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Abstract: Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines 

that drive the production of inflammatory mediators and matrix-degrading enzymes in 

osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface 

receptors and activate inflammatory signaling pathways culminating with the activation of 

nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of  

stress-related stimuli including, excessive mechanical stress and ECM degradation 

products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, 

adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. 

Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream 

signaling pathways are therapeutic targets in OA. This paper critically reviews the recent 

literature and outlines the potential prophylactic properties of plant-derived phytochemicals 

such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to 

determine whether these phytochemicals can be used as functional foods. 
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1. Introduction 

For the past 160 years human life expectancy has consistently increased by a quarter of a year every 

year [1]. The ―baby boom‖ generation born after World War II have now reached their mid- to late 60s. 

In many European countries one out of every five people is aged 65 and over. According to the 

Organization for Economic Co-operation and Development (OECD) [2], increases in life expectancy 

seen over the last few decades are likely to continue in the future. It is predicted that life expectancy 

will continue to increase by 2.5 years each decade, meaning that the western world’s average life 

expectancy should reach and exceed 100 within the next 50 years [1]. The increasing human life 

expectancy has resulted in an increase in the prevalence of several diseases. The main four chronic 

diseases that the ageing population will suffer from are: arthritis, heart problems, dementia, and 

diabetes. The growing burden of arthritic, rheumatic and musculoskeletal diseases will place an even 

greater socioeconomic burden on health systems around the world as the population ages. 

According to the World Health Organization (WHO) [3], orthopedic, rheumatic and musculoskeletal 

conditions comprise over 150 diseases and syndromes, which are usually progressive and associated 

with pain and disability. They can broadly be categorized as joint diseases, physical disability, spinal 

disorders, and conditions resulting from trauma. These conditions are leading causes of morbidity, 

giving rise to enormous healthcare expenditures and loss of productivity. Knowledge of the key 

determinants of disability in musculoskeletal conditions is critical for reducing their burden on the 

world’s growing population [1,4]. 

The United Nations, the WHO and 37 other countries have proclaimed the years 2000–2010 as the 

Bone and Joint Decade [3,5–7]. This global initiative is intended to improve the lives of people with 

musculoskeletal disorders, such as arthritis, and to advance understanding and treatment of 

musculoskeletal disorders through prevention, education and research. The 10 year global initiative 

launched by the UN urges governments around the world to start taking action to draw attention to the 

growing pervasiveness and impact of musculoskeletal diseases and to reduce the social and financial 

burdens to society. Support for this global initiative will raise awareness of musculoskeletal health, 

stimulate research and improve people’s quality of life. 

Musculoskeletal diseases are one of the major causes of disability around the world and have been a 

significant reason for the development of the Bone and Joint Decade [5–8]. Rheumatoid arthritis (RA), 

osteoarthritis (OA), gout and lower back pain are important causes of disability-adjusted-life years in 

both the developed and developing world [9]. 

OA is one of the most common types of arthritis [10–13]. It is a major cause of pain and disability 

in older individuals and is expected to place a heavy burden on healthcare systems around the world as 

the human population ages [14]. The incidence of OA is also expected to increase with the rise in 

obesity and metabolic diseases associated with being overweight [14–17]. It also affects older animals 

and has significant consequences for companion animal mobility and welfare [18]. OA is a 
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degenerative disease of the whole joint [13] and involves synovial inflammation and the progressive 

and irreversible destruction of the extracellular matrix (ECM) of articular cartilage [10,19,20]. It is also 

characterized by subchondral bone sclerosis, synovial hyperplasia and osteophyte (bony outgrowth) 

formation [21]. OA can occur in any synovial joint but symptomatic OA in humans is most common in 

the knee [16]. Digits of the hand and the hip are also frequently affected. In general weight-bearing 

joints are the worst affected. The main risk factors for OA include age, gender, genetics, obesity, and 

joint injury or instability [17]. Cartilage damage in OA is detected radiographically by decreases in 

joint space width. However, radiographic evidence is seen only after significant cartilage degradation 

has already taken place. 

The major consequence of all forms of arthritis is joint dysfunction, disability, chronic pain, and 

significant morbidity. Aside from analgesics, there are currently no effective pharmacotherapies 

capable of restoring the structure and function of damaged synovial tissues in any form of arthritis. 

Consequently, there is an acute need for novel drugs and new therapies. In the following section we 

provide a brief overview of cartilage structure and function before discussing the molecular and 

cellular events that occur in a typical synovial joint in OA. 

2. Articular Cartilage-Structure and Function 

Cartilage is a flexible and mechanically compliant connective tissue found at the end of long bones 

in articulating joints and in the intervertebral disc. It is sub-classified into three different types: elastic 

cartilage, hyaline cartilage and fibrocartilage, which differ in the relative amounts of its three principal 

components, namely collagen fibers, ground substance (proteoglycans) and elastin fibers. Articular or 

hyaline cartilage is a load-bearing tissue with unique biological characteristics (Figure 1).  

Figure 1. Structure of human articular cartilage. This figure illustrates a sample of human 

cartilage from a tissue microarray developed by the Cooperative Human Tissue Network 

(CHTN) [22] of the National Cancer Institute [23]. Cartilage is predominantly an avascular, 

aneural and alymphatic load-bearing connective tissue consisting of a single cell type 

known as the chondrocyte. Blood vessels are only present in subchondral bone. 
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Its biochemical properties depend on the structural design of the tissue, the molecular composition 

of the ECM (Figure 2) that makes up the bulk of the tissue volume and the interactions between its 

resident cells and the ECM [24]. 

Figure 2. Molecular composition of the ECM of articular cartilage. The major collagenous 

and non-collagenous components of the territorial and interterritorial cartilage ECM are 

illustrated. 

 

Chondrocytes are the only cells found within the cartilage ECM. Cartilage is avascular, alymphatic 

and aneural. Nutrition is derived from synovial fluid (and for the deep zone by subchondral bone 

vessels). Chondrocytes are architects of cartilage [25], building the macromolecular framework of its 

ECM from three distinct classes of macromolecules: collagens (predominantly type II collagens), 

proteoglycans (mainly aggrecan), and a variety of non-collagenous proteins (Figure 2). Of the 

collagens present in articular cartilage collagens type II, IX, and XI form a fibrillar meshwork that 

gives cartilage tensile stiffness and strength [24,26,27], whereas collagen type VI forms part of the 

matrix immediately surrounding the chondrocytes, enabling them to attach to the macromolecular 

framework of the ECM and acting as a transducer of biomechanical and biochemical signals in the 

articular cartilage [28,29]. Large aggregating proteoglycans (aggrecan) are embedded in the collagen 

mesh and give cartilage its stiffness to compression, its resilience and contribute to its long-term 

durability [29–32]. 
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ECM proteins in cartilage are of great significance for the regulation of the cell behavior, 

proliferation, differentiation and morphogenesis [33–41]. Small proteoglycans, including decorin, 

biglycan, and fibromodulin are further embedded in the ECM. Decorin and fibromodulin both interact 

with the type II collagen fibrils in the matrix and have roles in fibrillogenesis and interfibril 

interactions. Biglycan is mainly found in the immediate surrounding of the chondrocytes, where it may 

interact with collagen type VI [24,29]. Modulation of the ECM proteins is regulated by the interaction 

of a diversity of growth factors with chondrocytes [42–46]. In fact, it has been reported recently, that 

IGF-I and TGF-β stimulate the chondrocyte surface expression of integrins, and that this event is 

accompanied by increasing adhesion of chondrocytes to matrix proteins [47]. Other non-collagenous 

proteins in articular cartilage such as cartilage oligomeric matrix protein (COMP) are less well studied 

and may have value as a biomarker of cartilage turnover and degeneration of [48], while tenascin and 

fibronectin influence interactions between the chondrocytes and the ECM [24,49]. The ECM surrounds 

chondrocytes; it protects them from the biomechanical stresses that occur during normal joint motion, 

determines the types and concentrations of molecules that reach the cells and helps to maintain the 

chondrocyte phenotype. 

Throughout life, cartilage is continually remodeled as chondrocytes replace matrix macromolecules 

lost through degradation. Evidence indicates that ECM turnover depends on the ability of chondrocytes 

to detect alterations in the macromolecular composition and organization of the matrix, such as the 

presence of degraded macromolecules, and to respond by synthesizing appropriate types and amounts 

of new ECM components. It is known that mechanical loading of cartilage creates mechanical, 

electrical, and physicochemical signals that help to direct the synthesizing and degrading activity of 

chondrocytes [50]. In addition, the ECM acts as a signal transducer for chondrocytes [51]. A prolonged 

and severe decrease in the use of the joint leads to alterations in the composition of the ECM and 

eventually to a loss of tissue structure and its specific biomechanical properties, whereas normal 

physical strain stimulates the synthesizing activity of chondrocytes and possibly internal tissue 

remodeling [52,53]. 

Although articular cartilage can tolerate a tremendous amount of intensive and repetitive physical 

stress, it manifests a striking inability to heal even the most minor injury [52,54–56]. This makes joints 

particularly sensitive to degenerative processes [57]. Furthermore, aging leads to alterations in ECM 

composition and alters the activity of chondrocytes, including their ability to respond to a variety of 

stimuli such as growth factors [58–60]. All these alterations increase the probability of cartilage 

degeneration [55,61–63] and emphasize the importance of interaction of chondrocytes with their 

surrounding ECM since this interaction regulates their growth, differentiation, and survival [64]. 

3. Articular Cartilage Degradation in OA 

OA (also known as osteoarthrosis or degenerative joint disease) is one of the most prevalent and 

chronic diseases affecting the elderly [65]. The symptoms and signs characteristic of OA in the most 

frequently affected joints are heat, swelling, pain, stiffness and limited mobility. OA is often a 

progressive and disabling disease, which occurs in the setting of a variety of risk factors, such as 

advancing age, obesity, and trauma, that conspire to incite a cascade of pathophysiological events 

within joint tissues [66]. Other sequelae include osteophyte formation and synovitis [13]. These 
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manifestations are highly variable, depending on joint location and disease severity. Other forms of 

arthritis include psoriatic arthritis, and autoimmune diseases in which the body’s immune system 

attacks itself such as RA. Discussing these diseases in detail is beyond the scope of this review. Figure 

3 outlines the major molecular and cellular changes that occur in the synovial joint in OA. 

Figure 3. Summary of the major molecular and cellular changes that occur in the synovial 

joint during inflammation in OA. Summary of the major synovial, chondral and 

subchondral changes observed in OA. This schematic also highlights the actions of various 

white blood cells and inflammatory mediators in OA. Chondral changes include cartilage 

fragmentation (fibrillation), cartilage degradation and loss of collagen type II and 

glycosaminoglycans, chondrocyte apoptosis (hypocellularity) and matrix mineralization. 

Synovial membrane changes in OA include inflammation, synovial hypertrophy, 

recruitment and activation of T cells, macrophages and fibroblasts, production of matrix 

metalloproteinases (MMPs) and reactive oxygen species (ROS). Synovial fluid alterations 

in OA include accumulation of MMPs and ROS, release of IL-1β, TNF-α and other 

proinflammatory cytokines (IL-6, IL-8), release of inflammatory pain mediators such as 

prostaglandin E2 (PGE2), formation of degradative products and microcrystals. 

Subchondral alterations in OA include subchondral sclerosis (i.e., eburnation), osteoblast 

mediated subchondral bone formation, proteolysis (degradation) of IGF-I and IGF-I 

binding proteins, increased production of some growth factors and cytokines including: 

transforming growth factor β, TGF-β, PGE2; interleukin 6, IL-6 and IGF-I. 

 

OA can affect any synovial joint but it primarily affects large load-bearing joints such as the hip and 

knee. The disease is essentially one acquired from daily wear and tear of the joint. Its most prominent 
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feature is the progressive destruction of articular cartilage [11]. OA begins in articular cartilage and 

eventually spreads to other synovial tissues. The current consensus is that OA is a disease involving 

not only articular cartilage but also the synovial membrane, subchondral bone and peri-articular soft 

tissues [67]. OA may occur following traumatic injury to the joint, subsequent to an infection of the 

joint or simply as a result of aging and the mechanical stresses associated with daily life. 

It is now generally accepted that OA must be viewed not only as the final common pathway for 

aging and injuries of the joint, but also as an active and inflammatory joint disease. As medical 

advances lengthen average life expectancy, OA will become an even larger public health  

problem—not only because it is a manifestation of aging but because it usually takes many years to 

reach clinical relevance. OA is already one of the ten most disabling diseases in industrialized 

countries. It is one of the most prevalent and chronic diseases affecting the elderly [65]. OA is rare in 

people under 40 but becomes more common with age—most people over 65 years of age show some 

radiographic evidence of OA in at least one or more joints. OA is the most frequent cause of physical 

disability among older adults globally. According to the National Institute of Arthritis and 

Musculoskeletal and Skin Diseases (NIAMS) more than 20 million Americans are estimated to  

have OA [68]. It is also anticipated that by the year 2030, 20% of adults will have developed OA in 

Western Europe and North America. Statistical data from epidemiological studies in North America 

and Australia suggest that arthritis is the number one condition associated with functional limitation 

and physical disability among US population aged 65 and older and affects 30% of the population [69]. 

The data from the 2003 Survey of Disability, Ageing and Carers in Australia [70] suggests that the 

percentage of older people with OA is even higher—around 50% profoundly and severely effecting 

their core activity and limiting their mobility. The reported prevalence of arthritis and its associated 

risk factors (i.e., obesity and metabolic disease) has also increased among people aged 65 and over in 

nearly all European member states. 

The symptoms and signs characteristic of OA in the most frequently affected joints are heat, 

swelling, pain, stiffness and limited mobility. OA is often a progressive and disabling disease, which 

occurs in the setting of a variety of risk factors, such as advancing age, obesity, and trauma, that 

conspire to incite a cascade of pathophysiological events within joint tissues [66]. Other important 

sequelae include osteophyte formation, inflammation of the synovial membrane (synovitis) and joint 

swelling [13]. These manifestations are highly variable, depending on joint location and disease 

severity. Other forms of arthritis include psoriatic arthritis, and autoimmune diseases in which the 

body’s immune system attacks itself such as RA. The synovitis that occurs in both the early and late 

phases of OA is associated with alterations in the adjacent cartilage. Catabolic and proinflammatory 

mediators such as cytokines, nitric oxide, prostaglandin E2 (PGE2) and neuropeptides are produced by 

the inflamed synovium and alter the balance of cartilage matrix degradation and repair, leading to 

excess production of the proteolytic enzymes responsible for cartilage breakdown [71]. Cartilage 

alterations induce further synovial inflammation, creating a vicious circle and the progressing synovitis 

exacerbates clinical symptoms and stimulates further joint degradation in OA [71]. Figure 3 outlines 

the major molecular and cellular changes that occur in the synovial joint in arthritis and synovitis. 

OA, is an important cause of disability-adjusted-life years in both the developed and developing 

world [9]. Until recently OA was viewed as a ―degenerative‖ or ―wear-and-tear‖ disease and held little 

interest for most clinicians. It is now accepted that the age-related degeneration of articular cartilage as 
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part of the clinical syndrome of OA is one of the most common causes of pain and disability in middle-

aged and older people [9]. OA is the most common form of joint disease, with the majority of the 

population over 65 years of age demonstrating radiographic evidence of OA in at least one joint.  

4. Cytokines and OA 

Cytokines are signaling molecules and major mediators of inflammatory responses. They are small 

proteins and signaling molecules produced by a variety of different cell types. They control many 

different cellular functions including proliferation, differentiation and cell survival/apoptosis. They 

play essential an indispensable roles in cell signaling and communication and possess potent 

immunomodulatory properties. They are also involved in a plethora of pathophysiological processes 

including viral infections, autoimmune diseases, arthritis and cancer. Cytokines are synthesized under 

various stimuli by a variety of cells of both the innate (monocytes, macrophages, dendritic cells) and 

adaptive (T- and B-cells) immune systems. They have been classed as lymphokines, interleukins, and 

chemokines, based on their functions. The term ―interleukin‖ was initially used by researchers for 

those cytokines whose presumed targets are principally leukocytes. The term ―chemokine‖ refers to a 

specific class of cytokines that mediates chemo-attraction (chemotaxis) between cells. In many 

publications cytokines are listed along with hematopoietic growth factors, interferons, lymphokines, 

monokines, chemokines, and other cytokines [72]. Cytokines can be classified into two groups: 

proinflammatory and anti-inflammatory. Proinflammatory cytokines, including IFN-γ, IL-1β, IL-6 and 

TNF-α, are predominantly derived from the innate immune cells and Th1 cells. Anti-inflammatory 

cytokines, including IL-10, IL-4, IL-13 and IL-5, are synthesized from Th2 immune cells. The role of 

proinflammatory cytokines in RA is very well established [73]. Anti-cytokine therapy for RA has 

become a clinical treatment for aggressive forms of the disease [74]. However, proinflammatory 

cytokines also contribute to the pathogenesis of OA. The disease is strongly linked to aging; cell stress, 

injury or damage in response to chronic inflammation and exposure to cytokines, chemokines, and 

proteases is thought to drive its progression [75]. 

5. The Role of Cytokines in Arthritis 

It is now generally accepted that proinflammatory cytokines are pleiotropic contributors to synovial 

joint pathology in OA and RA. In the following sections we discuss the principal cytokines involved in 

the pathogenesis of OA and its progression. Many studies have demonstrated the involvement of 

cytokines in the pathogenesis of OA (Figure 3). They are involved with synovial membrane, cartilage 

and bone changes in the disease process. It is now thought that much of the cytokine expression is 

initially by the synovium, predominantly from the synovial macrophages, which drive the 

inflammatory and destructive responses in OA [76]. These cytokines are thought to diffuse through the 

synovial fluid into the cartilage where they stimulate the chondrocytes and synoviocytes to synthesize 

further cytokines as well as degradative proteases. The intimal cells of the synovium are most 

significant in the production of cytokines that cause inflammation [77]. The main proinflammatory 

cytokines thought to be involved in the pathogenesis of OA are Tumor Necrosis Factor α (TNF-α) and 

Interleukin-1 β (IL-1β) which act on synoviocytes and chondrocytes through specific interactions with 

cytokine receptors on the cell surface. The receptors thought to be involved in OA are the  
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IL-1β receptor, IL-1R type I, and the TNF-α receptor, TNF-R55, due to their elevated expression in 

OA human synovial fibroblasts [78,79]. 

There are also other proinflammatory cytokines produced by the synovium and involved in the OA 

disease process to a lesser extent. The effects of the proinflammatory cytokines on cartilage are shown 

in Table 1. 

Table 1. Proinflammatory cytokines involved in OA. 

Cytokine Expression  Functions References 

TNF-α Synoviocytes 

Chondrocytes 

Increase cartilage degradation and bone 

resorption 

 [80,81] 

Inhibit glycoprotein and collagen synthesis.  [82] 

Upregulate MMP expression  [83] 

Stimulate other cells to produce 

proinflammatory cytokines and growth 

factors 

 [84] 

Stimulate proangiogenic factor release  [85] 

Stimulate other cells to produce chemotactic 

cytokines 

 [86,87] 

Stimulate Nitric Oxide (NO) production  [88] 

Induce chondrocyte apoptosis  [89] 

IL-1β Synoviocytes 

Chondrocytes 

Macrophages 

Increase cartilage degradation and bone 

resorption 

 [80,81,90] 

Inhibit proteoglycan synthesis  [91,92] 

Upregulate MMP expression  [93] 

Production of proteolytic enzymes   [94] 

Stimulate other cells to produce 

proinflammatory cytokines 

 [77] 

Stimulate other cells to produce chemotactic 

cytokines 

 [86,87] 

Stimulate proangiogenic factor release  [85] 

Stimulate NO production  [95] 

Induce chondrocyte apoptosis  [89] 

IL-6 

 

Synoviocytes 

Chondrocytes  

osteoblasts 

 

Inhibit proteoglycan synthesis   [96] 

Reduce chondrocyte proliferation  [96] 

Increase MMP-2 activity  [97] 

Increase aggrecanase-mediated proteoglycan 

catabolism 

 [98] 
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Table 1. Cont. 

Cytokine Expression  Functions References 

IL-8 Monocytes 

Synoviocytes 

Chondrocytes 

Osteoblasts  

Recruits leucocytes  [99] 

Neutrophil chemoattractant  [100] 

Stimulates release of proinflammatory 

cytokines 

 [101] 

Hypertrophic differentiation and calcification 

of chondrocytes 

 [102] 

IL-17 Activated  

T-lymphocytes 

Induce NO synthesis  [103,104] 

Induce MMP synthesis  [103,104] 

Increase production of IL-1β, Il-6 and IL-8  [103,105] 

Stimulate release of proangiogenic factors  [106] 

IL-18 Macrophages 

Synovial fibroblasts 

 

Stimulate release of proinflammatory 

cytokines 

 [107,108] 

Stimulate angiogenesis  [109] 

Induce NO synthesis  [108] 

Synovial hyperplasia and inflammatory cell 

recruitment 

 [110] 

Induce chondrocyte apoptosis  [111] 

Reduce expression of cartilage matrix 

components 

 [111] 

Up-regulate fibronectin- a mediator of 

cartilage destruction 

 [111] 

Leukaemia 

Inhibitory 

Factor 

(LIF) 

Synovial fibroblasts 

Chondrocytes 

Stimulate proinflammatory cytokine 

expression 

 [112,113] 

Increase pro-MMP-2 synthesis  [97] 

Increase MMP-13 synthesis and activity  [114] 

Increase cartilage resorption  [115] 

Decrease proteoglycan synthesis  [116] 

Leukocyte infiltration into synovial fluid  [117] 

Increase cartilage degradation when in 

combination with IL-1β and TNF-α 

 [115] 

6. NF-κB Signaling in Arthritis 

The activation of NF-κB (nuclear factor-κB) transduction pathway has been linked with a variety of 

inflammatory diseases, including cancer, atherosclerosis, myocardial infarction, diabetes, allergy, 

asthma, arthritis, Crohn’s disease, multiple sclerosis, Alzheimer's disease, osteoporosis, psoriasis, 

septic shock, and AIDS [118,119]. As an activator of many pro-inflammatory cytokines and 

inflammatory processes NF-κB is a principal target to alleviate the symptoms of such inflammatory 

diseases [120]. NF-κB is a rapidly acting primary transcription factor found in all cell types. It is 

involved in cellular responses to proinflammatory stimuli such as cytokines and stress and plays a key 

role in regulating the immune response to infection. NF-κB can be triggered by a host of stress-related 

stimuli including proinflammatory cytokines, excessive mechanical stress and ECM degradation 

products [121]. In unstimulated cells NF-κB dimers are sequestered inactively in the cytoplasm by a 
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protein complex called inhibitor of κB (IκB). IκB inactivates NF-κB by masking the nuclear 

localization signals (NLS). Activation of NF-κB occurs via degradation of IκB, a process that is 

initiated by its phosphorylation by IκB kinase (IKK). Phosphorylated IκB becomes dissociated from 

NF-κB, unmasking the NLS. Phosphorylation also results in IκB ubiquitination and targeting to the 

proteasome. NF-κB can now enter the nucleus and regulate gene expression. NF-κB turns on 

expression of IκB forming a negative feedback loop. Targeted strategies to prevent unwanted or 

excessive NF-κB activation are the focus of current research. Work in this area is focused on the use of 

highly specific drug modalities, siRNAs or other biological inhibitors [121]. Further work is needed to 

evaluate the effects of efficacious, targeted NF-κB inhibitors in animal models of OA disease in vivo 

and to also target these strategies only to affected cartilage and joints to avoid other undesirable 

systemic effects [121]. 

Recent research has shown that the pathway that activates NF-κB can be interrupted or functionally 

modulated by naturally occurring phytochemicals derived from spices such as curcumin, capsaicin, 

eugenol, gingerol, anethol, ursolic acid, diallyl sulfide, S-allylmercaptocysteine, ajoene, and ellagic 

acid [118]. 

7. Curcumin and Resveratrol—Naturally Occurring NF-κB Inhibitors 

Current treatments for OA and gut are associated with unwanted side effects and are expensive. 

Natural products do not have such disadvantages, offer alternative treatment options for OA [122,123]. 

Traditional and complementary medicine is known to be fertile ground for the source of modern 

medicines [124]. In many different chronic diseases (including OA) in which inflammation is known 

to play a central role, plant derived phytochemicals (i.e., curcumin and resveratrol) have been shown to 

exhibit therapeutic potential. The main aim of OA therapy is to counteract the local chronic 

inflammation, associated inflammatory symptoms in the joints, delay joint degradation, reduce and 

minimize disability and provide a better quality of life for patients. It is recognized that current 

treatments for arthritis are inefficient, cause substantial side effects, and tend to be expensive 

(especially when the is cost of treatment is calculated and spread over the long time course of the 

disease). However, natural products do not have such disadvantages and offer novel and 

complementary treatment opportunities [122,123]. A number of natural substances have been 

investigated for their anti-inflammatory capabilities, including omega-3 fatty acids (FA) [125],  

curcumin [126], resveratrol [127], the polyphenolic green tea catechins [128,129], and various 

flavonoids [130,131]. Many of them have the ability to interfere with inflammatory processes and their 

mediators. Thus their use along with NSAIDs may reduce inflammation and damage to joint tissues 

and could be of prophylactic and therapeutic value. Therefore, naturally occurring compounds capable 

of blocking NF-κB mediated catabolic activity may prove to be promising therapeutic agents for the 

treatment of OA and other inflammatory conditions. This realization has resulted in the proliferation of 

new research aimed at understanding how nutrients and genes interact. This new field is known as 

nutrigenomics and this paper’s focus on curcumin and resveratrol and many other studies in the 

literature highlight how these compounds target transcription factors such as NF-κB, AP-1, Egr-1, 

STATs, PPAR-γ, β-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related 

cofactors [132]. 
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8. Curcumin 

Curcuma longa or turmeric is a tropical plant native to south and southeast tropical Asia. It is a 

member of the ginger family (Zingiberaceae) and is one of the most important of the Indian spices. 

Curcumin (diferuloyl methane) is the principal curcuminoid and the most active component in turmeric. 

It may make up 2–5% of the total spice in turmeric. Commercial curcumin contains three major 

components: diferuloylmethane (82%), demethoxycurcumin (15%) and bisdemethoxycurcumin (3%), 

together referred to as curcuminoids [133], all of which have anti-inflammatory activity. Turmeric has 

been used in Ayurvedic Medicine (traditional Indian medicine) for thousands of years to treat various 

common diseases including gastrointestinal diseases (i.e., stomach ulcers), jaundice, arthritis, wounds 

and skin and eye infections [134–136]. Preclinical and clinical studies have shown that curcumin has 

potential therapeutic value against most chronic diseases including neoplastic, neurological, 

cardiovascular, pulmonary, metabolic and arthritic diseases. Several recent studies have also shown 

that curcumin has potential for the complementary treatment of arthritis [137,138]. 

The first preliminary study on the anti-rheumatic activity of curcumin was published in 1980. 

Unfortunately, this study was fundamentally flawed because of the lack of appropriate controls [139]. 

Studies in a rat model of joint inflammation showed that oral administration of capsaicin and curcumin 

lowered the levels of paw inflammation [140]. In early 2000 work on synovial fibroblasts derived from 

RA patients showed that curcumin inhibits the macrophage migration inhibitory factor (MIF) induced 

up-regulation of matrix metalloproteinases MMP-1 (interstitial collagenase) and MMP-3  

(stromelysin) [141]. Curcumin strongly inhibits collagenase and stromelysin expression at micromolar 

concentrations [142]. Curcumin is actually a potent inhibitor of MIF [143]. Curcumin is a potent 

inhibitor of the production of inflammatory and catabolic mediators by chondrocytes, suggesting that 

this natural compound could be efficient in the treatment of OA [144]. Curcumin can induce apoptosis 

and inhibit prostaglandin E(2) (PGE2) production in synovial fibroblasts of patients with RA, 

suggesting that curcumin might be used to control hyperplasia of the synovial fibroblasts in RA [145].  

In chondrocytes curcumin was shown to suppress oncostatin M (OSM) stimulated STAT1 

phosphorylation, DNA-binding activity of STAT1, and c-Jun N-terminal kinase activation as well as 

inhibiting OSM-induced MMP-1, MMP-3, MMP-13, and TIMP-3 gene expression [146]. Curcumin 

was also shown to induce a 48–99% suppression of MMP-3 and 45–97% downregulation of  

MMP-13 in human chondrocytes and 8–100% (MMP-3) and 32–100% (MMP-13) in bovine 

chondrocytes [147]. Curcumin was also shown to suppress TNF-α-induced MMP-13 expression in 

primary chondrocytes and SW1353 chondrosarcoma cells [135]. 

Work from our laboratories has demonstrated some of the protective and anti-inflammatory effects 

of curcumin using biochemical and morphological techniques. To test the hypothesis that curcumin 

protects chondrocytes from morphological alterations induced by IL-1β, we investigated its in vitro 

effects on apoptotic signaling proteins and key cartilage-specific matrix components in  

IL-1β-stimulated chondrocytes. Transmission electron microscopy was employed to demonstrate that 

curcumin inhibits the early degenerative changes induced by IL-1β [148]. Additionally, curcumin 

antagonized the suppression of collagen type II and β1-integrin synthesis and caspase-3 activation 

induced by IL-1β was inhibited by curcumin [148]. This study clearly demonstrated that curcumin 

exerts anti-apoptotic and anti-catabolic effects on IL-1β-stimulated articular chondrocytes and may 
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have novel therapeutic potential for treating OA and related osteoarticular diseases [148]. We used an 

explant model of cartilage inflammation to demonstrate that IL-1β-induced ECM degradation and 

glycosaminoglycan release can be inhibited by curcumin [13]. 

Curcumin appears to exert its anti-inflammatory effects in a ―concentration-dependent‖ or  

―dose-dependent‖ manner. Studies on RA-derived synovial fibroblasts have shown that curcumin  

dose-dependently abrogates the effect of IL-18 on VEGF production [149]. Interestingly, a study on 

biological activities of turmeric extract has shown that the three major curcuminoids in turmeric are 

responsible for its anti-arthritic effects while the remaining compounds in crude turmeric extracts may 

actually inhibit its anti-inflammatory and protective effects [150]. Studies on other curcuma plants 

have shown that there is a possible curcuminoid-independent pathway mediated by  

curcuma phaeocaulis extract [151]. Further studies are required to corroborate these findings. 

Treatment of chondrocytes with curcumin suppresses IL-1β-induced NF-κB activation via 

inhibition of IκBα phosphorylation, IκBα degradation, p65 phosphorylation and p65 nuclear 

translocation [152]. Curcumin also inhibits the IL-1β-induced stimulation of up-stream protein kinase 

B Akt, molecular events that correlate with down-regulation of NF-κB targets including COX-2  

and MMP-9 [152]. 

Curcumin is also able to antagonize the IL-1β and TNF-α-dependent up-regulation of MMPs and 

COX-2. Curcumin has been shown to inhibit the inflammatory and apoptotic effects of IL-1β on 

chondrocytes and this correlates with down-regulation of NF-κB-specific gene products that are known 

to mediate inflammation, degradation and apoptosis of chondrocytes in OA. Additionally, both 

curcumin suppressed IL-1β-induced down regulation of the cartilage specific ECM component 

collagen type II and of the cartilage specific master transcription factor Sox-9. Furthermore, inhibition 

of NF-κB activation by curcumin occurs mainly through the IKK inhibition [135,138,141,152]. 

When considering the biological effects of curcumin in cartilage and synovial cells and joint tissues, 

the overriding question is whether curcumin is safe. The research conducted to date with curcumin 

suggests that it has a good safety record. However, this is not supported by clinical evidence and data 

from clinical trials. Another important and largely neglected issue is the bioavailability of curcumin 

and curcuminoids, which is poor generally. Enhancing the bioavailability of curcumin is an important 

and goal and is likely to bring this promising natural product to the forefront of therapeutic agents for 

treatment of human diseases [153]. Curcumin is also a powerful inhibitor of inflammatory pathways 

and mediators. The schematic shown in Figure 4 summarizes the available information in PubMed on 

the effects of curcumin on the TNF-α receptor and its downstream signaling pathway.  
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Figure 4. Schematic of the effects of curcumin on the TNF-α receptor and its downstream 

signaling pathway. The biochemical pathway illustrated here was generated by text mining 

and makes use of a collection of canonical Ariadne pathways in addition to MedScan  

text mining. 

 

Its anti-catabolic effects, namely reducing degradative enzyme expression and activity, and its 

positive influence on anabolic gene expression suggests that it may be a suitable adjunct to 

conventional pharmaceutical (i.e., NSAID) therapy. The available information suggests that curcumin 

could be an alternative to NSAIDs. In contrast to NSAIDs, curcumin has no gastrointestinal side 

effects, and can even protect the gastric mucosa. Therefore, curcumin could be beneficial in the 

management of chronic inflammatory-related joint disease, including OA. However, despite this 

optimistic view, it must be recognized that there is still a paucity of data regarding possible adverse 

effects of curcumin at concentrations that are biologically effective in vitro. Indeed, the absence of 

systemic adverse effects after oral administration of curcumin is probably the result of its poor 

bioavailability and chemical modification by the gut and liver. Whilst some evidence exists for toxicity, 

at super-physiological concentrations, these are unlikely to be experienced or achieved in vivo. 

Nevertheless, we cannot exclude the possibility that increasing curcumin absorption, by chemical or 

natural process, could have unsuspected deleterious effects. It is now documented that curcumin at 

concentrations in excess of 50 mM shows cytotoxicity in a chondrocyte cell line [154]. The relevance 

of this toxicity in in vitro models is highly questionable. Nevertheless, the long-term effects of 

curcumin have not been studied and there is no published information about the possible side effects of 

the metabolites of curcumin. Further work is therefore required to address the issues of bioavailability 

and tissue accumulation in order to calculate appropriate dose formulations to assess whether curcumin 
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can be convincingly considered as an aid to treating OA. Curcumin regulates inflammatory cytokines 

such as IL-1β, IL-6, IL-12, TNF-α and IFN-γ and associated JAK-STAT, AP-1, and NF-κB signaling 

pathways in immune and connective tissue cells [155]. 

9. Clinical Trials of Curcumin 

There are currently no registered clinical trials of curcumin in OA. ―Curcumin in Rheumatoid 

Arthritis‖ (ClinicalTrials.gov [156] Identifier: NCT00752154 [157]) is a clinical trial registered on the 

Clinical Trials database. The study is sponsored by University of California at Los Angeles. It is a 

randomized, placebo-controlled crossover study in which 40 subjects will receive a total of 4 g of 

curcumin per day (capsule form, precise composition not disclosed) and then switch to placebo.  

The subjects’ participation may last up to 8 months. By completion of the study, all 40 subjects will 

have taken curcumin and placebo for 4 months each. Subjects will have blood tests, complete 

questionnaires, and be seen by the study doctor. At the present time status of this study is unknown and 

it looks like the original completion deadline will not be met. However, when the study is completed it 

will be very interesting to see if curcumin has provided any benefits for RA patients. 

10. Bioavailability and Topical Delivery of Curcumin 

The major problem associated with the use of curcumin as a drug is its low bioavailability. A recent 

study has attempted to enhance the bioavailability of curcumin by complexation with phosphatidyl 

choline followed by pharmacokinetic studies in rats [158]. The complex was shown to have 

significantly increased absorption compared with curcumin, when given in equimolar doses. The 

complex also showed enhanced bioavailability, improved pharmacokinetics, and increased 

hepatoprotective activity as compared with curcumin [158]. The authors have proposed that the 

enhanced bioavailability of the complex may be due to its amphiphilic nature, which greatly enhance 

the water and lipid solubility of the curcumin. This study opens up new opportunities for enhancing the 

absorption and bioavailability, and pharmacokinetics of curcumin. Several companies have already 

started selling products combining curcumin with phosphatidyl choline for improved absorption. 

Another area of interest is enhancing the topical delivery of curcumin [159]. This approach is 

intended to increase the absorption of curcumin through skin. Combinations of cyclodextrins and 

alginates were used in a study by Hegge and colleagues to solubilize curcumin in aqueous  

vehicles intended for topical delivery [160]. The study concluded that a combination of  

hydroxypropyl-β-cyclodextrin and propylene glycol alginate enhances curcumin solubility and release 

from the vehicle [160]. These studies have demonstrated the importance of optimizing the solvent 

systems when utilizing cyclodextrins as drug carriers for topical treatments [159,160]. 

11. Synergistic Effects of Curcumin and NSAIDs 

There is increasing interest in using curcumin in conjunction with NSAIDs to reduce the dosage of 

NSAIDs. Banerjee et al., (2003) used an adjuvant model of rat inflammation to demonstrate that 

curcumin and ibuprofen modulate inflammatory biomarkers such as C-reactive protein when used in 

combination [161]. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic 
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effects of the NSAID celecoxib in OA-derived synovial adherent cells [162]. This was one of the first 

studies to show that synergistic effects of curcumin and celecoxib may enable the use of celecoxib at 

lower and safer concentrations [162]. Evaluation of the effects of celecoxib and curcumin in patients 

with OA is ongoing in human clinical trials [163]. Synergistic action of curcumin and conventional 

NSAIDs is an interesting concept and may pave the way for a novel combination treatment in OA and 

other rheumatologic disorders [162]. Ongoing clinical trials should provide a deeper understanding of 

the mechanisms and therapeutic potential of curcumin [164]. 

12. Resveratrol 

Resveratrol or trans-3,5,4'-trihydroxystibene is a polyphenolic, antifungal natural phytoalexin found 

in grapevines (Vitis vinifera) and a variety of other plants. It is found in the vines, roots, seeds and 

stalks, but its highest concentration is in grape skins. Resveratrol has been shown to possess potent 

anti-inflammatory, antioxidant and anticancer properties. It has been studied because of its  

anti-carcinogenic, anti-inflammatory and cardioprotective properties (coronary artery protection 

cumulating in the so called ―French Paradox‖) [165]. In addition resveratrol is thought to as suppresses 

angiogenesis and prevent diabetes mellitus. There are also suggestions that it may prolong  

lifespan [166–168]. Since resveratrol is a potent and specific inhibitor of cytokine-induced NF-κB 

activation, it may have potential for treating OA [137,138,143,169,170]. 

Studies in the rat suggest that resveratrol is absorbed in the duodenum. However,  

resveratrol-glucuronide was the major form absorbed when compared to the minute amounts of 

unconjugated resveratrol and resveratrol-sulfate [171]. Resveratrol is glucuronated in the liver  

and sulfated in both the liver and the duodenum [172]. The major derivatives of resveratrol 

glucuronidation are trans-resveratrol-3-O-glucuronide, trans-resveratrol-4'-O-glucuronide, and  

trans-resveratrol-3-O-sulfate [173]. Therefore, resveratrol exhibits numerous different mechanisms of 

action and targets are great number of intracellular molecules.  

13. Resveratrol and Transcription factor NF-κB 

As discussed earlier many inflammatory factors involved in arthritis, are regulated by the 

transcription factor Nuclear Factor-κB (NF-κB) [174]. NF-κB regulates many important signaling 

pathways in diseases with an inflammatory component [175–177]. Resveratrol blocks TNF-α-induced 

activation of NF-κB and suppresses TNF-α-induced phosphorylation and nuclear translocation of the 

p65 subunit of NF-κB and NF-κB-dependent reporter gene transcription [178]. 

Resveratrol is a potent inhibitor of the dioxygenase activity of lipoxygenases. Lipoxygenases are 

dioxygenases with peroxidase activity involved in the synthesis of mediators for inflammatory, 

atherosclerotic, and carcinogenic processes. Additionally resveratrol can inhibit lipoxygenases through 

being oxidized by their peroxidase activity. Resveratrol and its oxidized form can act as inhibitors of 

the dioxygenase activity of lipoxygenase [179]. 
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14. Resveratrol and OA 

The phenomena that inflammatory cytokines such as IL-1β and TNF-α stimulate matrix degrading 

enzymes such as matrix metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2), through 

activation of NF-κB, leading to cartilage matrix destruction, joint inflammation and play an important 

part in pathogenesis of RA and OA [152]. COX-2 activation stimulates prostaglandin production 

mediating inflammation [180]. The classical treatment for OA and RA is with COX inhibitors. 

However, NSAIDs have well known and severe side effects such as gastric ulcerations and do not 

inhibit the production of inflammatory stimulating mediators. Thus, degradation of joint cartilage is 

further promoted. This is why there is an emerged request for anti-inflammatory treatment that on one 

hand inhibits COX-2 (and thus prostaglandin production) but on the other hand further block the 

continuing joint degeneration. Interestingly, Subbaramaiah and co-workers have demonstrated that 

resveratrol has COX-2 inhibitory effects. The addition of pure resveratrol inhibited COX-2 expression 

and the production of prostaglandin E2 [181]. Furthermore, Elmali et al. demonstrated that intra-articular 

injections of resveratrol in rabbit inflammatory arthritis model had a chondroprotective effect on the 

cartilage [169,182]. We have shown that resveratrol has anti-apoptotic effects on primary chondrocytes 

by inhibiting the IL-1β-induced stimulation of caspase-3 and the cleavage of the DNA repair enzyme 

poly(ADP-ribose)polymerase (PARP) in human articular chondrocytes [183]. Furthermore, we have 

demonstrated that resveratrol inhibits the cysteine protease caspase-3 and the subsequent cleavage of 

the DNA repair enzyme PARP and the IL-1β-induced up-regulation of reactive oxygen species (ROS) 

in chondrocytes [137].  

In vitro studies have shown that IL-1β-induced suppression of chondrocyte proliferation and 

morphological alterations are suppressed by resveratrol. Resveratrol inhibits membrane-bound IL-1β 

and mature IL-1β protein production in chondrocytes. Furthermore, co-treatment of IL-1β-stimulated 

cells with resveratrol blocks activation of caspase-3, PARP cleavage, apoptosis and accumulation of 

tumor suppressor gene protein p53 and induces ubiquitin-independent degradation of p53. Resveratrol 

suppresses IL-1β-induced, NF-κB-dependent proinflammatory and matrix degrading gene products 

including MMPs, caspase-3, VEGF and COX-2. Resveratrol inhibits IL-1β-induced IκB-α degradation 

and consequently accumulated IL-1β-induced IkB-α phosphorylation. Resveratrol suppressed  

IL-1β-induced NF-κB dependent expression of apoptosis-related gene products by the accumulation of 

phosphorylated IκB-α, ubiquitinated IκB-α and inhibition of proteasome activity [137,138,183,184]. 

The in vivo effects of intra-articular injections of resveratrol on cartilage and synovium have been 

studied in a rabbit model of OA [169]. Resveratrol reduces cartilage tissue destruction and may protect 

cartilage against the development of experimentally induced OA. 

There is increasing evidence to show that resveratrol may act on the sirtuin system. The silent 

information regulator (SIR) genes (sirtuins) comprise a highly conserved family of proteins. SirT1, the 

first member of the sirtuin family, is an enzyme that deacetylates proteins that contribute to cellular 

regulation (reaction to stressors, longevity). Two recent review articles have examined the published 

research on resveratrol’s effects on the expression and function of sirtuins [185]. These papers also 

discuss the dietary, lifestyle, and environmental factors that influence sirtuin activity, especially dietary 

activators like resveratrol. 
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15. Clinical Trials of Other Phytochemical Based Products Approved as Medical Foods 

Limbrel [186] is a prescription medical food product for the clinical dietary management of the 

metabolic processes of osteoarthritis (OA). Limbrel was developed and formulated specifically for 

patients with OA. Although it is not a NSAID, nor a COX-2 selective inhibitor, it is proposed to 

function as an anti-oxidant as well as being a dual inhibitor of the cyclooxygenase (COX) and 

lipoxygenase (LOX) enzymes of arachidonic acid metabolism. Limbrel is manufactured according to 

FDA (Food and Drug Administration) current Good Manufacturing Practices (cGMP). It contains 

flavocoxid, a proprietary blend of natural ingredients from phytochemical food source materials. 

Flavocoxid is comprised primarily of the flavonoids such as baicalin and catechin. These or similar 

ingredients can be found in common foods such as soy, peanuts, cauliflower, kale, apples, apricots, 

cocoa and green tea. The fact that these and similar ingredients have been widely researched and used 

in medicinal products in other countries also supports biacalin and catechin’s safety and effectiveness. 

Limbrel provides levels of these flavonoids needed to meet the distinctive nutritional requirements of 

people with osteoarthritis and cannot be obtained through simply changing the diet. A recently 

conducted clinical trial of Limbrel (ClinicalTrials.gov [156] Identifier: NCT00928837) [187] has 

shown Limbrel to be effective in safely managing the unique nutritional needs of OA with side effects 

comparable to placebo. The Primary and Secondary Outcome Measures were to compare the efficacy, 

safety, quality of life and economic impact of Limbrel compared to the NSAID Naproxen and placebo. 

16. Concluding Remarks 

Nutrigenomics is an exciting area of research that holds much promise for the development of novel 

therapeutic strategies for the treatment of inflammatory diseases. However, wider acceptance of 

nutritional intervention, dietary supplements and nutraceuticals by medical practitioners arthritis 

patients and the scientific research community will require multi-disciplinary approaches that combine 

original hypothesis driven research with well-designed basic, clinical and epidemiological studies. The 

published data supporting the anti-inflammatory and anti-catabolic effects of curcumin and resveratrol 

and their synergistic activity is quite robust. Recent work has shown that curcumin and resveratrol 

protect chondrocytes from the catabolic actions of IL-1β including MMP-3 up-regulation, inhibition of 

collagen type II and down-regulation of β1-integrin expression. These phytochemicals can blocks  

IL-1β-induced proteoglycan degradation, AP-1/NF-κB signaling, chondrocyte apoptosis and activation 

of caspase-3. Therefore phytochemicals may be a beneficial complementary treatment for OA. 

However, more basic research is required to understand the absorption and bioavailability of these 

compounds and gain a deeper insight into their functional effects. In addition, the basic research needs 

to be followed by well-designed and conducted clinical trials that meet the current expectations of food 

and drug agencies in Europe and North America.  

The European Food Safety Authority (EFSA) [188] based in Parma, Italy has issued new guidelines 

and proposed new scientific requirements for health claims related to the maintenance of joints and to 

the reduction of the risk of developing OA. EFSA has proposed that clinical trials of functional foods 

and nutraceuticals should be designed in new and innovative ways to demonstrate a ―beneficial 

physiological effect‖ on healthy joints. For example, new guidelines have been introduced for the 
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substantiation of health claims related to glucosamine alone or in combination with chondroitin 

sulphate and maintenance of joints [189]. According to regulation EC 1924/2006 a ―beneficial 

physiological effect‖ has specific meanings for function and disease risk claims.  

 For function claims: To maintain or to improve a function 

 For reduction of disease risk claims: To reduce a risk factor for the development of a human 

disease (not reduction of the risk of the disease)—a risk factor that may serve as a predictor 

of development of that disease 

According to these new guidelines only clinical trials designed to demonstrate a beneficial 

physiological effect on joints or a reduction in joint degradation in people without OA should be 

accepted as indicative. These guidelines present some major new challenges to the scientific and 

clinical communities. Furthermore, they create a number of opportunities for new types of clinical 

trials. Since the maintenance of a ―normal joint‖ is considered to be a beneficial physiological effect, 

possible outcomes related to joint structure and function may include changes in:  

 Joint space width on radiographs 

 Mobility 

 Stiffness 

 Joint discomfort (i.e., pain) 

Studies performed in non-diseased (including high risk) population subgroups in which the 

incidence of OA is the outcome measure could be used for substantiation of health claims relating to 

the normal maintenance of the joint. Whilst attempting to address these requirements, we need to 

discriminate between food and non-food supplements. Studies dealing with ―non-foods‖ will require a 

much more traditional pharmacological design compared to studies on ―foods‖. Clearly, addressing 

this issue requires new strategies and large scale clinical studies lasting several decades. Such new 

trials will require radical rethinking of the concept of clinical trials in the OA research community. 

Human studies appear to be central for substantiation of clinical data and study groups should be 

representative of the entire population. Hierarchy of evidence is also considered; for example 

interventional studies are of greater significance compared to observational studies and reproducibility 

of the effect much be demonstrated. In addition, demonstrating efficacy of food supplements to EFSA 

will also require data on tolerance and safety, specifically gastric tolerance, hepatotoxicity, renal 

toxicity and allergenicity. Once these important obstacles have been overcome and new clinical trials 

have been carried out, curcumin and resveratrol may become useful alternative adjuncts to the NSAIDs 

that are currently used for the treatment of OA. 
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