. ‘Omics aims to understand

the molecular pathways that form such connections; however this

has tended to be limited by the lack of uptake of tools such as

modelling [14,15]. Modelling approaches allow the investigation

of relationships between expressed genes, building pathways or

networks of biological importance. The degradation of Rubisco is

a process that is important in plants for the remobilisation of the

proteins high nitrogen content [20–23]. Despite this importance,

little is understood regarding its degradation pathway – for

example how many degradation products are produced, and over

how many levels (e.g. primary, secondary). To understand the

dynamics of protein degradation processes there is need for a

Figure 1. Hypothetical model of Rubisco Large Subunit (RLS2) and Small Subunit (RSS#) degradation generated by using prior
information. The coloured text boxes indicate identical protein sequences in the intact proteins and the degradation products (dp#). Please see
Tétard-Jones et al. 2013 [27] for detailed information of the protein sequences. Arrows connect proteins together that are assumed to have a direct
relationship (e.g. dp44 is a degradation product of RSS174 and/or RSS175).
doi:10.1371/journal.pone.0087597.g001
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statistical modelling approach that makes testable predictions and

challenges hypotheses regarding the relationships between the

protein and its degradation products. In this study, we applied a

combined SEM and Bayesian modelling approach to a previously

published dataset for Rubisco and some its degradation products

to investigate whether such approaches provided greater insight

into the dynamics of protein degradation. As well as providing

biologically interesting findings, this was also an opportunity to

consider the potential for using SEM to investigate protein-protein

interactions in a dataset generated by 2D electrophoresis (2DE)

and mass spectrometry (MS) proteomics technology.

This study highlighted one of the benefits of using 2DE and MS

generated data – that it provides protein mass and sequences,

which can add a physical reality to the statistical modelling output

Figure 2. Model of Rubisco degradation following Bayesian estimation of SEM to test the hypothetical model. The coloured text boxes
indicate identical protein sequences in the intact proteins and the degradation products (dp#). Please see Tétard-Jones et al. 2013 [27] for detailed
information of the protein sequences. Decimal figures indicate the standardised coefficients for the relationship indicated by the arrows.
doi:10.1371/journal.pone.0087597.g002

Figure 3. Gelman-Rubin plots. These plots show the development of the potential scale reduction factors (psrf) for modelled parameters over
20,000 iterations of 4 chains. Multivariate psrf = 1.
doi:10.1371/journal.pone.0087597.g003

Modelling Pathways to Rubisco Degradation
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for a protein degradation pathway. This prior information

provided the foundation for the hypothetical model, which

identified a pathway model constructed of intact protein subunits

and both primary and secondary degradation products. Our

modelling approach initially used SEM to test relationships

between proteins as proposed in the prior model. SEM operates

by testing whether the variables in a path are interrelated by

analysing their variances and covariances. This makes SEM an

ideal tool to test for variables that are latent due to multi-

collinearity (i.e. their expression is near identical across time or

environmental variation). We identified two latent variables due to

multi-collinearity, which was also physically confirmed by the

identical protein mass and near identical protein sequences for the

variables within each latent. The RSS latent variable indicates that

the expression of the two Rubisco Small Subunits is regulated by

the same mechanism. Similarly the two distinct secondary

degradation products of Rubisco Large Subunit (RLS) that

contributed to dplat appear to be co-expressed (in this case co-

produced by the degradation of dp39).

SEM can also have limitations for modelling ‘Omics data, due

to its reliance on datasets with a large number of samples (100–200

samples). Sample size is a problematic issue in SEM based studies.

The number of samples required to support the credibility of

research conclusions depends on model complexity. Model

complexity refers to how many links there are between parameters

compared to the number of parameters, and may include multiple

feedback links and also the number of latent variables. Generally

the greater the model complexity, the more observations are

needed. Therefore sample size requirement in SEM depends on

the dynamics of the model, which may be unknown until the data

has been collected and statistically analysed. Existing guidance for

setting sample size in SEM based studies recommends a minimum

of 100–200 samples [40], and several algorithms are available

online and in R to calculate the precise sample size required

depending on model complexity. In our study that consisted of 48

samples, we observed the problem of small sample size in the

RMSEA goodness of fit index. Our 90% confidence interval

(0.00–0.162) indicated that the model had close approximate fit to

the data, shown by the lower bound of the interval (,0.05).

However, the upper bound was above the 0.100 cut-off value,

which indicates poor fit. Thus the overall RMSEA was 0.082,

which indicates a mediocre fit (0.01= excellent fit, 0.1 = poor fit).

These RMSEA values show that the model contains sampling

error. This outcome is typical of datasets with small samples, and

displays one of the major limitations of SEM when used as the sole

modelling tool [40]. In summary, SEM indicated that we had a

model with good fit to the data, but our sample size was too small

for SEM to provide any valid statistical inference. In comparison,

Bayesian analysis incorporating MCMC simulation provides

accurate parameter estimates regarding how well the model

replicates the variation in data consisting of small sample sizes

[38]. This approach has been used in several studies using single

celled organisms and well characterised systems [14,16–18].

MCMC simulation avoids the problem of small sample size by

running the model several times, known as ‘chains’. The model

receives prior information (i.e. information from our prior model)

and then fits this model to the data, in our case for 4 chains.

Goodness-of-fit is diagnosed using convergence diagnostics (for

example the Gelman-Rubin used here), which indicate when the

output of all the chains has converged – the output of each chain is

indistinguishable from the others.

Our approach to modelling a Rubisco degradation pathways

using data from 2DE and MS proteomics analysis [36] identified

features not previously reported. This included the RSS degrada-

tion product (dp44), and secondary RLS degradation products

(dplat and dp7) whose link to the primary RLS degradation

product (dp39) was confirmed by the model. However, our

modelling approach could be criticised on the basis that the data

had not originally been intended for a modelling analysis and

therefore lacked two ideal attributes. The first attribute is the

inclusion of an appropriate time series. To make the model

dynamic (i.e. accurately model protein-protein interactions over

time) the number of steps in the time series and the interval

between steps needs to capture changes in the expression of each

protein in fine detail. In this study, we attempted to make the

model dynamic (i.e. by creating a different node for each protein at

each of our 3 time steps); however we were unable to obtain a

good fit. It is likely that this failed because the intervals between

time-steps were too far apart, since they had been chosen based on

agronomic rationale rather than a proteomic modelling rationale.

Recent studies modelling gene expression data using Dynamic

Bayesian Networks (DBN) demonstrate models based on well

characterised pathways using a time series consisting of around 5–

10 time steps separated at intervals spanning minutes, hours or up

to days rather than weeks apart [16,21,34]. The second attribute

that we considered may have limited the model in this study is the

possibility that there are proteins involved in the Rubisco

degradation pathway that we did not have the data to include in

the model. This is likely to include other Rubisco subunits;

Rubisco is known to be composed of 8 large subunits and 8 small

subunits, whereas we had data for 1 large and 2 small Rubisco

subunits. In addition, there may be other degradation products,

and also the proteins that degrade Rubisco, which were not

available in our data. The lack of data for these proteins is due to

the nature of the proteomics analysis that this data originated

from. In 2DE proteomics analysis, all soluble proteins are purified,

separated and the expression of each protein spot on the 2DE gel

is quantified. Only the proteins that are of interest (based on fold

changes in expression through time or other experimental

parameters) are extracted from the gel and identified by MS

(mass spectrometry). Therefore, the proteins included in this study

are only those whose expression did significantly alter over the

parameters of the original experiment. Studies that design

experiments to capture changes in all variables of a pathway or

network require prior identification of those important variables,

which was not available to inform the study that supplied our data

[36]. For this reason, studies that have initiated a movement

towards integrating modelling tools with ‘Omics data have tended

to use less complex single celled organisms and well characterised

systems to explore ‘Omics modelling capabilities [14,16–18].

However, progress towards systems of an applied interest, for

example that has agronomic importance, such as wheat is

necessary. In conclusion, the model investigated in this study

could be described as a simplified model that has captured a

Rubisco degradation pathway that may be part of a larger Rubisco

degradation network in an agronomically important crop species,

wheat. Fully expanded, this could be developed to model a whole

plant Rubisco production and degradation network, incorporating

remobilisation of nitrogen degraded from senescing leaves,

transported to developing leaves (and finally grain) to be re-used

in the production of new Rubisco. In addition, the model could be

developed to incorporate additional factors involved in degrada-

tion-remobilisation at the protein or transcript level (e.g. Rubisco

transcripts, metalloendopeptidases, vacuolar cysteine endopepti-

dases) to capture the dynamics of Rubisco synthesis as well as

synthesis of the enzymes that degrade Rubisco. A further

application of our proposed ‘Omics modelling approach could

be to clarify the extent that Rubisco is degraded in each cellular

Modelling Pathways to Rubisco Degradation
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compartment (chloroplasts and cytoplasm or vacuolar Rubisco

containing bodies) and identify the enzymes involved, for example

by combining 2D electrophoresis of cellular compartments with a

series of appropriate time points tracing the progress of leaf

senescence.

In conclusion, this study highlights the potential to integrate

‘Omics analysis with a modelling approach to investigate the

relationships between genes or protein within the study system.

Without this integration of techniques ‘Omics can make hypoth-

eses concerning molecular pathways supported by snapshots of

gene/protein expression, but it is not able to validate whether

expression of one gene/protein does in fact affect the expression of

other genes/proteins in the same or other pathways. As this area

gains momentum the need for such an approach will guide the

design and conduct of experiments that enable ‘Omics modelling

to become a common place practice within molecular biology to

better understand the dynamics of biochemical pathways.
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